Li, Qi; Zheng, Supei; Mei, Liquan Three decoupled, second-order accurate, and energy stable schemes for the conserved Allen-Cahn-type block copolymer (BCP) model. (English) Zbl 07646075 Numer. Algorithms 92, No. 2, 1233-1259 (2023). MSC: 65M70 65M06 65N35 35K46 35K55 35R09 35Q35 82D60 PDF BibTeX XML Cite \textit{Q. Li} et al., Numer. Algorithms 92, No. 2, 1233--1259 (2023; Zbl 07646075) Full Text: DOI OpenURL
Kopera, Michal A.; Gahounzo, Yao; Enderlin, Ellyn M.; Giraldo, Francis X.; Maslowski, Wieslaw Non-hydrostatic unified model of the ocean with application to ice/ocean interaction modeling. (English) Zbl 07638960 GEM. Int. J. Geomath. 14, Paper No. 2, 22 p. (2023). MSC: 35Q86 86A05 86A40 76D05 76D10 76R10 76T99 76F35 76F65 76-05 65M70 65M60 65M06 65N35 65N30 PDF BibTeX XML Cite \textit{M. A. Kopera} et al., GEM. Int. J. Geomath. 14, Paper No. 2, 22 p. (2023; Zbl 07638960) Full Text: DOI OpenURL
Du, Shaohong; Cheng, Yongping; Li, Mingjun High order spline finite element method for the fourth-order parabolic equations. (English) Zbl 07630347 Appl. Numer. Math. 184, 496-511 (2023). MSC: 65M60 65M06 65N30 65L06 65D07 65M12 65M15 33C45 35A15 35B35 35B65 35K35 74K10 74H45 35Q74 PDF BibTeX XML Cite \textit{S. Du} et al., Appl. Numer. Math. 184, 496--511 (2023; Zbl 07630347) Full Text: DOI OpenURL
He, Mingyan; Tian, Jia; Sun, Pengtao; Zhang, Zhengfang An energy-conserving finite element method for nonlinear fourth-order wave equations. (English) Zbl 1498.65158 Appl. Numer. Math. 183, 333-354 (2023). MSC: 65M60 65M06 65N30 65M12 35G20 PDF BibTeX XML Cite \textit{M. He} et al., Appl. Numer. Math. 183, 333--354 (2023; Zbl 1498.65158) Full Text: DOI OpenURL
Liu, Zhengguang; Chen, Chuanjun On efficient semi-implicit auxiliary variable methods for the six-order Swift-Hohenberg model. (English) Zbl 1496.65182 J. Comput. Appl. Math. 419, Article ID 114730, 14 p. (2023). MSC: 65M70 65M06 35K20 35K35 35K55 65M12 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{C. Chen}, J. Comput. Appl. Math. 419, Article ID 114730, 14 p. (2023; Zbl 1496.65182) Full Text: DOI OpenURL
Huntul, M. J.; Abbas, Muhammad An inverse problem of fourth-order partial differential equation with nonlocal integral condition. (English) Zbl 07636101 Adv. Contin. Discrete Models 2022, Paper No. 55, 27 p. (2022). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{M. J. Huntul} and \textit{M. Abbas}, Adv. Contin. Discrete Models 2022, Paper No. 55, 27 p. (2022; Zbl 07636101) Full Text: DOI OpenURL
Su, Guangwang; Sun, Taixiang; Han, Caihong; Qin, Bin; Quan, Weizhen Eventual periodicity of a max-type system of difference equations of higher order with four variables. (English) Zbl 07633786 Miskolc Math. Notes 23, No. 2, 913-927 (2022). MSC: 39A10 39A11 PDF BibTeX XML Cite \textit{G. Su} et al., Miskolc Math. Notes 23, No. 2, 913--927 (2022; Zbl 07633786) Full Text: DOI OpenURL
Coulombel, Jean-François; Faye, Grégory Generalized Gaussian bounds for discrete convolution powers. (English) Zbl 07628538 Rev. Mat. Iberoam. 38, No. 5, 1553-1604 (2022). MSC: 42A85 65M12 35K25 60F99 PDF BibTeX XML Cite \textit{J.-F. Coulombel} and \textit{G. Faye}, Rev. Mat. Iberoam. 38, No. 5, 1553--1604 (2022; Zbl 07628538) Full Text: DOI arXiv OpenURL
Makaje, Nifatamah; Sama-Ae, Areeyuth; Phon-On, Aniruth; Hazanee, Areena Hybrid finite integration method for solving partial differential equations. (English) Zbl 07618004 Thai J. Math., Spec. Iss.: IMT-GT International Conference on Mathematics, Statistics and Their Applications 2021, 212-228 (2022). MSC: 35G15 37J35 65N06 65N22 PDF BibTeX XML Cite \textit{N. Makaje} et al., Thai J. Math., 212--228 (2022; Zbl 07618004) Full Text: Link OpenURL
He, Yuyu; Chen, Hongtao Efficient algorithm and convergence analysis of conservative SAV compact difference scheme for Boussinesq paradigm equation. (English) Zbl 07608974 Comput. Math. Appl. 125, 34-50 (2022). MSC: 65M06 76B15 35Q35 65M15 35L30 PDF BibTeX XML Cite \textit{Y. He} and \textit{H. Chen}, Comput. Math. Appl. 125, 34--50 (2022; Zbl 07608974) Full Text: DOI OpenURL
Chen, Xiaochun; Wang, Cheng; Wise, Steven M. A preconditioned steepest descent solver for the Cahn-Hilliard equation with variable mobility. (English) Zbl 07600707 Int. J. Numer. Anal. Model. 19, No. 6, 839-863 (2022). MSC: 35K30 65M06 65M12 PDF BibTeX XML Cite \textit{X. Chen} et al., Int. J. Numer. Anal. Model. 19, No. 6, 839--863 (2022; Zbl 07600707) Full Text: Link OpenURL
Bubba, Federica; Poulain, Alexandre A nonnegativity preserving scheme for the relaxed Cahn-Hilliard equation with single-well potential and degenerate mobility. (English) Zbl 1498.35548 ESAIM, Math. Model. Numer. Anal. 56, No. 5, 1741-1772 (2022). MSC: 35Q92 92C37 65M60 65M06 65N30 35K55 35K65 35K35 92-08 PDF BibTeX XML Cite \textit{F. Bubba} and \textit{A. Poulain}, ESAIM, Math. Model. Numer. Anal. 56, No. 5, 1741--1772 (2022; Zbl 1498.35548) Full Text: DOI arXiv OpenURL
Mukiawa, Soh Edwin; Omaba, McSylvester Ejighikeme; Enyi, Cyril Dennis; Apalara, Tijani A. General decay estimate for coupled plate problem with memory. (English) Zbl 1497.35052 Results Appl. Math. 15, Article ID 100306, 14 p. (2022). MSC: 35B40 35L57 35L71 35R09 33E30 74K20 PDF BibTeX XML Cite \textit{S. E. Mukiawa} et al., Results Appl. Math. 15, Article ID 100306, 14 p. (2022; Zbl 1497.35052) Full Text: DOI OpenURL
