Liao, Shijun Avoiding small denominator problems by means of the homotopy analysis method. (English) Zbl 07646146 Adv. Appl. Math. Mech. 15, No. 2, 267-299 (2023). MSC: 41A58 34C25 PDF BibTeX XML Cite \textit{S. Liao}, Adv. Appl. Math. Mech. 15, No. 2, 267--299 (2023; Zbl 07646146) Full Text: DOI arXiv OpenURL
Sartanpara, Parthkumar P.; Meher, Ramakanta Solution of generalised fuzzy fractional Kaup-Kupershmidt equation using a robust multi parametric approach and a novel transform. (English) Zbl 07628027 Math. Comput. Simul. 205, 939-969 (2023). MSC: 93-XX 76-XX PDF BibTeX XML Cite \textit{P. P. Sartanpara} and \textit{R. Meher}, Math. Comput. Simul. 205, 939--969 (2023; Zbl 07628027) Full Text: DOI OpenURL
Khirsariya, Sagar R.; Rao, Snehal B.; Chauhan, Jignesh P. A novel hybrid technique to obtain the solution of generalized fractional-order differential equations. (English) Zbl 07627996 Math. Comput. Simul. 205, 272-290 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. R. Khirsariya} et al., Math. Comput. Simul. 205, 272--290 (2023; Zbl 07627996) Full Text: DOI OpenURL
He, Ji-Huan; Jiao, Man-Li; Gepreel, Khaled A.; Khan, Yasir Homotopy perturbation method for strongly nonlinear oscillators. (English) Zbl 07619060 Math. Comput. Simul. 204, 243-258 (2023). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{J.-H. He} et al., Math. Comput. Simul. 204, 243--258 (2023; Zbl 07619060) Full Text: DOI OpenURL
Yazdani, Cherati Allahbakhsh; Azimi, Allahbakhsh Investigating the effect of volume fraction, Reynolds number and dilation rate of permeable wall of vessel on the heat transfer flow of gold/copper nanofluid of blood using the Adomian decomposition method. (English) Zbl 07646796 JAMM, J. Adv. Math. Model. 12, No. 3, 402-413 (2022). MSC: 76Z05 76T20 76S05 76M99 80A19 92C35 PDF BibTeX XML Cite \textit{C. A. Yazdani} and \textit{A. Azimi}, JAMM, J. Adv. Math. Model. 12, No. 3, 402--413 (2022; Zbl 07646796) Full Text: DOI OpenURL
de Botton, Eva; Greenberg, J. Barry; Arad, Alumah; Katoshevski, David; Vaikuntanathan, Visakh; Ibach, Matthias; Weigand, Bernhard An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method. (English) Zbl 07635604 Appl. Math. Modelling 104, 486-498 (2022). MSC: 76Txx 76Fxx 80Axx PDF BibTeX XML Cite \textit{E. de Botton} et al., Appl. Math. Modelling 104, 486--498 (2022; Zbl 07635604) Full Text: DOI OpenURL
Li, Jia-Xuan; Yan, Yan; Wang, Wen-Quan Time-delay feedback control of a cantilever beam with concentrated mass based on the homotopy analysis method. (English) Zbl 07635518 Appl. Math. Modelling 108, 629-645 (2022). MSC: 93B52 74K10 93C10 PDF BibTeX XML Cite \textit{J.-X. Li} et al., Appl. Math. Modelling 108, 629--645 (2022; Zbl 07635518) Full Text: DOI OpenURL
Al-Qudah, Alaa; Odibat, Zaid; Shawagfeh, Nabil An optimal homotopy analysis transform method for handling nonlinear PDEs. (English) Zbl 07626568 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 260, 19 p. (2022). MSC: 65M99 44A10 65M12 34A34 35Q53 PDF BibTeX XML Cite \textit{A. Al-Qudah} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 260, 19 p. (2022; Zbl 07626568) Full Text: DOI OpenURL
Yousefi, Batoul; Baradaran, Hossein A homotopy analysis solution to large deformation of a nanowire based on nonlocal elasticity theory. (English) Zbl 1498.74046 Comput. Appl. Math. 41, No. 7, Paper No. 316, 19 p. (2022). MSC: 74K10 74B99 74G10 PDF BibTeX XML Cite \textit{B. Yousefi} and \textit{H. Baradaran}, Comput. Appl. Math. 41, No. 7, Paper No. 316, 19 p. (2022; Zbl 1498.74046) Full Text: DOI OpenURL
Karthik, A.; Kumar, P. T. V. Praveen; Radhika, T. S. L. A mathematical model for blood flow accounting for the hematological disorders. (English) Zbl 1498.92073 Comput. Math. Biophys. 10, No. 1, 184-198 (2022). MSC: 92C35 92C32 92-10 62P10 65H20 PDF BibTeX XML Cite \textit{A. Karthik} et al., Comput. Math. Biophys. 10, No. 1, 184--198 (2022; Zbl 1498.92073) Full Text: DOI OpenURL
