×

A fractional-order form of a system with stable equilibria and its synchronization. (English) Zbl 1445.34028

Summary: There has been an increasing interest in studying fractional-order chaotic systems and their synchronization. In this paper, the fractional-order form of a system with stable equilibrium is introduced. It is interesting that such a three-dimensional fractional system can exhibit chaotic attractors. Full-state hybrid projective synchronization scheme and inverse full-state hybrid projective synchronization scheme have been designed to synchronize the three-dimensional fractional system with different four-dimensional fractional systems. Numerical examples have verified the proposed synchronization schemes.

MSC:

34A08 Fractional ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
26A33 Fractional derivatives and integrals

Software:

DFOC; sysdfod
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Strogatz, S: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, Massachusetts (1994) · Zbl 1343.37001
[2] Chen, G, Yu, X: Chaos Control: Theory and Applications. Springer, Berlin (2003) · Zbl 1029.00015 · doi:10.1007/b79666
[3] Fortuna, L, Frasca, M, Xibilia, MG: Chua’s Circuit Implementation: Yesterday, Today and Tomorrow. World Scientific, Singapore (2009) · doi:10.1142/7200
[4] Volos, CK, Kyprianidis, IM, Stouboulos, IN: A chaotic path planning generator for autonomous mobile robots. Robot. Auton. Syst. 60, 651-656 (2012) · doi:10.1016/j.robot.2012.01.001
[5] Pecora, L, Carroll, TL: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[6] Boccaletti, S, Kurths, J, Osipov, G, Valladares, D, Zhou, C: The synchronization of chaotic systems. Phys. Rep. 366, 1-101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[7] Varnosfaderani, IS, Sabahi, MF, Ataei, M: Joint blind equalization and detection in chaotic communication systems using simulation-based methods. AEÜ, Int. J. Electron. Commun. 69, 1445-1452 (2015) · doi:10.1016/j.aeue.2015.06.013
[8] Liu, H, Kadir, A, Li, Y: Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Optik 127, 7431-7438 (2016) · doi:10.1016/j.ijleo.2016.05.073
[9] Liu, H, Kadir, A, Niu, Y: Chaos-based color image block encryption scheme using s-box. AEÜ, Int. J. Electron. Commun. 68, 676-686 (2014) · doi:10.1016/j.aeue.2014.02.002
[10] Zhang, Q, Liu, L, Wei, X: Improved algorithm for image encryption based on DNA encoding and multi-chaotic maps. AEÜ, Int. J. Electron. Commun. 69, 186-192 (2014) · doi:10.1016/j.aeue.2013.08.007
[11] Chen, E, Min, L, Chen, G: Discrete chaotic systems with one-line equilibria and their application to image encryption. Int. J. Bifurc. Chaos 27, 1750,046 (2017) · Zbl 1360.37056 · doi:10.1142/S0218127417500468
[12] Yalcin, ME, Suykens, JAK, Vandewalle, J: True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I, Regul. Pap. 51, 1395-1404 (2004) · Zbl 1374.94814 · doi:10.1109/TCSI.2004.830683
[13] Ergun, S, Ozoguz, S: Truly random number generators based on a nonautonomous chaotic oscillator. AEÜ, Int. J. Electron. Commun. 61, 235-242 (2007) · doi:10.1016/j.aeue.2006.05.006
[14] Sprott, JC: Elegant Chaos Algebraically Simple Chaotic Flows. World Scientific, Singapore (2010) · Zbl 1222.37005 · doi:10.1142/7183
[15] Lorenz, EN: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[16] Chen, GR, Ueta, T: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[17] Lü, JH, Chen, GR: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659-661 (2002) · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[18] Yang, QG, Chen, GR, Zhou, TS: A unified Lorenz-type system and its canonical form. Int. J. Bifurc. Chaos 16, 2855-2871 (2006) · Zbl 1185.37088 · doi:10.1142/S0218127406016501
[19] Yang, QG, Chen, GR, Huang, KF: Chaotic attractors of the conjugate Lorenz-type system. Int. J. Bifurc. Chaos 17, 3929-3949 (2007) · Zbl 1149.37308 · doi:10.1142/S0218127407019792
[20] Yang, Q, Chen, G: A chaotic system with one saddle and two stable node-foci. Int. J. Bifurc. Chaos 18, 1393-1414 (2008) · Zbl 1147.34306 · doi:10.1142/S0218127408021063
[21] Yang, Q, Wei, Z, Chen, G: An unusual 3D chaotiac system with two stable node-foci. Int. J. Bifurc. Chaos 20, 1061-1083 (2010) · Zbl 1193.34091 · doi:10.1142/S0218127410026320