Tamboli, Vahisht K.; Tandel, Priti V. Reduced differential transform method for the treatment of internal atmospheric waves phenomenon. (English) Zbl 07582592 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 174, 27 p. (2022). MSC: 35A22 35B30 35C10 35F40 35G25 39A14 PDF BibTeX XML Cite \textit{V. K. Tamboli} and \textit{P. V. Tandel}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 174, 27 p. (2022; Zbl 07582592) Full Text: DOI OpenURL
Ma, Tianbao; Wang, Chentao; Xu, Xiangzhao Conservative high precision pseudo arc-length method for strong discontinuity of detonation wave. (English) Zbl 1496.65199 AMM, Appl. Math. Mech., Engl. Ed. 43, No. 3, 417-436 (2022). MSC: 65N06 65M08 35L55 35L65 35L67 35B05 35Q31 PDF BibTeX XML Cite \textit{T. Ma} et al., AMM, Appl. Math. Mech., Engl. Ed. 43, No. 3, 417--436 (2022; Zbl 1496.65199) Full Text: DOI OpenURL
Liu, Chun; Wang, Cheng; Wang, Yiwei A second-order accurate, operator splitting scheme for reaction-diffusion systems in an energetic variational formulation. (English) Zbl 07569639 SIAM J. Sci. Comput. 44, No. 4, A2276-A2301 (2022). MSC: 65-XX 35K35 35K55 49J40 65M06 65M12 PDF BibTeX XML Cite \textit{C. Liu} et al., SIAM J. Sci. Comput. 44, No. 4, A2276--A2301 (2022; Zbl 07569639) Full Text: DOI arXiv OpenURL
Lteif, Ralph; Gerbi, Stéphane A new class of higher-ordered/extended Boussinesq system for efficient numerical simulations by splitting operators. (English) Zbl 07568410 Appl. Math. Comput. 432, Article ID 127373, 30 p. (2022). MSC: 76Bxx 35Qxx 76Mxx PDF BibTeX XML Cite \textit{R. Lteif} and \textit{S. Gerbi}, Appl. Math. Comput. 432, Article ID 127373, 30 p. (2022; Zbl 07568410) Full Text: DOI arXiv OpenURL
Dong, Lixiu; Wang, Cheng; Wise, Steven M.; Zhang, Zhengru Optimal rate convergence analysis of a numerical scheme for the ternary Cahn-Hilliard system with a Flory-Huggins-deGennes energy potential. (English) Zbl 07567535 J. Comput. Appl. Math. 415, Article ID 114474, 18 p. (2022). MSC: 65M06 35K35 65M12 65M15 PDF BibTeX XML Cite \textit{L. Dong} et al., J. Comput. Appl. Math. 415, Article ID 114474, 18 p. (2022; Zbl 07567535) Full Text: DOI OpenURL
Pluma, Miguel; Speicher, Roland A dynamical version of the SYK model and the \(q\)-Brownian motion. (English) Zbl 1494.37033 Random Matrices Theory Appl. 11, No. 3, Article ID 2250031, 20 p. (2022). Reviewer: Feng-Yu Wang (Tianjin) MSC: 37H10 15B52 60B20 60J65 PDF BibTeX XML Cite \textit{M. Pluma} and \textit{R. Speicher}, Random Matrices Theory Appl. 11, No. 3, Article ID 2250031, 20 p. (2022; Zbl 1494.37033) Full Text: DOI arXiv OpenURL
Cerpa, Eduardo; Lecaros, Rodrigo; Nguyen, Thuy N. T.; Pérez, Ariel Carleman estimates and controllability for a semi-discrete fourth-order parabolic equation. (English. French summary) Zbl 1492.35148 J. Math. Pures Appl. (9) 164, 93-130 (2022). MSC: 35K52 39A14 65M06 93B05 93B07 PDF BibTeX XML Cite \textit{E. Cerpa} et al., J. Math. Pures Appl. (9) 164, 93--130 (2022; Zbl 1492.35148) Full Text: DOI OpenURL
Boeckner, Derek; Gensler, Scott Higher order differences on arbitrary discrete time scales and related generating functions. (English) Zbl 1492.05006 Rocky Mt. J. Math. 52, No. 2, 431-443 (2022). MSC: 05A15 34N05 39A06 39A70 PDF BibTeX XML Cite \textit{D. Boeckner} and \textit{S. Gensler}, Rocky Mt. J. Math. 52, No. 2, 431--443 (2022; Zbl 1492.05006) Full Text: DOI Link OpenURL
Liu, Qian; Lu, Zhibo; Zheng, Zhizhong; Wen, Shenglan The hyperbolic length-preserving curvature difference flow of plane curves. (English) Zbl 07552126 Southeast Asian Bull. Math. 46, No. 2, 215-225 (2022). MSC: 53A04 52A10 35L15 35L55 PDF BibTeX XML Cite \textit{Q. Liu} et al., Southeast Asian Bull. Math. 46, No. 2, 215--225 (2022; Zbl 07552126) Full Text: Link OpenURL
Chen, Wenbin; Jing, Jianyu; Wang, Cheng; Wang, Xiaoming A positivity preserving, energy stable finite difference scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes system. (English) Zbl 07550024 J. Sci. Comput. 92, No. 2, Paper No. 31, 24 p. (2022). MSC: 65-XX 35K35 35K55 49J40 65M06 65M12 PDF BibTeX XML Cite \textit{W. Chen} et al., J. Sci. Comput. 92, No. 2, Paper No. 31, 24 p. (2022; Zbl 07550024) Full Text: DOI OpenURL
Calatayud, Julia; Jornet, Marc On the symmetrization and composition of nonstandard finite difference schemes as an alternative to Richardson’s extrapolation. (English) Zbl 1492.65219 J. Difference Equ. Appl. 28, No. 5, 716-724 (2022). MSC: 65L12 65L05 92D25 PDF BibTeX XML Cite \textit{J. Calatayud} and \textit{M. Jornet}, J. Difference Equ. Appl. 28, No. 5, 716--724 (2022; Zbl 1492.65219) Full Text: DOI OpenURL
Pandey, Pramod Kumar Numerical solution of a seventh order boundary value problem by splitting coupled finite difference method. (English) Zbl 1489.65108 Palest. J. Math. 11, No. 1, 370-377 (2022). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{P. K. Pandey}, Palest. J. Math. 11, No. 1, 370--377 (2022; Zbl 1489.65108) Full Text: Link OpenURL