Huang, Yao; Hao, Wenrui; Lin, Guang HomPINNs: Homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations. (English) Zbl 07585756 Comput. Math. Appl. 121, 62-73 (2022). MSC: 65H10 65N06 65-02 68T07 35K57 PDF BibTeX XML Cite \textit{Y. Huang} et al., Comput. Math. Appl. 121, 62--73 (2022; Zbl 07585756) Full Text: DOI OpenURL
Ahmed, Sohail; Xu, Hang; Wang, An-Yang; Chen, Qing-Bo Highly accurate coiflet wavelet-homotopy solution of Jeffery-Hamel problem at extreme parameters. (English) Zbl 07579737 Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 5, Article ID 2250013, 23 p. (2022). MSC: 76W05 76M45 65T60 PDF BibTeX XML Cite \textit{S. Ahmed} et al., Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 5, Article ID 2250013, 23 p. (2022; Zbl 07579737) Full Text: DOI OpenURL
Cheng, Xiaoyu; Wang, Lizhen; Shen, Shoufeng On analytical solutions of the conformable time-fractional Navier-Stokes equation. (English) Zbl 07566281 Rep. Math. Phys. 89, No. 3, 335-358 (2022). MSC: 35Q51 PDF BibTeX XML Cite \textit{X. Cheng} et al., Rep. Math. Phys. 89, No. 3, 335--358 (2022; Zbl 07566281) Full Text: DOI OpenURL
Çetinkaya, Süleyman; Demir, Ali Solutions of fuzzy time fractional heat equation. (English) Zbl 07563308 J. Math. Ext. 16, No. 6, Paper No. 3, 17 p. (2022). MSC: 26A33 44A05 PDF BibTeX XML Cite \textit{S. Çetinkaya} and \textit{A. Demir}, J. Math. Ext. 16, No. 6, Paper No. 3, 17 p. (2022; Zbl 07563308) Full Text: DOI OpenURL
Lin, Ying; Wei, Yimin; Ye, Qi A homotopy method for multikernel-based approximation. (English) Zbl 07556349 J. Nonlinear Var. Anal. 6, No. 2, 139-154 (2022). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{Y. Lin} et al., J. Nonlinear Var. Anal. 6, No. 2, 139--154 (2022; Zbl 07556349) Full Text: DOI OpenURL
Zafar, Husna; Ali, Amir; Khan, Khalid; Sadiq, Muhammad Noveel Analytical solution of time fractional Kawahara and modified Kawahara equations by homotopy analysis method. (English) Zbl 1499.65605 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 94, 18 p. (2022). MSC: 65M99 35R11 PDF BibTeX XML Cite \textit{H. Zafar} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 94, 18 p. (2022; Zbl 1499.65605) Full Text: DOI OpenURL
Kumar, Manoj A hybrid method to solve time-space fractional PDEs with proportional delay. (English) Zbl 07541682 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 72, 15 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{M. Kumar}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 72, 15 p. (2022; Zbl 07541682) Full Text: DOI OpenURL
Jyoti; Singh, Mandeep An iterative technique based on HPM for a class of one dimensional Bratu’s type problem. (English) Zbl 07538476 Math. Comput. Simul. 200, 50-64 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Jyoti} and \textit{M. Singh}, Math. Comput. Simul. 200, 50--64 (2022; Zbl 07538476) Full Text: DOI OpenURL
Panda, A.; Santra, S.; Mohapatra, J. Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. (English) Zbl 1490.35523 J. Appl. Math. Comput. 68, No. 3, 2065-2082 (2022). MSC: 35R11 35R09 35A22 65R20 26A33 PDF BibTeX XML Cite \textit{A. Panda} et al., J. Appl. Math. Comput. 68, No. 3, 2065--2082 (2022; Zbl 1490.35523) Full Text: DOI OpenURL
Jan, Wajid Ullah; Farooq, Muhammad; Khan, Aamir; Alharbi, Asma; Shah, Rehan Ali; Jan, Rashid; Idris, Sahar Ahmed A parametric analysis of the effect of hybrid nanoparticles on the flow field and homogeneous-heterogeneous reaction between squeezing plates. (English) Zbl 1494.76080 Adv. Math. Phys. 2022, Article ID 2318436, 22 p. (2022). MSC: 76R05 76R10 76S05 76T20 76V05 76M99 PDF BibTeX XML Cite \textit{W. U. Jan} et al., Adv. Math. Phys. 2022, Article ID 2318436, 22 p. (2022; Zbl 1494.76080) Full Text: DOI OpenURL
