×

Unsupervised particle sorting for high-resolution single-particle cryo-EM. (English) Zbl 1470.92182

Summary: Single-particle cryo-electron microscopy (EM) has become a popular technique for determining the structure of challenging biomolecules that are inaccessible to other technologies. Recent advances in automation, both in data collection and data processing, have significantly lowered the barrier for non-expert users to successfully execute the structure determination workflow. Many critical data processing steps, however, still require expert user intervention in order to converge to the correct high-resolution structure. In particular, strategies to identify homogeneous populations of particles rely heavily on subjective criteria that are not always consistent or reproducible among different users. Here, we explore the use of unsupervised strategies for particle sorting that are compatible with the autonomous operation of the image processing pipeline. More specifically, we show that particles can be successfully sorted based on a simple statistical model for the distribution of scores assigned during refinement. This represents an important step towards the development of automated workflows for protein structure determination using single-particle cryo-EM.

MSC:

92C55 Biomedical imaging and signal processing
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Kühlbrandt W 2014 Cryo-EM enters a new era Elife3 e03678 · doi:10.7554/eLife.03678
[2] Egelman E H 2016 The current revolution in Cryo-EM Biophys. J.110 1008-12 · doi:10.1016/j.bpj.2016.02.001
[3] Velankar S et al 2016 PDBe: improved accessibility of macromolecular structure data from PDB and EMDB Nucl. Acids Res.44 385-95 · doi:10.1093/nar/gkv1047
[4] Guo T et al 2017 Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-cas surveillance complex Cell171 414-26 · doi:10.1016/j.cell.2017.09.006
[5] Banerjee S et al 2016 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition Science351 871-5 · doi:10.1126/science.aad7974
[6] Matthies D, Bae C, Toombes G E, Fox T, Bartesaghi A, Subramaniam S and Swartz K J 2018 Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs Elife7 e37558 · doi:10.7554/eLife.37558
[7] Liao M, Cao E, Julius D and Cheng Y 2013 Structure of the TRPV1 ion channel determined by electron cryo-microscopy Nature504 107-12 · doi:10.1038/nature12822
[8] Matthies D et al 2016 Cryo-EM structures of the magnesium channel CorA Reveal symmetry break upon gating Cell164 747-56 · doi:10.1016/j.cell.2015.12.055
[9] Meyerson J R, Kumar J, Chittori S, Rao P, Pierson J, Bartesaghi A, Mayer M L and Subramaniam S 2014 Structural mechanism of glutamate receptor activation and desensitization Nature514 328-34 · doi:10.1038/nature13603
[10] Kang Y et al 2018 Cryo-EM structure of human rhodopsin bound to an inhibitory G protein Nature558 553-8 · doi:10.1038/s41586-018-0215-y
[11] García-Nafría J, Lee Y, Bai X, Carpenter B and Tate C G 2018 Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein Elife7 e35946 · doi:10.7554/eLife.35946
[12] García-Nafría J, Nehmé R, Edwards P C and Tate C G 2018 Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric go Nature558 620-3 · doi:10.1038/s41586-018-0241-9
[13] Liang Y-L et al 2017 Phase-plate cryo-EM structure of a class B GPCR-G-protein complex Nature546 118-23 · doi:10.1038/nature22327
[14] Merk A et al 2016 Breaking cryo-EM resolution barriers to facilitate drug discovery Cell165 1698-707 · doi:10.1016/j.cell.2016.05.040
[15] Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne J L S and Subramaniam S 2015 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor Science348 1147-51 · doi:10.1126/science.aab1576
[16] Borgnia M et al 2016 Using cryo-EM to map small ligands on dynamic metabolic enzymes: studies with glutamate dehydrogenase Mol. Pharmacol.89 645-51 · doi:10.1124/mol.116.103382
[17] Brilot A F, Chen J Z, Cheng A, Pan J, Harrison S C, Potter C S, Carragher B, Henderson R and Grigorieff N 2012 Beam-induced motion of vitrified specimen on holey carbon film J. Struct. Biol.177 630-7 · doi:10.1016/j.jsb.2012.02.003