Nived, M. R.; Athkuri, Sai Saketha Chandra; Eswaran, Vinayak On the application of higher-order backward difference (BDF) methods for computing turbulent flows. (English) Zbl 07546692 Comput. Math. Appl. 117, 299-311 (2022). MSC: 76N15 76D05 76M10 76M20 65L06 PDF BibTeX XML Cite \textit{M. R. Nived} et al., Comput. Math. Appl. 117, 299--311 (2022; Zbl 07546692) Full Text: DOI OpenURL
Almaslokh, Abdulaziz; Qian, Chuanxi On global attractivity of a higher order difference equation and its applications. (English) Zbl 1499.39003 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 2, 14 p. (2022). MSC: 39A10 39A30 92D25 PDF BibTeX XML Cite \textit{A. Almaslokh} and \textit{C. Qian}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 2, 14 p. (2022; Zbl 1499.39003) Full Text: DOI OpenURL
Li, Qi; Cui, Ning; Zheng, Supei; Mei, Liquan A new Allen-Cahn type two-model phase-field crystal model for fcc ordering and its numerical approximation. (English) Zbl 07540984 Appl. Math. Lett. 132, Article ID 108211, 11 p. (2022). MSC: 65M06 65M12 35Q35 35K35 65M70 PDF BibTeX XML Cite \textit{Q. Li} et al., Appl. Math. Lett. 132, Article ID 108211, 11 p. (2022; Zbl 07540984) Full Text: DOI OpenURL
Sun, Qihang; Ji, Bingquan; Zhang, Luming A convex splitting BDF2 method with variable time-steps for the extended Fisher-Kolmogorov equation. (English) Zbl 07537396 Comput. Math. Appl. 114, 73-82 (2022). MSC: 65M12 65M06 35K35 65L20 65M50 PDF BibTeX XML Cite \textit{Q. Sun} et al., Comput. Math. Appl. 114, 73--82 (2022; Zbl 07537396) Full Text: DOI OpenURL
Kabeto, Masho Jima; Duressa, Gemechis File Implicit finite difference scheme for singularly perturbed Burger-Huxley equations. (English) Zbl 1499.65399 J. Partial Differ. Equations 35, No. 1, 87-100 (2022). MSC: 65M06 65N06 65M12 65M15 35B25 35Q53 PDF BibTeX XML Cite \textit{M. J. Kabeto} and \textit{G. F. Duressa}, J. Partial Differ. Equations 35, No. 1, 87--100 (2022; Zbl 1499.65399) Full Text: DOI OpenURL
Liu, Chun; Wang, Cheng; Wang, Yiwei; Wise, Steven M. Convergence analysis of the variational operator splitting scheme for a reaction-diffusion system with detailed balance. (English) Zbl 07516278 SIAM J. Numer. Anal. 60, No. 2, 781-803 (2022). MSC: 65-XX 35K35 35K55 49J40 65M06 65M12 PDF BibTeX XML Cite \textit{C. Liu} et al., SIAM J. Numer. Anal. 60, No. 2, 781--803 (2022; Zbl 07516278) Full Text: DOI arXiv OpenURL
Duan, Chenghua; Chen, Wenbin; Liu, Chun; Wang, Cheng; Yue, Xingye A second-order accurate, energy stable numerical scheme for the one-dimensional porous medium equation by an energetic variational approach. (English) Zbl 1496.65110 Commun. Math. Sci. 20, No. 4, 978-1024 (2022). MSC: 65M06 65N06 65M12 65M15 35K35 35K55 35K65 35A15 35C20 49J40 76S05 35Q35 PDF BibTeX XML Cite \textit{C. Duan} et al., Commun. Math. Sci. 20, No. 4, 978--1024 (2022; Zbl 1496.65110) Full Text: DOI OpenURL
Chen, Wenbin; Jing, Jianyu; Wang, Cheng; Wang, Xiaoming; Wise, Steven M. A modified Crank-Nicolson numerical scheme for the Flory-Huggins Cahn-Hilliard model. (English) Zbl 07493157 Commun. Comput. Phys. 31, No. 1, 60-93 (2022). MSC: 65-XX 35K35 35K55 49J40 65K10 65M06 65M12 PDF BibTeX XML Cite \textit{W. Chen} et al., Commun. Comput. Phys. 31, No. 1, 60--93 (2022; Zbl 07493157) Full Text: DOI OpenURL
Arnold, Anton; Klein, Christian; Ujvari, Bernhard WKB-method for the 1D Schrödinger equation in the semi-classical limit: enhanced phase treatment. (English) Zbl 1495.65126 BIT 62, No. 1, 1-22 (2022). MSC: 65L60 34L40 34E20 81Q20 PDF BibTeX XML Cite \textit{A. Arnold} et al., BIT 62, No. 1, 1--22 (2022; Zbl 1495.65126) Full Text: DOI arXiv OpenURL
Pargaei, Meena; Kumar, B. V. Rathish; Pavarino, Luca F.; Scacchi, Simone Cardiac electro-mechanical activity in a deforming human cardiac tissue: modeling, existence-uniqueness, finite element computation and application to multiple ischemic disease. (English) Zbl 1492.35375 J. Math. Biol. 84, No. 3, Paper No. 17, 42 p. (2022). MSC: 35Q92 92C37 92C35 92C05 35G20 35G50 35A01 35A02 34A12 65M60 65M06 65N30 65L05 92-08 PDF BibTeX XML Cite \textit{M. Pargaei} et al., J. Math. Biol. 84, No. 3, Paper No. 17, 42 p. (2022; Zbl 1492.35375) Full Text: DOI OpenURL
Liu, Chun; Wang, Cheng; Wise, Steven M.; Yue, Xingye; Zhou, Shenggao An iteration solver for the Poisson-Nernst-Planck system and its convergence analysis. (English) Zbl 07472440 J. Comput. Appl. Math. 406, Article ID 114017, 13 p. (2022). MSC: 65M06 35K35 35K55 49J40 65M12 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Comput. Appl. Math. 406, Article ID 114017, 13 p. (2022; Zbl 07472440) Full Text: DOI OpenURL
Liu, Zhengguang; Li, Xiaoli Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. (English) Zbl 1481.65195 Numer. Algorithms 89, No. 1, 65-86 (2022). MSC: 65M70 65M06 65N35 65M12 35K20 35K35 35K55 35K41 65Z05 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{X. Li}, Numer. Algorithms 89, No. 1, 65--86 (2022; Zbl 1481.65195) Full Text: DOI arXiv OpenURL
Hamidpour, Mohammad; Nami, Mohammad Rahim; Khosravifard, Amir; Lévesque, Martin Modeling fracture in viscoelastic materials using a modified incremental meshfree RPIM and DIC technique. (English) Zbl 07455247 Eur. J. Mech., A, Solids 92, Article ID 104456, 20 p. (2022). MSC: 74R20 74D05 74S20 74S99 PDF BibTeX XML Cite \textit{M. Hamidpour} et al., Eur. J. Mech., A, Solids 92, Article ID 104456, 20 p. (2022; Zbl 07455247) Full Text: DOI OpenURL