Elsayed, E. M.; Shah, Rasool; Nonlaopon, Kamsing The analysis of the fractional-order Navier-Stokes equations by a novel approach. (English) Zbl 1489.35298 J. Funct. Spaces 2022, Article ID 8979447, 18 p. (2022). MSC: 35R11 35A22 35Q30 PDF BibTeX XML Cite \textit{E. M. Elsayed} et al., J. Funct. Spaces 2022, Article ID 8979447, 18 p. (2022; Zbl 1489.35298) Full Text: DOI OpenURL
Naik, Parvaiz Ahmad; Ghoreishi, Mohammad; Zu, Jian Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method. (English) Zbl 07509157 Int. J. Numer. Anal. Model. 19, No. 1, 52-84 (2022). MSC: 92D30 26A33 34D20 37M05 37N25 65L20 92B05 93A30 PDF BibTeX XML Cite \textit{P. A. Naik} et al., Int. J. Numer. Anal. Model. 19, No. 1, 52--84 (2022; Zbl 07509157) Full Text: Link OpenURL
Kaur, Gurmeet; Singh, Randhir; Briesen, Heiko Approximate solutions of aggregation and breakage population balance equations. (English) Zbl 1491.45014 J. Math. Anal. Appl. 512, No. 2, Article ID 126166, 27 p. (2022). MSC: 45K05 45L05 65H20 92D25 PDF BibTeX XML Cite \textit{G. Kaur} et al., J. Math. Anal. Appl. 512, No. 2, Article ID 126166, 27 p. (2022; Zbl 1491.45014) Full Text: DOI OpenURL
Obalalu, Adebowale Martins Chemical entropy generation and second-order slip condition on hydrodynamic Casson nanofluid flow embedded in a porous medium: a fast convergent method. (English) Zbl 1487.76108 J. Egypt. Math. Soc. 30, Paper No. 6, 25 p. (2022). MSC: 76V05 76A05 76S05 76T20 76M99 80A19 PDF BibTeX XML Cite \textit{A. M. Obalalu}, J. Egypt. Math. Soc. 30, Paper No. 6, 25 p. (2022; Zbl 1487.76108) Full Text: DOI OpenURL
Shah, Nehad Ali; Agarwal, Praveen; Chung, Jae Dong; Althobaiti, Saad; Sayed, Samy; Aljohani, A. F.; Alkafafy, Mohamed Analysis of time-fractional Burgers and diffusion equations by using modified \(q\)-HATM. (English) Zbl 07490648 Fractals 30, No. 1, Article ID 2240012, 12 p. (2022). MSC: 65Mxx 26Axx 35Rxx PDF BibTeX XML Cite \textit{N. A. Shah} et al., Fractals 30, No. 1, Article ID 2240012, 12 p. (2022; Zbl 07490648) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Prakasha, D. G.; Baskonus, Haci Mehmet Regarding new numerical results for the dynamical model of romantic relationships with fractional derivative. (English) Zbl 1492.34054 Fractals 30, No. 1, Article ID 2240009, 11 p. (2022). MSC: 34C60 34A08 91D99 34A45 PDF BibTeX XML Cite \textit{W. Gao} et al., Fractals 30, No. 1, Article ID 2240009, 11 p. (2022; Zbl 1492.34054) Full Text: DOI OpenURL
El-Dib, Yusry O. The damping Helmholtz-Rayleigh-Duffing oscillator with the non-perturbative approach. (English) Zbl 07478814 Math. Comput. Simul. 194, 552-562 (2022). MSC: 82-XX 76-XX PDF BibTeX XML Cite \textit{Y. O. El-Dib}, Math. Comput. Simul. 194, 552--562 (2022; Zbl 07478814) Full Text: DOI OpenURL
Al-Qudah, Alaa; Odibat, Zaid; Shawagfeh, Nabil A linearization-based computational algorithm of homotopy analysis method for nonlinear reaction-diffusion systems. (English) Zbl 07478811 Math. Comput. Simul. 194, 505-522 (2022). MSC: 65-XX 93-XX PDF BibTeX XML Cite \textit{A. Al-Qudah} et al., Math. Comput. Simul. 194, 505--522 (2022; Zbl 07478811) Full Text: DOI OpenURL
Ilhan, Esin; Veeresha, P.; Baskonus, Haci Mehmet Fractional approach for a mathematical model of atmospheric dynamics of CO\(_2\) gas with an efficient method. (English) Zbl 1495.86004 Chaos Solitons Fractals 152, Article ID 111347, 10 p. (2021). MSC: 86-08 86A10 35Q86 35R11 PDF BibTeX XML Cite \textit{E. Ilhan} et al., Chaos Solitons Fractals 152, Article ID 111347, 10 p. (2021; Zbl 1495.86004) Full Text: DOI OpenURL