[18] Bartesaghi A, Matthies D, Banerjee S, Merk A and Subramaniam S 2014 Structure of β-galactosidase at 3.2 Å resolution obtained by cryo-electron microscopy Proc. Natl Acad. Sci.111 11709-14 · doi:10.1073/pnas.1402809111
[19] Kremer J R, Mastronarde D N and McIntosh J R 1996 Computer visualization of three-dimensional image data using IMOD J. Struct. Biol.116 71-6 · doi:10.1006/jsbi.1996.0013
[20] Grant T and Grigorieff N 2015 Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 Elife4 e06980 · doi:10.7554/eLife.06980
[21] Li X, Mooney P, Zheng S, Booth C R, Braunfeld M B, Gubbens S, Agard D A and Cheng Y 2013 Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM Nat. Methods10 584-90 · doi:10.1038/nmeth.2472
[22] Zheng S Q, Palovcak E, Armache J-P, Verba K A, Cheng Y and Agard D A 2017 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy Nat. Methods14 331-2 · doi:10.1038/nmeth.4193
[23] Abrishami V, Vargas J, Li X, Cheng Y, Marabini R, Sorzano C Ó S and Carazo J M 2015 Alignment of direct detection device micrographs using a robust optical flow approach J. Struct. Biol.189 163-76 · doi:10.1016/j.jsb.2015.02.001
[24] Bartesaghi A et al 2018 Atomic resolution cryo-EM structure of β-galactosidase Structure26 848-56 · doi:10.1016/j.str.2018.04.004
[25] Rubinstein J L and Brubaker M A 2015 Alignment of cryo-EM movies of individual particles by optimization of image translations J. Struct. Biol.192 188-95 · doi:10.1016/j.jsb.2015.08.007
[26] Scheres S H 2014 Beam-induced motion correction for sub-megadalton cryo-EM particles Elife3 e03665 · doi:10.7554/eLife.03665
[27] Rohou A and Grigorieff N 2015 CTFFIND4: fast and accurate defocus estimation from electron micrographs J. Struct. Biol.192 216-21 · doi:10.1016/j.jsb.2015.08.008
[28] Zhang K 2016 Gctf: real-time CTF determination and correction J. Struct. Biol.193 1-12 · doi:10.1016/j.jsb.2015.11.003
[29] Wagner T et al 2019 SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM Commun Biol.2 218 · doi:10.1038/s42003-019-0437-z
[30] Bepler T, Morin A, Rapp M, Brasch J, Shapiro L, Noble A J and Berger B 2019 Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs Nat Methods16 1153-60 · doi:10.1038/s41592-019-0575-8
[31] Wang F, Gong H, Liu G, Li M, Yan C, Xia T, Li X and Zeng J 2016 DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM J. Struct. Biol.195 325-36 · doi:10.1016/j.jsb.2016.07.006
[32] Grant T, Rohou A and Grigorieff N 2018 cisTEM, user-friendly software for single-particle image processing Elife7 e35383 · doi:10.7554/eLife.35383
[33] Heimowitz A, Andén J and Singer A 2018 APPLE picker: automatic particle picking, a low-effort cryo-EM framework J. Struct. Biol.204 215-27 · doi:10.1016/j.jsb.2018.08.012
[34] Punjani A, Rubinstein J L, Fleet D J and Brubaker M A 2017 cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination Nat. Methods14 290-6 · doi:10.1038/nmeth.4169
[35] Zivanov J, Nakane T, Forsberg B O, Kimanius D, Hagen W J, Lindahl E and Scheres S H 2018 New tools for automated high-resolution cryo-EM structure determination in RELION-3 Elife7 e42166 · doi:10.7554/eLife.42166
[36] Moriya T, Saur M, Stabrin M, Merino F, Voicu H, Huang Z, Penczek P A, Raunser S and Gatsogiannis C 2017 High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE J. Vis. Exp. Elife123 e55448 · doi:10.3791/55448
[37] Tang G, Peng L, Baldwin P R, Mann D S, Jiang W, Rees I and Ludtke S J 2007 EMAN2: an extensible image processing suite for electron microscopy J. Struct. Biol.157 38-46 · doi:10.1016/j.jsb.2006.05.009
[38] Greenberg I and Shkolnisky Y 2017 Common lines modeling for reference free ab initio reconstruction in cryo-EM J. Struct. Biol.200 106-17 · doi:10.1016/j.jsb.2017.09.007
[39] Levin E, Bendory T, Boumal N, Kileel J and Singer A 2018 3D ab initio modeling in cryo-EM by autocorrelation analysis 2018 IEEE 15th Int. Symp. on Biomedical Imaging (ISBI 2018) pp 1569-73 · doi:10.1109/ISBI.2018.8363873
[40] Scheres S H W 2012 RELION: implementation of a Bayesian approach to cryo-EM structure determination J. Struct. Biol.180 519-30 · doi:10.1016/j.jsb.2012.09.006
[41] Wang R Y-R, Song Y, Barad B A, Cheng Y, Fraser J S and DiMaio F 2016 Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta Elife5 e17219 · doi:10.7554/eLife.17219