Kumar, Sandeep On the Schrödinger map for regular helical polygons in the hyperbolic space. (English) Zbl 1500.37029 Nonlinearity 35, No. 1, 84-109 (2022). MSC: 37D40 53E30 53E40 35Q55 65M06 65M20 PDF BibTeX XML Cite \textit{S. Kumar}, Nonlinearity 35, No. 1, 84--109 (2022; Zbl 1500.37029) Full Text: DOI arXiv OpenURL
Xia, Zeyu; Wang, Cheng; Xu, Liwei; Zhang, Zhengru High order accurate in time, fourth order finite difference schemes for the harmonic mapping flow. (English) Zbl 07403084 J. Comput. Appl. Math. 401, Article ID 113766, 12 p. (2022). MSC: 65M06 65M12 65D05 35K35 35K55 41A58 PDF BibTeX XML Cite \textit{Z. Xia} et al., J. Comput. Appl. Math. 401, Article ID 113766, 12 p. (2022; Zbl 07403084) Full Text: DOI OpenURL
Sweilam, N. H.; ElSakout, D. M.; Muttardi, M. M. Numerical solution for stochastic extended Fisher-Kolmogorov equation. (English) Zbl 1498.35323 Chaos Solitons Fractals 151, Article ID 111213, 11 p. (2021). MSC: 35K25 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Chaos Solitons Fractals 151, Article ID 111213, 11 p. (2021; Zbl 1498.35323) Full Text: DOI OpenURL
Wu, Xin Some oscillation criteria for a class of higher order nonlinear dynamic equations with a delay argument on time scales. (English) Zbl 07559786 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 5, 1474-1492 (2021). MSC: 34K11 39A10 39A99 PDF BibTeX XML Cite \textit{X. Wu}, Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 5, 1474--1492 (2021; Zbl 07559786) Full Text: DOI OpenURL
Zhang, Xumei; Cao, Junying A high order numerical method for solving Caputo nonlinear fractional ordinary differential equations. (English) Zbl 07533478 AIMS Math. 6, No. 12, 13187-13209 (2021). MSC: 26A33 65L12 65M06 65M12 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{J. Cao}, AIMS Math. 6, No. 12, 13187--13209 (2021; Zbl 07533478) Full Text: DOI OpenURL
Yindoula, Joseph Bonazebi; Mayembo, Stevy Mikamona; Wassiha, Nebie Abdoul; Pare, Youssouf; Bissanga, Gabriel Exact solution of some linear and nonlinear partial differential equations by Laplace-Adomian method and SBA method. (English) Zbl 1499.65449 Adv. Differ. Equ. Control Process. 25, No. 2, 141-163 (2021). MSC: 65M06 65M99 65R20 35G25 PDF BibTeX XML Cite \textit{J. B. Yindoula} et al., Adv. Differ. Equ. Control Process. 25, No. 2, 141--163 (2021; Zbl 1499.65449) Full Text: DOI OpenURL
Grace, Said R.; Alzabut, Jehad; Abodayeh, Kamaleldin Oscillation theorems for higher order dynamic equations with superlinear neutral term. (English) Zbl 1484.34148 AIMS Math. 6, No. 6, 5493-5501 (2021). MSC: 34K11 34K40 34N05 39A21 PDF BibTeX XML Cite \textit{S. R. Grace} et al., AIMS Math. 6, No. 6, 5493--5501 (2021; Zbl 1484.34148) Full Text: DOI OpenURL
Svärd, Magnus; Nordström, Jan Convergence of energy stable finite-difference schemes with interfaces. (English) Zbl 07500752 J. Comput. Phys. 429, Article ID 110020, 5 p. (2021). MSC: 65Mxx 35Kxx 35Gxx PDF BibTeX XML Cite \textit{M. Svärd} and \textit{J. Nordström}, J. Comput. Phys. 429, Article ID 110020, 5 p. (2021; Zbl 07500752) Full Text: DOI OpenURL
Barbu, Tudor Mixed noise removal framework using a nonlinear fourth-order PDE-based model. (English) Zbl 1486.35252 Appl. Math. Optim. 84, Suppl. 2, 1865-1876 (2021). MSC: 35K35 35K59 60G35 65L12 65M06 68U10 68P30 94A08 PDF BibTeX XML Cite \textit{T. Barbu}, Appl. Math. Optim. 84, 1865--1876 (2021; Zbl 1486.35252) Full Text: DOI OpenURL
Yaslan. H., Cerdik Numerical solution of the multi-term variable-order space fractional nonlinear partial differential equations. (English) Zbl 1499.35190 Miskolc Math. Notes 22, No. 2, 1027-1038 (2021). MSC: 35G31 35R11 65M70 PDF BibTeX XML Cite \textit{C. Yaslan. H.}, Miskolc Math. Notes 22, No. 2, 1027--1038 (2021; Zbl 1499.35190) Full Text: DOI OpenURL
Saker, S. H.; Mahmoud, R. R.; Abdo, K. R. Characterizations of weighted dynamic Hardy-type inequalities with higher-order derivatives. (English) Zbl 07465077 J. Inequal. Appl. 2021, Paper No. 99, 17 p. (2021). MSC: 26A15 26D10 39A13 34N05 PDF BibTeX XML Cite \textit{S. H. Saker} et al., J. Inequal. Appl. 2021, Paper No. 99, 17 p. (2021; Zbl 07465077) Full Text: DOI OpenURL
Choi, Q-Heung; Jung, Tacksun On the fractional \(p\)-Laplacian problems. (English) Zbl 07465020 J. Inequal. Appl. 2021, Paper No. 41, 17 p. (2021). MSC: 35K05 35K25 35K35 35K55 35K92 PDF BibTeX XML Cite \textit{Q-H. Choi} and \textit{T. Jung}, J. Inequal. Appl. 2021, Paper No. 41, 17 p. (2021; Zbl 07465020) Full Text: DOI OpenURL
Kesler, Ian; Lan, Rihui; Sun, Pengtao The arbitrary Lagrangian-Eulerian finite element method for a transient Stokes/parabolic interface problem. (English) Zbl 1499.65500 Int. J. Numer. Anal. Model. 18, No. 3, 339-361 (2021). MSC: 65M60 65M12 65M15 65M22 65M06 65N30 76D07 74F10 35K41 PDF BibTeX XML Cite \textit{I. Kesler} et al., Int. J. Numer. Anal. Model. 18, No. 3, 339--361 (2021; Zbl 1499.65500) Full Text: Link OpenURL