Hayat, T.; Muhammad, K.; Alsaedi, A. Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium. (English) Zbl 1495.76106 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 12, 1787-1798 (2021). MSC: 76S05 76W05 76A05 76T30 76M45 80A19 80A22 PDF BibTeX XML Cite \textit{T. Hayat} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 12, 1787--1798 (2021; Zbl 1495.76106) Full Text: DOI OpenURL
Imran, M.; Abbas, Z.; Naveed, M. Flow of Eyring-Powell liquid due to oscillatory stretchable curved sheet with modified Fourier and Fick’s model. (English) Zbl 1495.76007 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 10, 1461-1478 (2021). MSC: 76A05 76W05 76R50 76M45 80A19 PDF BibTeX XML Cite \textit{M. Imran} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 10, 1461--1478 (2021; Zbl 1495.76007) Full Text: DOI OpenURL
Akinbo, B. J.; Olajuwon, B. I. Cattaneo-Christov heat flux and heat generation/absorption effect on viscous Walters’ B fluid through a porous medium with chemical reaction. (English) Zbl 07556641 J. Niger. Math. Soc. 40, No. 3, 205-226 (2021). MSC: 35Q35 35Q79 76S05 76V05 76A10 35G61 80A19 80A10 PDF BibTeX XML Cite \textit{B. J. Akinbo} and \textit{B. I. Olajuwon}, J. Niger. Math. Soc. 40, No. 3, 205--226 (2021; Zbl 07556641) Full Text: Link OpenURL
Veeresha, P.; Prakasha, D. G.; Magesh, N.; Nandeppanavar, M. M.; Christopher, A. John Numerical simulation for fractional Jaulent-Miodek equation associated with energy-dependent Schrödinger potential using two novel techniques. (English) Zbl 07543567 Waves Random Complex Media 31, No. 6, 1141-1162 (2021). MSC: 76M99 76X05 26A33 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Waves Random Complex Media 31, No. 6, 1141--1162 (2021; Zbl 07543567) Full Text: DOI arXiv OpenURL
Akinyemi, Lanre; Şenol, Mehmet; Huseen, Shaheed N. Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. (English) Zbl 1487.65129 Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021). MSC: 65M25 65H20 35R11 26A33 PDF BibTeX XML Cite \textit{L. Akinyemi} et al., Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021; Zbl 1487.65129) Full Text: DOI OpenURL
Nosrati Sahlan, Monireh; Afshari, Hojjat Three new approaches for solving a class of strongly nonlinear two-point boundary value problems. (English) Zbl 1495.65122 Bound. Value Probl. 2021, Paper No. 60, 21 p. (2021). MSC: 65L10 65L60 34A34 PDF BibTeX XML Cite \textit{M. Nosrati Sahlan} and \textit{H. Afshari}, Bound. Value Probl. 2021, Paper No. 60, 21 p. (2021; Zbl 1495.65122) Full Text: DOI OpenURL
Ige, Ebenezer Olubunmi; Oyelami, Funmilayo Helen; Adedipe, Emmanuel Segun; Tlili, Iskander; Khan, M. Ijaz; Khan, Sami Ullah; Malik, M. Y.; Xia, Wei-Feng Analytical simulation of nanoparticle-embedded blood flow control with magnetic field influence through spectra homotopy analysis method. (English) Zbl 1490.92019 Int. J. Mod. Phys. B 35, No. 22, Article ID 2150226, 26 p. (2021). MSC: 92C35 76Z05 76D55 76W05 55P42 PDF BibTeX XML Cite \textit{E. O. Ige} et al., Int. J. Mod. Phys. B 35, No. 22, Article ID 2150226, 26 p. (2021; Zbl 1490.92019) Full Text: DOI OpenURL
Goyal, Manish; Prakash, Amit; Gupta, Shivangi An efficient perturbation Sumudu transform technique for the time-fractional vibration equation with a memory dependent fractional derivative in Liouville-Caputo sense. (English) Zbl 1496.74064 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 156, 18 p. (2021). MSC: 74H45 74K15 74S40 74H10 26A33 PDF BibTeX XML Cite \textit{M. Goyal} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 156, 18 p. (2021; Zbl 1496.74064) Full Text: DOI OpenURL
Singh, Randhir; Singh, Gagandeep; Singh, Mehakpreet Numerical algorithm for solution of the system of Emden-Fowler type equations. (English) Zbl 07490147 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 136, 20 p. (2021). MSC: 65Lxx 34B05 34B15 34B16 34B18 34B27 PDF BibTeX XML Cite \textit{R. Singh} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 136, 20 p. (2021; Zbl 07490147) Full Text: DOI OpenURL