[22] Wei, Z: Delayed feedback on the 3-D chaotic system only with two stable node-foci. Comput. Math. Appl. 63, 728-738 (2012) · Zbl 1238.34122 · doi:10.1016/j.camwa.2011.11.037
[23] Wei, Z, Yang, Q: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal., Real World Appl. 12, 106-118 (2011) · Zbl 1213.37061 · doi:10.1016/j.nonrwa.2010.05.038
[24] Wei, Z, Wang, Q: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68, 543-554 (2012) · Zbl 1252.93067 · doi:10.1007/s11071-011-0235-8
[25] Wei, ZC, Pehlivan, I: Chaos, coexisting attractors, and circuit design of the generalized Sprott C system with only two stable equilibria. Optoelectron. Adv. Mater., Rapid Commun. 6, 742-745 (2012)
[26] Leonov, GA, Kuznetsov, NV, Kuznetsova, OA, Seldedzhi, SM, Vagaitsev, VI: Hidden oscillations in dynamical systems. WSEAS Trans. Syst. Control 6, 54-67 (2011)
[27] Leonov, GA, Kuznetsov, NV, Vagaitsev, VI: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230-2233 (2011) · Zbl 1242.34102 · doi:10.1016/j.physleta.2011.04.037
[28] Leonov, GA, Kuznetsov, NV, Mokaev, TN: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion - Homoclinic orbits, and self-excited and hidden attractors. Eur. Phys. J. Spec. Top. 224, 1421-1458 (2015) · doi:10.1140/epjst/e2015-02470-3
[29] Dudkowski, D, Jafari, S, Kapitaniak, T, Kuznetsov, N, Leonov, G, Prasad, A: Hidden attractors in dynamical systems. Phys. Rep. 637, 1-50 (2016) · Zbl 1359.34054 · doi:10.1016/j.physrep.2016.05.002
[30] Wang, X, Chen, G: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17, 1264-1272 (2012) · doi:10.1016/j.cnsns.2011.07.017
[31] Wang, X, Chen, G: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71, 429-436 (2013) · doi:10.1007/s11071-012-0669-7
[32] Leonov, GA, Kuznetsov, NV, Kiseleva, MA, Solovyeva, EP, Zaretskiy, AM: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77, 277-288 (2014) · doi:10.1007/s11071-014-1292-6
[33] Sharma, PR, Shrimali, MD, Prasad, A, Kuznetsov, NV, Leonov, GA: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224, 1485-1491 (2015) · doi:10.1140/epjst/e2015-02474-y
[34] Sharma, PR, Shrimali, MD, Prasad, A, Kuznetsov, NV, Leonov, GA: Controlling dynamics of hidden attractors. Int. J. Bifurc. Chaos 25, 1550,061 (2015) · Zbl 1314.34134 · doi:10.1142/S0218127415500613
[35] Leonov, GA, Kuznetsov, NV, Mokaev, TN: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28, 166-174 (2015) · Zbl 1510.37063 · doi:10.1016/j.cnsns.2015.04.007
[36] Wei, Z, Zhang, W, Wang, Z, Yao, M: Hidden attractors and dynamical behaviors in an extended Rikitake system. Int. J. Bifurc. Chaos 25, 1550,028 (2015) · Zbl 1309.34009 · doi:10.1142/S0218127415500285
[37] Shahzad, M, Pham, VT, Ahmad, MA, Jafari, S, Hadaeghi, F: Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur. Phys. J. Spec. Top. 224, 1637-1652 (2015) · doi:10.1140/epjst/e2015-02485-8
[38] Zhusubaliyev, ZT, Mosekilde, E: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32-45 (2015) · Zbl 07313328 · doi:10.1016/j.matcom.2014.08.001
[39] Rajagopal, K, Karthikeyan, A, Srinivasan, AK: FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87, 2281-2304 (2017) · doi:10.1007/s11071-016-3189-z
[40] Cafagna, D, Grassi, G: Fractional-order systems without equilibria: the first example of hyperchaos and its application to synchronization. Chin. Phys. B 8, 080,502 (2015) · doi:10.1088/1674-1056/24/8/080502
[41] Li, H, Liao, X, Luo, M: A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dyn. 68, 137-149 (2012) · Zbl 1243.93033 · doi:10.1007/s11071-011-0210-4
[42] Zhou, P, Huang, K, Yang, C: A fractional-order chaotic system with an infinite number of equilibrium points. Discrete Dyn. Nat. Soc. 2013, 1-6 (2013)
[43] Cafagna, D, Grassi, G: Elegant chaos in fractional-order system without equilibria. Math. Probl. Eng. 2013, 380,436 (2013) · Zbl 1296.34110 · doi:10.1155/2013/380436
[44] Cafagna, D, Grassi, G: Chaos in a fractional-order system without equilibrium points. Commun. Nonlinear Sci. Numer. Simul. 19, 2919-2927 (2014) · Zbl 1510.34007 · doi:10.1016/j.cnsns.2014.02.017
[45] Kingni, ST, Pham, VT, Jafari, S, Kol, GR, Woafo, P: Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35, 1933-1948 (2016) · Zbl 1345.93073 · doi:10.1007/s00034-016-0259-x
[46] Kingni, ST, Pham, VT, Jafari, S, Woafo, P: A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form. Chaos Solitons Fractals 99, 209-218 (2017) · Zbl 1373.34072 · doi:10.1016/j.chaos.2017.04.011