Audu, Johnson D.; Mukiawa, Soh Edwin; Almeida Júnior, Dilberto S. General decay estimate for a two-dimensional plate equation with time-varying feedback and time-varying coefficient. (English) Zbl 1481.35044 Results Appl. Math. 12, Article ID 100219, 12 p. (2021). MSC: 35B40 35L35 35L76 33E30 74K20 45M10 PDF BibTeX XML Cite \textit{J. D. Audu} et al., Results Appl. Math. 12, Article ID 100219, 12 p. (2021; Zbl 1481.35044) Full Text: DOI OpenURL
Braun, Stefan; Scheichl, Stefan; Kuzdas, Dominik The triple-deck stage of marginal separation. (English) Zbl 1500.35230 J. Eng. Math. 128, Paper No. 16, 32 p. (2021). MSC: 35Q35 35Q31 76D10 76F06 35C20 35B44 35B65 65M70 65M06 65N35 35R25 PDF BibTeX XML Cite \textit{S. Braun} et al., J. Eng. Math. 128, Paper No. 16, 32 p. (2021; Zbl 1500.35230) Full Text: DOI OpenURL
Li, Hongwei Local absorbing boundary conditions for two-dimensional nonlinear Schrödinger equation with wave operator on unbounded domain. (English) Zbl 1479.35243 Math. Methods Appl. Sci. 44, No. 18, 14382-14392 (2021). MSC: 35G61 35B25 35L71 35Q55 65M06 PDF BibTeX XML Cite \textit{H. Li}, Math. Methods Appl. Sci. 44, No. 18, 14382--14392 (2021; Zbl 1479.35243) Full Text: DOI OpenURL
Yang, Junxiang; Kim, Junseok An energy stable second-order accurate scheme for microphase separation of periodic diblock copolymers. (English) Zbl 07437353 East Asian J. Appl. Math. 11, No. 2, 234-254 (2021). MSC: 65-XX 35K35 35Q35 65M12 PDF BibTeX XML Cite \textit{J. Yang} and \textit{J. Kim}, East Asian J. Appl. Math. 11, No. 2, 234--254 (2021; Zbl 07437353) Full Text: DOI OpenURL
Sahoo, Bapuji; Sarkar, Subharthi; Sivakumar, R.; Sekhar, T. V. S. On the numerical capture of Taylor column phenomena in rotating viscous fluid. (English) Zbl 1493.76117 Eur. J. Mech., B, Fluids 89, 126-138 (2021). MSC: 76U05 76D05 76M20 PDF BibTeX XML Cite \textit{B. Sahoo} et al., Eur. J. Mech., B, Fluids 89, 126--138 (2021; Zbl 1493.76117) Full Text: DOI OpenURL
Kadri, Tlili On the \(L^{\infty}\)-convergence of two conservative finite difference schemes for fourth-order nonlinear strain wave equations. (English) Zbl 1476.65174 Comput. Appl. Math. 40, No. 6, Paper No. 206, 31 p. (2021). MSC: 65M06 35L75 65M12 PDF BibTeX XML Cite \textit{T. Kadri}, Comput. Appl. Math. 40, No. 6, Paper No. 206, 31 p. (2021; Zbl 1476.65174) Full Text: DOI OpenURL
Hou, Bo; Ge, Yongbin High-order compact LOD methods for solving high-dimensional advection equations. (English) Zbl 1476.35136 Comput. Appl. Math. 40, No. 3, Paper No. 102, 23 p. (2021). MSC: 35L35 35G16 PDF BibTeX XML Cite \textit{B. Hou} and \textit{Y. Ge}, Comput. Appl. Math. 40, No. 3, Paper No. 102, 23 p. (2021; Zbl 1476.35136) Full Text: DOI OpenURL
Yaslan, H. Çerdik Numerical solution of the nonlinear conformable space-time fractional partial differential equations. (English) Zbl 07423837 Indian J. Pure Appl. Math. 52, No. 2, 407-419 (2021). MSC: 65-XX 35G31 35R11 65M70 PDF BibTeX XML Cite \textit{H. Ç. Yaslan}, Indian J. Pure Appl. Math. 52, No. 2, 407--419 (2021; Zbl 07423837) Full Text: DOI OpenURL
Afas, Keith C.; Vijay, Raashi; Goldman, Daniel A two-compartment model of oxygen transport in skeletal muscle using continuously distributed capillaries. (English) Zbl 1477.35278 Math. Biosci. 333, Article ID 108535, 12 p. (2021). MSC: 35Q92 35G35 92C30 92C50 92C35 65M06 35R09 92-08 PDF BibTeX XML Cite \textit{K. C. Afas} et al., Math. Biosci. 333, Article ID 108535, 12 p. (2021; Zbl 1477.35278) Full Text: DOI OpenURL
Goodrich, Christopher S. Discrete Kirchhoff equations with sign-changing coefficients. (English) Zbl 1481.39005 J. Difference Equ. Appl. 27, No. 5, 664-685 (2021). Reviewer: Wolfgang Förg-Rob (Innsbruck) MSC: 39A12 39A27 39A70 35G20 26D15 47H07 47H11 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Difference Equ. Appl. 27, No. 5, 664--685 (2021; Zbl 1481.39005) Full Text: DOI OpenURL
Cancès, Clément; Nabet, Flore Finite volume approximation of a two-phase two fluxes degenerate Cahn-Hilliard model. (English) Zbl 1492.65250 ESAIM, Math. Model. Numer. Anal. 55, No. 3, 969-1003 (2021). Reviewer: Marianne Bessemoulin-Chatard (Nantes) MSC: 65M08 65M06 65N08 65M12 76T06 35B65 35D30 35K52 35K65 35Q35 PDF BibTeX XML Cite \textit{C. Cancès} and \textit{F. Nabet}, ESAIM, Math. Model. Numer. Anal. 55, No. 3, 969--1003 (2021; Zbl 1492.65250) Full Text: DOI arXiv OpenURL
Lee, Chaeyoung; Kim, Hyundong; Yoon, Sungha; Park, Jintae; Kim, Sangkwon; Yang, Junxiang; Kim, Junseok On the evolutionary dynamics of the Cahn-Hilliard equation with cut-off mass source. (English) Zbl 1488.65253 Numer. Math., Theory Methods Appl. 14, No. 1, 242-260 (2021). MSC: 65M06 65M55 35K35 PDF BibTeX XML Cite \textit{C. Lee} et al., Numer. Math., Theory Methods Appl. 14, No. 1, 242--260 (2021; Zbl 1488.65253) Full Text: DOI OpenURL
Khan, A.; Raza, A. Solution of fourth order parabolic partial differential equation using Haar wavelet and finite-difference method. (English) Zbl 1469.65154 Azerb. J. Math., Spec. Iss., 157-170 (2021). MSC: 65M70 35K25 65M06 65T60 PDF BibTeX XML Cite \textit{A. Khan} and \textit{A. Raza}, Azerb. J. Math., 157--170 (2021; Zbl 1469.65154) Full Text: Link OpenURL
