×

Toward a higher order unsteady finite volume solver based on reproducing kernel methods. (English) Zbl 1230.76033

Summary: During the last decades, research efforts are headed to develop high order methods on CFD and CAA to reach most industrial applications (complex geometries) which need, in most cases, unstructured grids. Today, higher-order methods dealing with unstructured grids remain in infancy state and they are still far from the maturity of structured grids-based methods when solving unsteady cases. From this point of view, the development of higher order methods for unstructured grids become indispensable. The finite volume method seems to be a good candidate, but unfortunately it is difficult to achieve space flux derivation schemes with very high order of accuracy for unsteady cases. In this paper we propose, a high order finite volume method based on Moving Least Squares approximations for unstructured grids that is able to reach an arbitrary order of accuracy on unsteady cases. In order to ensure high orders of accuracy, two strategies were explored independently: (1) a zero-mean variables reconstruction to enforce the mean order at the time derivative and (2) a pseudo mass matrix formulation to preserve the residuals order.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hu, F. Q.; Hussaini, M. Y.; Manthey, J. L., A low-dissipation and low dispersion Runge-Kutta scheme for computational acoustics, J. Comput. Phys., 124, 177-191 (1996) · Zbl 0849.76046
[2] Bailly, C.; Juvé, D., Numerical solution of acoustic propagation problems using linearized Euler equations, AIAA J., 38, 1, 22-29 (2000)
[3] T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on unstructured meshes, in: AIAA-89-0366, 1989.; T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on unstructured meshes, in: AIAA-89-0366, 1989.
[4] T. Barth, P. Frederickson, Higher-order solution of the Euler equations on unstructured grids using quadratic reconstruction., in: AIAA Paper 90-0013, 1990.; T. Barth, P. Frederickson, Higher-order solution of the Euler equations on unstructured grids using quadratic reconstruction., in: AIAA Paper 90-0013, 1990.
[5] T. Barth, Recent developments in high-order K-Exact reconstruction on unstructured meshes, in: AIAA Paper 93-0668, 1993.; T. Barth, Recent developments in high-order K-Exact reconstruction on unstructured meshes, in: AIAA Paper 93-0668, 1993.
[6] Jahawar, P.; Kamath, H., A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids, J. Comput. Phys., 164, 165-203 (2000) · Zbl 0992.76063
[7] Bassi, F.; Rebay, S., A higher-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 251-285 (1997) · Zbl 0902.76056
[8] Bassi, F.; Rebay, S., Higher-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279 (1997) · Zbl 0871.76040
[9] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection dominated problems, J. Sci. Comput., 16, 173-261 (2002) · Zbl 1065.76135
[10] Dolejs˘í, V., On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations, Int. J. Numer. Methods Fluids, 45, 1083-1106 (2004) · Zbl 1060.76570
[11] P. Persson, J. Peraire, An efficient low memory implicit DG algorithm for time dependent problems, in: Forty-fourth AIAA Paper 2006-0113, Aerospace Sciences Meeting, Reno, Nevada, 2006.; P. Persson, J. Peraire, An efficient low memory implicit DG algorithm for time dependent problems, in: Forty-fourth AIAA Paper 2006-0113, Aerospace Sciences Meeting, Reno, Nevada, 2006.
[12] Harten, A.; Osher, S., Uniformly high order accurate non-oscillatory schemes i, SIAM J. Numer. Anal., 24, 279-309 (1987) · Zbl 0627.65102
[13] Shu, C.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[14] C. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Tech. Rep., ICASE Report 97-65, 1997.; C. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Tech. Rep., ICASE Report 97-65, 1997. · Zbl 0927.65111
[15] Abgrall, R., An essentially non-oscillatory reconstruction procedure on finite-element type meshes: application to compressible flows, Comput. Methods Appl. Mech. Engrg., 116, 95-101 (1994) · Zbl 0824.76052
[16] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, J. Comput. Phys., 114, 1, 45-58 (1994) · Zbl 0822.65062
[17] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, J. Comput. Phys., 144, 1, 194-212 (1998) · Zbl 1392.76048
[18] Hu, C.; Shu, C., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 1, 97-127 (1999) · Zbl 0926.65090
[19] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares, Math. Comput., 155, 141-158 (1981) · Zbl 0469.41005
[20] Cueto-Felgueroso, L.; Colominas, I.; Fe, J.; Navarrina, F.; Casteleiro, M., High-order finite volume schemes on unstructured grids using moving least squares reconstruction. application to shallow water dynamics, Int. J. Numer. Methods Engrg., 65, 3, 295-331 (2006) · Zbl 1111.76032