[42] Brown A, Long F, Nicholls R A, Toots J, Emsley P and Murshudov G 2015 Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions Acta Crystallogr. D 71 136-53 · doi:10.1107/S1399004714021683
[43] Sorzano C O S et al 2019 Survey of the analysis of continuous conformational variability of biological macromolecules by electron microscopy Acta Crystallogr. F 75 19-32 · doi:10.1107/S2053230X18015108
[44] Bendory T, Bartesaghi A and Singer A 2019 Single-particle cryo-electron microscopy: mathematical theory, computational challenges, and opportunities (arXiv:1908.00574)
[45] Carragher B, Kisseberth N, Kriegman D, Milligan R A, Potter C S, Pulokas J and Reilein A 2000 Leginon: an automated system for acquisition of images from vitreous ice specimens J. Struct. Biol.132 33-45 · doi:10.1006/jsbi.2000.4314
[46] Mastronarde D N 2005 Automated electron microscope tomography using robust prediction of specimen movements J. Struct. Biol.152 36-51 · doi:10.1016/j.jsb.2005.07.007
[47] van Heel M, Harauz G, Orlova E V, Schmidt R and Schatz M 1996 A new generation of the IMAGIC image processing system J. Struct. Biol.116 17-24 · doi:10.1006/jsbi.1996.0004
[48] Vargas J, Abrishami V, Marabini R, de la Rosa-Trevín J M, Zaldivar A, Carazo J M and Sorzano C O S 2013 Particle quality assessment and sorting for automatic and semiautomatic particle-picking techniques J. Struct. Biol.183 342-53 · doi:10.1016/j.jsb.2013.07.015
[49] Norousi R, Wickles S, Leidig C, Becker T, Schmid V J, Beckmann R and Tresch A 2013 Automatic post-picking using MAPPOS improves particle image detection from cryo-EM micrographs J. Struct. Biol.182 59-66 · doi:10.1016/j.jsb.2013.02.008
[50] Sanchez-Garcia R, Segura J, Maluenda D, Carazo J M and Sorzano C O S 2018 Deep consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy IUCrJ5 854-65 · doi:10.1107/S2052252518014392
[51] Henderson R 2013 Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise Proc. Natl Acad. Sci. USA110 18037-41 · doi:10.1073/pnas.1314449110
[52] van Heel M 2013 Finding trimeric HIV-1 envelope glycoproteins in random noise Proc. Natl Acad. Sci. USA110 E4175-7 · doi:10.1073/pnas.1314353110
[53] Subramaniam S 2013 Structure of trimeric HIV-1 envelope glycoproteins Proc. Natl Acad. Sci. USA110 E4172-4 · doi:10.1073/pnas.1211077110
[54] Sorzano C O S et al 2018 A new algorithm for high-resolution reconstruction of single particles by electron microscopy J. Struct. Biol.204 329-37 · doi:10.1016/j.jsb.2018.08.002
[55] Zhang X, Settembre E, Xu C, Dormitzer P R, Bellamy R, Harrison S C and Grigorieff N 2008 Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction Proc. Natl Acad. Sci.105 1867-72 · doi:10.1073/pnas.0711623105
[56] Afanasyev P, Seer-Linnemayr C, Ravelli R B G, Matadeen R, De Carlo S, Alewijnse B, Portugal R V, Pannu N S, Schatz M and van Heel M 2017 Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin IUCrJ4 678-94 · doi:10.1107/S2052252517010922
[57] Singer A 2011 Angular synchronization by eigenvectors and semidefinite programming Appl. Comput. Harmon. Anal.30 20-36 · Zbl 1206.90116 · doi:10.1016/j.acha.2010.02.001
[58] Singer A and Shkolnisky Y 2011 Three-dimensional structure determination from common lines in cryo-EM by Eigenvectors and semidefinite programming SIAM J. Imaging Sci.4 543-72 · Zbl 1216.92045 · doi:10.1137/090767777
[59] Campbell M G, Veesler D, Cheng A, Potter C S and Carragher B 2015 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy Elife4 e06380 · doi:10.7554/eLife.06380
[60] Rawson S, Iadanza M G, Ranson N A and Muench S P 2016 Methods to account for movement and flexibility in cryo-EM data processing Methods100 35-41 · doi:10.1016/j.ymeth.2016.03.011
[61] Rosenthal P B and Henderson R 2003 Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy J. Mol. Biol.333 721-45 · doi:10.1016/j.jmb.2003.07.013
[62] Sigworth F J 1998 A maximum-likelihood approach to single-particle image refinement J. Struct. Biol.122 328-39 · doi:10.1006/jsbi.1998.4014
[63] Rangan A, Spivak M, Andén J and Barnett A 2018 Factorization of the translation kernel for fast rigid image alignment (arXiv:1905.12317)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.