[47] Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[48] Monje, CA, Chen, YQ, Vinagre, BM, Xue, D, Feliu, V: Fractional Differential Equations. Academic Press, New York (1999)
[49] Diethelm, K: The Analysis of Fractional Differential Equations, an Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010) · Zbl 1215.34001
[50] Petras, I: Fractional-Order Nonlinear Systems, Modeling, Analysis and Simulation. Springer, Berlin (2011) · Zbl 1228.34002 · doi:10.1007/978-3-642-18101-6
[51] Kumar, D, Singh, J, Baleanu, D: A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. 40, 5642-5653 (2017) · Zbl 1388.35212 · doi:10.1002/mma.4414
[52] Kumar, D, Agarwal, RP, Singh, J: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 1-13 (2017). https://doi.org/10.1016/j.cam.2017.03.011 · Zbl 1404.34007 · doi:10.1016/j.cam.2017.03.011
[53] Kumar, D, Singh, J, Baleanu, D: A fractional model of convective radial fins with temperature-dependent thermal conductivity. Rom. Rep. Phys. 69, 1-13 (2017)
[54] Kumar, D, Singh, J, Baleanu, D: Modified Kawahara equation within a fractional derivative with non-singular kernel. Therm. Sci. 1-10 (2017) https://doi.org/10.2298/TSCI160826008K · doi:10.2298/TSCI160826008K
[55] Wu, GC, Baleanu, D, Xie, HP, Chen, FL: Chaos synchronization of fractional chaotic maps based on stability results. Physica A 460, 374-383 (2016) · Zbl 1400.34107 · doi:10.1016/j.physa.2016.05.045
[56] Wu, GC, Baleanu, D, Luo, WH: Lyapunov functions for Riemann-Liouville-like fractional difference equations. Appl. Math. Comput. 314, 228-236 (2017) · Zbl 1426.39010
[57] Wu, GC, Baleanu, D: Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion. Commun. Nonlinear Sci. Numer. Simul. 57, 299-308 (2018) · Zbl 1510.39014 · doi:10.1016/j.cnsns.2017.09.001
[58] Yang, XJ, Baleanu, D, Gao, F: New analytical solutions for Klein-Gordon and Helmholtz equations in fractal dimensional space. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 18, 231-238 (2017) · Zbl 1413.35447
[59] Yang, XJ, Srivastava, HM, Torres, DFM, Debbouche, A: General fractional-order anomalous diffusion with non-singular power-law kernal. Therm. Sci. 21, S1-S9 (2017) · doi:10.2298/TSCI170610193Y
[60] Yang, XJ, Machado, JAT, Nieto, JJ: A new family of the local fractional PDEs. Fundam. Inform. 151, 63-175 (2017) · Zbl 1386.35461 · doi:10.3233/FI-2017-1479
[61] Yang, XJ, Machado, JAT, Baleanu, D, Gao, F: A new numerical technique for local fractional diffusion equation in fractal heat transfer. J. Nonlinear Sci. Appl. 9, 5621-5628 (2016) · Zbl 1374.76210
[62] Yang, XJ, Machado, JAT, Cattani, C, Gao, F: On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200-206 (2017) · doi:10.1016/j.cnsns.2016.11.017
[63] Yang, XJ, Gao, F, Srivastava, HM: New rheological models within local fractional derivative. Rom. Rep. Phys. 69, 1-12 (2017)
[64] Yang, XJ: New general fractional-order rheological models with kernels of Mittag-Leffler functions. Rom. Rep. Phys. 69, 1-15 (2017)
[65] Kingni, ST, Jafari, S, Simo, H, Woafo, P: Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur. Phys. J. Plus 129, 76 (2014) · doi:10.1140/epjp/i2014-14076-4
[66] Diethelm, K, Ford, NJ: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[67] Diethelm, K, Ford, NJ, Freed, AD: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[68] Zhang, L, Liu, T: Full state hybrid projective synchronization of variable-order fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown parameters. J. Nonlinear Sci. Appl. 9, 1064-1076 (2016) · Zbl 1330.34085 · doi:10.22436/jnsa.009.03.34
[69] Ouannas, A, Grassi, G, Ziar, T, Odibat, Z: On a function projective synchronization scheme between non-identical fractional-order chaotic (hyperchaotic) systems with different dimensions and orders. Optik 136, 513-523 (2017) · doi:10.1016/j.ijleo.2017.02.068
[70] Li, Y, Chen, YQ, Podlubny, I: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810-1821 (2010) · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[71] Aguila-Camacho, N, Duarte-Mermoud, MA, Gallegos, JA: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951-2957 (2014) · Zbl 1510.34111 · doi:10.1016/j.cnsns.2014.01.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.