[21] Cueto-Felgueroso, L.; Colominas, I.; Nogueira, X.; Navarrina, F.; Casteleiro, M., Finite volume solvers and moving least-squares approximations for the compressible Navier-Stokes equations on unstructured grids, Comput. Methods Appl. Mech. Engrg., 196, 4712-4736 (2007) · Zbl 1173.76358
[22] X. Nogueira, Moving least squares and high-order finite volume methods for the numerical simulation of compressible flows, Ph.D. Thesis, Universidade da Coruña, 2009 (in Spanish). Available from: <http://hdl.handle.net/2183/5671; X. Nogueira, Moving least squares and high-order finite volume methods for the numerical simulation of compressible flows, Ph.D. Thesis, Universidade da Coruña, 2009 (in Spanish). Available from: <http://hdl.handle.net/2183/5671
[23] Khelladi, S.; Nogueira, X.; Bakir, F.; Cueto-Felgueroso, L.; Colominas, I., Finite volume solvers and moving least square approximations for the linearized Euler equations on unstructured grids, J. Acoust. Soc. Am., 123, 5, 3381 (2008)
[24] Nogueira, X.; Cueto-Felgueroso, L.; Colominas, I.; Khelladi, S.; Navarrina, F.; Casteleiro, M., Resolution of computational aeroacoustics problem on unstructured grids with high-order finite volume scheme, J. Comput. Appl. Math., 234, 7, 2089-2097 (2010) · Zbl 1402.76084
[25] Godunov, S. K., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sbornik (N.S.), 47, 357-393 (1959) · Zbl 0171.46204
[26] Cueto-Felgueroso, L.; Colominas, I., High-order finite volume methods and multiresolution reproducing kernels, Arch. Comput. Methods Engrg., 15, 2, 185-228 (2008) · Zbl 1300.76018
[27] Liu, W. K.; Hao, W.; Chen, Y.; Jun, S.; Gosz, J., Multi-resolution reproducing kernel particle methods, Comput. Mech., 20, 295-309 (1997) · Zbl 0893.73078
[28] Nogueira, X.; Colominas, I.; Cueto-Felgueroso, L.; Khelladi, S., On the simulation of wave propagation with a higher-order finite volume scheme based on reproducing kernel methods, Comput. Methods Appl. Mech. Engrg., 199, 23-24, 1471-1490 (2010) · Zbl 1231.76181
[29] Liu, G. R., Mesh Free Methods: Moving Beyond the Finite Element Method (2003), CRC Press: CRC Press Boca Raton · Zbl 1031.74001
[30] T. Barth, Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations, in: Lecture Series 1994-05 in Computational Fluid Dynamics, March 21-25, 1994.; T. Barth, Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations, in: Lecture Series 1994-05 in Computational Fluid Dynamics, March 21-25, 1994.
[31] V. Venkatakrishnan, Implicit schemes and parallel computing in unstructured grid CFD, Tech. Rep., ICASE Report 95-28, NASA Langley Research Center, 1995.; V. Venkatakrishnan, Implicit schemes and parallel computing in unstructured grid CFD, Tech. Rep., ICASE Report 95-28, NASA Langley Research Center, 1995.
[32] Venkatakrishnan, V.; Mavriplis, D., Implicit method for the computation of unsteady flows on unstructured grids, J. Comput. Phys., 127, 380-397 (1996) · Zbl 0862.76054
[33] Wandzura, S.; Xiao, H., Symmetric quadrature rules on a triangle, Comput. Math. Appl., 45, 1829-1840 (2003) · Zbl 1050.65022
[34] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[35] C. Ollivier-Gooch, A. Nejat, K. Michalak, On obtaining high-order finite-volume solutions to the Euler equations on unstructured meshes, in: AIAA Paper 2007-4464, 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, 2007, pp. 25-28.; C. Ollivier-Gooch, A. Nejat, K. Michalak, On obtaining high-order finite-volume solutions to the Euler equations on unstructured meshes, in: AIAA Paper 2007-4464, 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, 2007, pp. 25-28.
[36] Williamson, J., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 48-56 (1980) · Zbl 0425.65038
[37] Berland, J.; Bogey, C.; Bailly, C., Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm, Comput. Fluids, 35, 10, 1459-1463 (2006) · Zbl 1177.76252
[38] Goldstein, M., Aeroacoustics (1976), McGraw-Hill Inc. · Zbl 0381.76061
[39] Hindmarsh, A.; Brown, P.; Grant, K.; Lee, S.; Serban, R.; Shumaker, D.; Woodward, C., Sundials: suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Softw., 31, 3, 363-396 (2005) · Zbl 1136.65329
[40] Brown, P.; Hindmarsh, A.; Petzold, L., Using krylov methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15, 1467-1488 (1994) · Zbl 0812.65060
[41] Brown, P.; Hindmarsh, A.; Petzold, L., Consistent initial condition calculation for differential-algebraic systems, SIAM J. Sci. Comput., 19, 1495-1512 (1998) · Zbl 0915.65079
[42] S. Li, L.R. Petzold, Design of new daspk for sensitivity analysis, Tech. Rep., Technical Report of Computer Science Department (TRCS99-23), University of California, Santa Barbara, 1999.; S. Li, L.R. Petzold, Design of new daspk for sensitivity analysis, Tech. Rep., Technical Report of Computer Science Department (TRCS99-23), University of California, Santa Barbara, 1999.