Itzá Balam, Reymundo; Hernandez-Lopez, Francisco; Trejo-Sánchez, Joel; Uh Zapata, Miguel An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains. (English) Zbl 1493.65246 Math. Biosci. Eng. 18, No. 1, 22-56 (2021). MSC: 65N35 65N06 68T07 35J30 35R02 76T06 PDF BibTeX XML Cite \textit{R. Itzá Balam} et al., Math. Biosci. Eng. 18, No. 1, 22--56 (2021; Zbl 1493.65246) Full Text: DOI OpenURL
Li, Qi; Mei, Liquan Numerical approximation of the two-component PFC models for binary colloidal crystals: efficient, decoupled, and second-order unconditionally energy stable schemes. (English) Zbl 1500.65044 J. Sci. Comput. 88, No. 3, Paper No. 60, 34 p. (2021). MSC: 65M06 65M70 65N35 65T50 65M12 35K46 35K55 82C26 82D25 74N05 74F15 PDF BibTeX XML Cite \textit{Q. Li} and \textit{L. Mei}, J. Sci. Comput. 88, No. 3, Paper No. 60, 34 p. (2021; Zbl 1500.65044) Full Text: DOI OpenURL
Grace, Said R. Oscillatory and asymptotic behavior of higher order nonlinear difference equations. (English) Zbl 1472.39015 Mediterr. J. Math. 18, No. 4, Paper No. 169, 7 p. (2021). MSC: 39A21 PDF BibTeX XML Cite \textit{S. R. Grace}, Mediterr. J. Math. 18, No. 4, Paper No. 169, 7 p. (2021; Zbl 1472.39015) Full Text: DOI OpenURL
Lindeberg, Ludvig; Dao, Tuan; Mattsson, Ken A high order accurate finite difference method for the Drinfel’d-Sokolov-Wilson equation. (English) Zbl 07384730 J. Sci. Comput. 88, No. 1, Paper No. 18, 22 p. (2021). MSC: 65M06 65N06 35G31 35C08 35Q53 PDF BibTeX XML Cite \textit{L. Lindeberg} et al., J. Sci. Comput. 88, No. 1, Paper No. 18, 22 p. (2021; Zbl 07384730) Full Text: DOI OpenURL
Wang, Min; Huang, Qiumei; Wang, Cheng A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation. (English) Zbl 1497.65196 J. Sci. Comput. 88, No. 2, Paper No. 33, 36 p. (2021). MSC: 65M70 65M06 65N35 65T50 65M12 35K30 35K55 65K10 74N05 35Q74 PDF BibTeX XML Cite \textit{M. Wang} et al., J. Sci. Comput. 88, No. 2, Paper No. 33, 36 p. (2021; Zbl 1497.65196) Full Text: DOI arXiv OpenURL
Shi, Dongyang; Jia, Xu Superconvergence analysis of a mixed finite element approximation for the nonlinear fourth-order rosenau-RLW equation. (English) Zbl 07384088 Comput. Math. Appl. 98, 169-180 (2021). MSC: 65M12 65M60 65M06 35Q53 35L75 PDF BibTeX XML Cite \textit{D. Shi} and \textit{X. Jia}, Comput. Math. Appl. 98, 169--180 (2021; Zbl 07384088) Full Text: DOI OpenURL
Poptsova, M. N. Symmetries of a certain periodic chain. (English. Russian original) Zbl 1471.35193 J. Math. Sci., New York 257, No. 3, 353-357 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 162, 80-84 (2019). MSC: 35L51 35B06 39A14 PDF BibTeX XML Cite \textit{M. N. Poptsova}, J. Math. Sci., New York 257, No. 3, 353--357 (2021; Zbl 1471.35193); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 162, 80--84 (2019) Full Text: DOI OpenURL
Gatiso, Amanuel Hossiso; Belachew, Melisew Tefera; Wolle, Getinet Alemayehu Sixth-order compact finite difference scheme with discrete sine transform for solving Poisson equations with Dirichlet boundary conditions. (English) Zbl 1478.65101 Results Appl. Math. 10, Article ID 100148, 18 p. (2021). MSC: 65N06 35J05 35J30 35J25 41A58 65T50 PDF BibTeX XML Cite \textit{A. H. Gatiso} et al., Results Appl. Math. 10, Article ID 100148, 18 p. (2021; Zbl 1478.65101) Full Text: DOI OpenURL
Liu, Chun; Wang, Cheng; Wise, Steven M.; Yue, Xingye; Zhou, Shenggao A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. (English) Zbl 1480.65213 Math. Comput. 90, No. 331, 2071-2106 (2021). MSC: 65M06 65M12 35C20 35K35 35K55 35A01 35B09 49J40 78A57 35Q60 PDF BibTeX XML Cite \textit{C. Liu} et al., Math. Comput. 90, No. 331, 2071--2106 (2021; Zbl 1480.65213) Full Text: DOI arXiv OpenURL
Lin, Ching-Lung; Lin, Liren; Nakamura, Gen Born approximation and sequence for hyperbolic equations. (English) Zbl 1472.35318 Asymptotic Anal. 121, No. 2, 101-123 (2021). MSC: 35Q40 35L25 35J05 45D05 35B65 65M06 65N06 PDF BibTeX XML Cite \textit{C.-L. Lin} et al., Asymptotic Anal. 121, No. 2, 101--123 (2021; Zbl 1472.35318) Full Text: DOI OpenURL
Hu, Huanhuan; Li, Yang; Jia, Hong’en Large time stepping method for the modified Cahn-Hilliard equation. (Chinese. English summary) Zbl 1474.65351 Chin. J. Eng. Math. 38, No. 1, 97-109 (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35K41 35K55 PDF BibTeX XML Cite \textit{H. Hu} et al., Chin. J. Eng. Math. 38, No. 1, 97--109 (2021; Zbl 1474.65351) OpenURL
Braukhoff, Marcel; Jüngel, Ansgar Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. (English) Zbl 1483.65129 Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 3335-3355 (2021). MSC: 65M06 65L06 65M12 35K30 35K55 35K25 76D27 76D08 76A20 82D37 35Q35 35Q82 PDF BibTeX XML Cite \textit{M. Braukhoff} and \textit{A. Jüngel}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 6, 3335--3355 (2021; Zbl 1483.65129) Full Text: DOI arXiv OpenURL
Liu, Zhengguang Novel energy stable schemes for Swift-Hohenberg model with quadratic-cubic nonlinearity based on the \(H^{-1}\)-gradient flow approach. (English) Zbl 1473.65113 Numer. Algorithms 87, No. 2, 633-650 (2021). MSC: 65M06 65N06 65M12 35K20 35K35 35K55 65Z05 74N05 PDF BibTeX XML Cite \textit{Z. Liu}, Numer. Algorithms 87, No. 2, 633--650 (2021; Zbl 1473.65113) Full Text: DOI OpenURL
