×

Remarks on the quantum adiabatic theorem. (English. Russian original) Zbl 1081.81040

St. Petersbg. Math. J. 16, No. 4, 639-648 (2005); translation from Algebra Anal. 16, No. 4, 41-53 (2004).
To recall the quantum adiabatic theorem, let \(t\in\Delta=[0,a]\subset{R}\), and let \(H_0(t)\) be a \(t\)-dependent linear operator on a complex Banach space \(X\). Suppose the spectrum \(\sigma(t)\) of \(H_0(t)\) consists of two separate components \(\sigma_1(t)\), \(\sigma_2(t)\) such that \(\text{dist} (\sigma_1(t), \sigma_2(t))\geq a >0\) for \(t\in\Delta\). Let \(P_1(t)\) and \(P_1(t)\) denote the spectral projections of \(H_0(t)\) corresponding to the components \(\sigma_1(t)\) and \(\sigma_2(t)\). Consider equation \[ i\varepsilon \frac{\partial \psi}{\partial t} = H(t, \varepsilon)\psi \quad (1) \] with the Hamiltonian \[ H(t,\varepsilon) = H_0(t)+\varepsilon H_1(t,\varepsilon), \quad \varepsilon > 0. \] Then, for the resolving operator \(U(t,s,\varepsilon): X \rightarrow X\) of the equation, so that \[ i\varepsilon \frac{\partial U(t,s,\varepsilon)}{\partial t} = H(t,\varepsilon)\,U(t,s,\varepsilon), \quad U(s,s,\varepsilon) = I, \] the following statement \[ (I-P_j(t))\,U(t,s,\varepsilon)P_j(s)= O(\varepsilon), \quad \varepsilon \rightarrow 0. \] is valid. In the paper, generalized form of this statement is considered. \[ (I-P_{j,k}(t,\varepsilon))\,U(t,s,\varepsilon)P_{j,k}(s,\varepsilon)= O(\varepsilon^k), \quad k=1,2,\ldots. \tag{2} \] This formula means that the solution of the equation (1) with initial condition \( \psi(s) \in P_{j,k}(s,\varepsilon)X \) stays with high accuracy in the subspace \(P_{j,k}(t,\varepsilon)X\). Explicit asymptotic expressions of the projections \(P_{j,k}(t,\varepsilon)\) for small \(\varepsilon\) are rarely provided in the literature. However, the asymptotic representations for the solutions of equation (1) were constructed in M. G. Krein [Linear differential equations in Banach space. American Mathematical Society (AMS) (1972; Zbl 0229.34050)] and Yu. L. Daletskii, M. G. Krein [Stability of solutions of differential equations in Banach space. American Mathematical Society (AMS) (1974; Zbl 0286.34094)]. It was shown there that the solutions split into noninteracting branches in the sense of formula of type (2).
In the present paper, similar result is provided. It is shown that, under certain conditions, initial equation (1) can be transformed into \[ i\varepsilon \frac{\partial z}{\partial t} = \begin{pmatrix} M_{11}^{(N)}(t,\varepsilon) & \varepsilon^N M_{12}^{(N)}(t,\varepsilon) \\ \varepsilon^N M_{21}^{(N)}(t,\varepsilon) & M_{22}^{(N)}(t,\varepsilon) \end{pmatrix} z. \] The spectra of the leading terms \(M_{11}^{(N)}(t,\varepsilon) \sim M_{1}^{(N)}(t)\), \(M_{22}^{(N)}(t,\varepsilon) \sim M_{2}^{(N)}(t)\) coincide with the \(\sigma_1(t)\) and \(\sigma_1(t)\) respectively. The components of the vector \(z = (z_1, z_2)^T\) belong to the fixed, not ‘moving’, that is independent of \(t\) and \(\varepsilon\), subspaces \(Z_1=P_1(0)X\), \(Z_2=P_2(0)X\). The statement (2) readily follows from this result, and explicit formulas for the \(P_{j,k}\) are provided. In the authors’ opinion, the approach proposed in the present paper possesses some advantages over the approach of the works cited above.

MSC:

81Q15 Perturbation theories for operators and differential equations in quantum theory
47N50 Applications of operator theory in the physical sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. E. Avron, R. Seiler, and L. G. Yaffe, Adiabatic theorems and applications to the quantum Hall effect, Comm. Math. Phys. 110 (1987), no. 1, 33 – 49. · Zbl 0626.58033
[2] M. Born and V. Fock, Beweis des Adiabatensatzes, Z. Phys. 51 (1928), 165-169. · JFM 54.0994.03
[3] Устойчивост\(^{\приме}\) решений дифференциал\(^{\приме}\)ных уравнений в банаховом пространстве., Издат. ”Наука”, Мосцощ, 1970 (Руссиан). Нонлинеар Аналысис анд иц Апплицатионс Сериес. Ју. Л. Далец\(^{\приме}\)кий анд М. Г. Крейн, Стабилиты оф солутионс оф дифферентиал ечуатионс ин Банач спаце, Америцан Матхематицал Социеты, Провиденце, Р.И., 1974. Транслатед фром тхе Руссиан бы С. Смитх; Транслатионс оф Матхематицал Монограпхс, Вол. 43.
[4] L. M. Garrido, Generalized adiabatic invariance, J. Mathematical Phys. 5 (1964), 355 – 362. · doi:10.1063/1.1704127
[5] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0148.12601
[6] -, On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Japan 5 (1950), 435-439.
[7] Линейхые дифференциал\(^{\приме}\)ные уравнения в Банаховом пространстве, Издат. ”Наука”, Мосцощ, 1967 (Руссиан).
[8] G. Nenciu, On the adiabatic theorem of quantum mechanics, J. Phys. A 13 (1980), no. 2, L15 – L18. · Zbl 0435.47025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.