[43] K. Brenan, S. Campbell, L. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, in: SIAM, Philadelphia, PA, 1996.; K. Brenan, S. Campbell, L. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, in: SIAM, Philadelphia, PA, 1996. · Zbl 0844.65058
[44] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[45] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, 2003, xviii; Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, 2003, xviii
[46] Chenweth, S.; Soria, J.; Ooi, A., A singularity-avoiding of moving least squares scheme for two dimensional unstructured meshes, J. Comput. Phys., 228, 5592-5619 (2009) · Zbl 1280.76036
[47] Bernacki, M.; Lanteri, S.; Piperno, S., Time-domain parallel simulation of heterogeneous wave propagation on unstructured grids using explicit, non-diffusive, discontinuous Galerkin methods, J. Comput. Acoust., 14, 1, 57-82 (2006) · Zbl 1198.76081
[48] Hu, F., On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer, J. Comput. Phys., 129, 201-219 (1996) · Zbl 0879.76084
[49] Tam, C.; Webb, J., Dispersion-relation-preserving finite difference schemes for computational aeroacoustics, J. Comput. Phys., 107, 262-281 (1993) · Zbl 0790.76057
[50] N. Edgard, M. Visbal, A general buffer zone-type non-reflecting boundary condition for computational aeroacoustics, in: Ninth AIAA/CEAS Aeroacoustics Conference and Exhibit, Hilton Head, AIAA 2003-3300, 2003, pp. 1-9.; N. Edgard, M. Visbal, A general buffer zone-type non-reflecting boundary condition for computational aeroacoustics, in: Ninth AIAA/CEAS Aeroacoustics Conference and Exhibit, Hilton Head, AIAA 2003-3300, 2003, pp. 1-9.
[51] Nogueira, X.; Cueto-Felgueroso, L.; Colominas, I.; Gómez, H.; Navarrina, F.; Casteleiro, M., On the accuracy of finite volume and discontinuous Galerkin discretizations for compressible flow on unstructured grids, Int. J. Numer. Methods Engrg., 78, 1553-1584 (2009) · Zbl 1171.76426
[52] Peraire, J.; Persson, P.-O., The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput., 30, 4, 1806-1824 (2008) · Zbl 1167.65436
[53] Bickley, W. G., Formulae for numerical integration, Math. Gaz., 23, 256, 352-359 (1939) · Zbl 0022.25903
[54] Nogueira, X.; Cueto-Felgueroso, L.; Colominas, I.; Gómez, H., Implicit large eddy simulation of non-wall-bounded turbulent flows based on the multiscale properties of a high-order finite volume method, Comput. Methods Appl. Mech. Engrg., 199, 9-12, 615-624 (2010) · Zbl 1227.76021
[55] NASA, Fourth computational aeroacoustics (CAA) workshop on benchmark problems, Tech. Rep., NASA/CP-2004-212954, September 2004.; NASA, Fourth computational aeroacoustics (CAA) workshop on benchmark problems, Tech. Rep., NASA/CP-2004-212954, September 2004.
[56] S. Sherer, M. Visbal, High-order overset-grid simulations of acoustic scattering from multiple cylinders, in: Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA/CP-2004-212954, September 2004, pp. 255-266.; S. Sherer, M. Visbal, High-order overset-grid simulations of acoustic scattering from multiple cylinders, in: Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA/CP-2004-212954, September 2004, pp. 255-266.
[57] C.E. Lynch, M.J. Smith, Hybrid RANS-LES turbulence models on unstructured grids, in: AIAA Paper 2008-3854, 38th Fluid Dynamics Conference and Exhibit, Seattle, Washington, 23-26 June 2008.; C.E. Lynch, M.J. Smith, Hybrid RANS-LES turbulence models on unstructured grids, in: AIAA Paper 2008-3854, 38th Fluid Dynamics Conference and Exhibit, Seattle, Washington, 23-26 June 2008.
[58] M. Young, A. Ooi, Comparative assessment of les and urans for flow over a cylinder at a reynolds number of 3900, in: Sixteenth Australasian Fluid Mechanics Conference, Gold Coast, Australia, 2007, pp. 2-7.; M. Young, A. Ooi, Comparative assessment of les and urans for flow over a cylinder at a reynolds number of 3900, in: Sixteenth Australasian Fluid Mechanics Conference, Gold Coast, Australia, 2007, pp. 2-7.
[59] Kravchenko, A. G.; Moin, P., Numerical studies of flow over a circular cylinder at \(Re_d = 3900\), Phys. Fluids, 12, 2, 403-417 (2000) · Zbl 1149.76441
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.