Fjordholm, Ulrik S.; Ruf, Adrian M. Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws. (English) Zbl 1473.65103 SIAM J. Numer. Anal. 59, No. 3, 1167-1194 (2021). MSC: 65M06 65M12 35L65 35L67 35R09 45K05 65R20 PDF BibTeX XML Cite \textit{U. S. Fjordholm} and \textit{A. M. Ruf}, SIAM J. Numer. Anal. 59, No. 3, 1167--1194 (2021; Zbl 1473.65103) Full Text: DOI arXiv OpenURL
Wang, Xiuhua; Kou, Jisheng; Gao, Huicai Linear energy stable and maximum principle preserving semi-implicit scheme for Allen-Cahn equation with double well potential. (English) Zbl 1471.65110 Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105766, 14 p. (2021). MSC: 65M06 65M12 35K20 35K35 35K55 35B50 65Z05 PDF BibTeX XML Cite \textit{X. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 98, Article ID 105766, 14 p. (2021; Zbl 1471.65110) Full Text: DOI OpenURL
Díaz-Adame, Roberto; Jerez, Silvia Convergence of time-splitting approximations for degenerate convection-diffusion equations with a random source. Numerical methods. (English) Zbl 1472.65099 J. Numer. Math. 29, No. 1, 23-38 (2021). Reviewer: Qifeng Zhang (Hangzhou) MSC: 65M06 65M12 65Z05 60H40 60H35 35K35 35D30 76S05 PDF BibTeX XML Cite \textit{R. Díaz-Adame} and \textit{S. Jerez}, J. Numer. Math. 29, No. 1, 23--38 (2021; Zbl 1472.65099) Full Text: DOI OpenURL
Anaya, Khaleel; Messaoudi, Salim A.; Mustapha, Kassem Decay rate of a weakly dissipative viscoelastic plate equation with infinite memory. (English) Zbl 1462.35068 Arab. J. Math. 10, No. 1, 31-39 (2021). MSC: 35B40 35L35 35L90 35R09 45K05 65M06 65M60 74K20 PDF BibTeX XML Cite \textit{K. Anaya} et al., Arab. J. Math. 10, No. 1, 31--39 (2021; Zbl 1462.35068) Full Text: DOI OpenURL
Zhu, Xiaozhi; Zhang, Yong-Tao Fast sparse grid simulations of fifth order WENO scheme for high dimensional hyperbolic PDEs. (English) Zbl 1473.65131 J. Sci. Comput. 87, No. 2, Paper No. 44, 38 p. (2021). MSC: 65M06 65M12 35L25 35Q83 PDF BibTeX XML Cite \textit{X. Zhu} and \textit{Y.-T. Zhang}, J. Sci. Comput. 87, No. 2, Paper No. 44, 38 p. (2021; Zbl 1473.65131) Full Text: DOI arXiv OpenURL
Zhang, Chenhui; Ouyang, Jie; Wang, Xiaodong; Chai, Yong; Ma, Mengxia Analysis of the energy stability for stabilized semi-implicit schemes of the functionalized Cahn-Hilliard mass-conserving gradient flow equation. (English) Zbl 1473.65249 J. Sci. Comput. 87, No. 1, Paper No. 34, 25 p. (2021). MSC: 65M70 65M06 65N35 35K35 35K55 65M12 76T20 PDF BibTeX XML Cite \textit{C. Zhang} et al., J. Sci. Comput. 87, No. 1, Paper No. 34, 25 p. (2021; Zbl 1473.65249) Full Text: DOI OpenURL
Zhang, Juan; Wang, Cheng; Wise, Steven M.; Zhang, Zhengru Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model. (English) Zbl 1468.65119 SIAM J. Sci. Comput. 43, No. 2, A1248-A1272 (2021). MSC: 65M06 65M12 76A20 35K35 35K55 49J40 PDF BibTeX XML Cite \textit{J. Zhang} et al., SIAM J. Sci. Comput. 43, No. 2, A1248--A1272 (2021; Zbl 1468.65119) Full Text: DOI arXiv OpenURL
Zhou, Yanjie; Zhang, Yanan; Liang, Ye; Luo, Zhendong A reduced-order extrapolated model based on splitting implicit finite difference scheme and proper orthogonal decomposition for the fourth-order nonlinear Rosenau equation. (English) Zbl 1458.35381 Appl. Numer. Math. 162, 192-200 (2021). MSC: 35Q53 35G20 65M06 65M12 65M99 65B05 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Appl. Numer. Math. 162, 192--200 (2021; Zbl 1458.35381) Full Text: DOI OpenURL
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 1457.81035 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 1457.81035) Full Text: DOI OpenURL
Achouri, Talha; Kadri, Tlili; Omrani, Khaled Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations. (English) Zbl 07308004 Comput. Math. Appl. 82, 74-96 (2021). MSC: 65M06 35L70 65M12 35B40 35L76 PDF BibTeX XML Cite \textit{T. Achouri} et al., Comput. Math. Appl. 82, 74--96 (2021; Zbl 07308004) Full Text: DOI OpenURL
Guo, Jing; Wang, Cheng; Wise, Steven M.; Yue, Xingye An improved error analysis for a second-order numerical scheme for the Cahn-Hilliard equation. (English) Zbl 1459.65141 J. Comput. Appl. Math. 388, Article ID 113300, 17 p. (2021). MSC: 65M06 35K30 65M12 65M15 65T40 PDF BibTeX XML Cite \textit{J. Guo} et al., J. Comput. Appl. Math. 388, Article ID 113300, 17 p. (2021; Zbl 1459.65141) Full Text: DOI OpenURL
González-Pinto, S.; Hernández-Abreu, D.; Pérez-Rodríguez, S. AMFR-W-methods for parabolic problems with mixed derivates. Applications to the Heston model. (English) Zbl 1458.65107 J. Comput. Appl. Math. 387, Article ID 112518, 19 p. (2021). MSC: 65M06 35L25 91G60 PDF BibTeX XML Cite \textit{S. González-Pinto} et al., J. Comput. Appl. Math. 387, Article ID 112518, 19 p. (2021; Zbl 1458.65107) Full Text: DOI OpenURL
Li, Xiao; Qiao, Zhonghua; Wang, Cheng Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. (English) Zbl 1475.65147 Math. Comput. 90, No. 327, 171-188 (2021). Reviewer: Zhiming Chen (Beijing) MSC: 65M70 65N35 65M06 65M12 65M15 35Q99 PDF BibTeX XML Cite \textit{X. Li} et al., Math. Comput. 90, No. 327, 171--188 (2021; Zbl 1475.65147) Full Text: DOI arXiv OpenURL
