×

Found 608 Documents (Results 1–100)

An alternate induction argument In Simons’ proof of holonomy theorem. (English) Zbl 1482.53064

Grigor’yan, Alexander (ed.) et al., Analysis and partial differential equations on manifolds, fractals and graphs. Contributions of the conference, Tianjin, China, September 2019. Berlin: De Gruyter. Adv. Anal. Geom. 3, 443-458 (2021).
PDF BibTeX XML Cite
Full Text: DOI

\(G_2\) instantons and the Seiberg-Witten monopoles. (English) Zbl 1450.53054

Bouwknegt, Peter (ed.) et al., Gromov-Witten theory, gauge theory and dualities, Kioloa, Australia, January 6–16, 2016. Canbarra: The Australian National University, Centre for Mathematics and its Applications. Proc. Cent. Math. Appl. Aust. Natl. Univ. 48, Article 3, 12 p. (2019).
MSC:  53C29 53C27 57K41
PDF BibTeX XML Cite
Full Text: arXiv Link

Lorentzian geometry: holonomy, spinors, and Cauchy problems. (English) Zbl 1456.53003

Cortés, Vicente (ed.) et al., Geometric flows and the geometry of space-time. Based on the summer school and workshop, Hamburg, Germany, September 2016. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 1-76 (2018).
PDF BibTeX XML Cite
Full Text: DOI

On singular holomorphic foliations with projective transverse structure. (English) Zbl 1405.32051

Araújo dos Santos, Raimundo Nonato (ed.) et al., Singularities and foliations. Geometry, topology and applications. BMMS 2/NBMS 3, Salvador, Brazil, 2015. Proceedings of the 3rd singularity theory meeting, ENSINO, July 8–11, 2015 and the Brazil-Mexico 2nd meeting of singularities, July 13–17, 2015. Cham: Springer (ISBN 978-3-319-73638-9/hbk; 978-3-319-73639-6/ebook). Springer Proceedings in Mathematics & Statistics 222, 181-228 (2018).
MSC:  32S65
PDF BibTeX XML Cite
Full Text: DOI

Holonomy theory of Finsler manifolds. (English) Zbl 1392.53079

Falcone, Giovanni (ed.), Lie groups, differential equations, and geometry. Advances and surveys. Cham: Springer; Palermo: Università degli Studi di Palermo (ISBN 978-3-319-62180-7/hbk; 978-3-319-62181-4/ebook). UNIPA Springer Series, 265-320 (2017).
Reviewer: Ioan Pop (Iaşi)
MSC:  53C60 53C29
PDF BibTeX XML Cite
Full Text: DOI

Foundations of arithmetic differential geometry. (English) Zbl 1388.11001

Mathematical Surveys and Monographs 222. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3623-0/hbk; 978-1-4704-4089-3/ebook). x, 344 p. (2017).
PDF BibTeX XML Cite
Full Text: DOI Link

Filter Results by …

Document Type

Reviewing State

all top 5

Author

all top 5

Serial

all top 5

Year of Publication

all top 3

Main Field