Decleer, Pieter; Van Londersele, Arne; Rogier, Hendrik; Vande Ginste, Dries Nonuniform and higher-order FDTD methods for the Schrödinger equation. (English) Zbl 1465.65069 J. Comput. Appl. Math. 381, Article ID 113023, 18 p. (2021). MSC: 65M06 65N06 65M12 65M15 78A25 78M20 35Q41 PDF BibTeX XML Cite \textit{P. Decleer} et al., J. Comput. Appl. Math. 381, Article ID 113023, 18 p. (2021; Zbl 1465.65069) Full Text: DOI Link OpenURL
Barbu, Tudor Photon-limited image restoration using a well-posed nonlinear fourth-order hyperbolic PDE-based model. (English) Zbl 1499.94004 Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 21, No. 3, 205-212 (2020). MSC: 94A08 35L25 65M99 PDF BibTeX XML Cite \textit{T. Barbu}, Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 21, No. 3, 205--212 (2020; Zbl 1499.94004) OpenURL
Chen, Jinbing; Pelinovsky, Dmitry E.; White, Robert E. Periodic standing waves in the focusing nonlinear Schrödinger equation: rogue waves and modulation instability. (English) Zbl 1490.35399 Physica D 405, Article ID 132378, 13 p. (2020). MSC: 35Q55 35Q41 35C08 35K35 33E05 37K20 65N06 65F15 PDF BibTeX XML Cite \textit{J. Chen} et al., Physica D 405, Article ID 132378, 13 p. (2020; Zbl 1490.35399) Full Text: DOI OpenURL
Grace, Said R.; Graef, John R. Oscillatory behavior of higher order nonlinear difference equations. (English) Zbl 1476.39014 Math. Model. Anal. 25, No. 4, 522-530 (2020). MSC: 39A21 PDF BibTeX XML Cite \textit{S. R. Grace} and \textit{J. R. Graef}, Math. Model. Anal. 25, No. 4, 522--530 (2020; Zbl 1476.39014) Full Text: DOI OpenURL
Dong, Lixiu; Wang, Cheng; Zhang, Hui; Zhang, Zhengru A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters. (English) Zbl 07419121 Commun. Comput. Phys. 28, No. 3, 967-998 (2020). MSC: 65-XX 35K35 65M06 65M12 PDF BibTeX XML Cite \textit{L. Dong} et al., Commun. Comput. Phys. 28, No. 3, 967--998 (2020; Zbl 07419121) Full Text: DOI arXiv OpenURL
Kumar, Atendra; Ray, Rajendra K. A structural bifurcation analysis of flow phenomenon for shear flow past an inclined square cylinder: application to 2D unsteady separation. (English. Russian original) Zbl 1475.76028 Fluid Dyn. 55, No. 3, 391-406 (2020); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2020, No. 3, 108-124 (2020). MSC: 76D25 76D17 76D05 76M20 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{R. K. Ray}, Fluid Dyn. 55, No. 3, 391--406 (2020; Zbl 1475.76028); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2020, No. 3, 108--124 (2020) Full Text: DOI OpenURL
Kaur, Deepti; Mohanty, R. K. A higher order finite difference method for numerical solution of the Kuramoto-Sivashinsky equation. (English) Zbl 1481.65135 Shahid, Mohammad Hasan (ed.) et al., Differential geometry, algebra, and analysis. Selected papers based on the presentations at the international conference, ICDGAA 2016, New Delhi, India, November 15–17, 2016. Singapore: Springer. Springer Proc. Math. Stat. 327, 217-229 (2020). MSC: 65M06 65M12 65M22 35G31 35Q53 PDF BibTeX XML Cite \textit{D. Kaur} and \textit{R. K. Mohanty}, Springer Proc. Math. Stat. 327, 217--229 (2020; Zbl 1481.65135) Full Text: DOI OpenURL
Kumar, B. V. Rathish; Priyadarshi, Gopal Wavelet Galerkin methods for higher order partial differential equations. (English) Zbl 1480.65261 Manchanda, Pammy (ed.) et al., Mathematical modelling, optimization, analytic and numerical solutions. Selected papers based on the presentations at the international conference in conjunction with 14th biennial conference of ISIAM, Guru Nanak Dev University, Amritsar, India, February 2–4, 2018. Singapore: Springer. Ind. Appl. Math., 231-253 (2020). Reviewer: Wayne Lawton (Bangkok) MSC: 65M60 65M06 65T60 65F10 65F50 35J60 35G20 31A30 PDF BibTeX XML Cite \textit{B. V. R. Kumar} and \textit{G. Priyadarshi}, in: Mathematical modelling, optimization, analytic and numerical solutions. Selected papers based on the presentations at the international conference in conjunction with 14th biennial conference of ISIAM, Guru Nanak Dev University, Amritsar, India, February 2--4, 2018. Singapore: Springer. 231--253 (2020; Zbl 1480.65261) Full Text: DOI OpenURL
Li, Xiaoli; Shen, Jie On a SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phase-field model and its error analysis for the corresponding Cahn-Hilliard-Stokes case. (English) Zbl 1471.65106 Math. Models Methods Appl. Sci. 30, No. 12, 2263-2297 (2020). MSC: 65M06 65N06 35G25 65M12 65M15 65Z05 76D05 76D07 35Q35 PDF BibTeX XML Cite \textit{X. Li} and \textit{J. Shen}, Math. Models Methods Appl. Sci. 30, No. 12, 2263--2297 (2020; Zbl 1471.65106) Full Text: DOI arXiv OpenURL
Gubbiotti, Giorgio; Joshi, Nalini; Tran, Dinh Thi; Viallet, Claude-Michel Complexity and integrability in 4D bi-rational maps with two invariants. (English) Zbl 1464.37067 Nijhoff, Frank (ed.) et al., Asymptotic, algebraic and geometric aspects of integrable systems. In honor of Nalini Joshi on her 60th birthday. Selected papers of the workshop, TSIMF, Sanya, China, April 9–13, 2018. Cham: Springer. Springer Proc. Math. Stat. 338, 17-36 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 37J70 39A36 14E05 PDF BibTeX XML Cite \textit{G. Gubbiotti} et al., Springer Proc. Math. Stat. 338, 17--36 (2020; Zbl 1464.37067) Full Text: DOI arXiv OpenURL