Akinyemi, Lanre; Iyiola, Olaniyi S. Analytical study of \((3+1)\)-dimensional fractional-reaction diffusion trimolecular models. (English) Zbl 1499.35612 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 92, 24 p. (2021). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{L. Akinyemi} and \textit{O. S. Iyiola}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 92, 24 p. (2021; Zbl 1499.35612) Full Text: DOI OpenURL
Prakasha, D. G.; Veeresha, P.; Baskonus, Haci Mehmet A novel approach for fractional \((1+1)\)-dimensional Biswas-Milovic equation. (English) Zbl 07489966 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 187, 18 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{D. G. Prakasha} et al., Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 187, 18 p. (2021; Zbl 07489966) Full Text: DOI OpenURL
Veeresha, P.; Prakasha, D. G. Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique. (English) Zbl 07486471 Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 33, 22 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{P. Veeresha} and \textit{D. G. Prakasha}, Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 33, 22 p. (2021; Zbl 07486471) Full Text: DOI OpenURL
Nandeppanavar, Mahantesh M.; Madhusudhan, R.; Kemparaju, M. C.; Latha, R. On comparison of homotopy analysis method and finite difference method for two dimensional steady compressible flow with pressure gradients. (English) Zbl 1499.76094 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 20, 16 p. (2021). MSC: 76N20 76M20 PDF BibTeX XML Cite \textit{M. M. Nandeppanavar} et al., Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 20, 16 p. (2021; Zbl 1499.76094) Full Text: DOI OpenURL
Jassim, H. K.; Ahmad, H.; Shamaoon, A.; Cesarano, C. An efficient hybrid technique for the solution of fractional-order partial differential equations. (English) Zbl 1480.35392 Carpathian Math. Publ. 13, No. 3, 790-804 (2021). MSC: 35R11 45K05 PDF BibTeX XML Cite \textit{H. K. Jassim} et al., Carpathian Math. Publ. 13, No. 3, 790--804 (2021; Zbl 1480.35392) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Some powerful techniques for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 1492.65360 J. Appl. Nonlinear Dyn. 10, No. 3, 461-469 (2021). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Appl. Nonlinear Dyn. 10, No. 3, 461--469 (2021; Zbl 1492.65360) Full Text: DOI OpenURL
Adewumi, A. O.; Adetona, R. A.; Ogundare, B. S. On closed-form solutions to integro-differential equations. (English) Zbl 1499.45030 J. Numer. Math. Stoch. 12, No. 1, 28-44 (2021). MSC: 45L05 45D05 65R20 65H20 PDF BibTeX XML Cite \textit{A. O. Adewumi} et al., J. Numer. Math. Stoch. 12, No. 1, 28--44 (2021; Zbl 1499.45030) Full Text: Link OpenURL
Usman, Auwalu Hamisu; Khan, Noor Saeed; Rano, Sadiya Ali; Maitama, Murtala; Humphries, Usa Wannasingha Study of heat and mass transfer in MHD flow of Sutterby nanofluid over a curved stretching sheet with magnetic dipole and effect. (English) Zbl 1489.76064 Thai J. Math. 19, No. 3, 1037-1055 (2021). MSC: 76W05 76A20 76S05 76V05 76Z10 76M99 80A19 PDF BibTeX XML Cite \textit{A. H. Usman} et al., Thai J. Math. 19, No. 3, 1037--1055 (2021; Zbl 1489.76064) Full Text: Link OpenURL
Singh, Randhir An efficient technique based on the HAM with Green’s function for a class of nonlocal elliptic boundary value problems. (English) Zbl 07468461 Comput. Methods Differ. Equ. 9, No. 3, 722-735 (2021). MSC: 65N99 65D20 33F05 65D20 65L10 65L80 34B05 34B15 34B18 34B27 PDF BibTeX XML Cite \textit{R. Singh}, Comput. Methods Differ. Equ. 9, No. 3, 722--735 (2021; Zbl 07468461) Full Text: DOI OpenURL
Jafari, Hossein; Prasad, Jyoti Geetesh; Goswami, Pranay; Dubey, Ravi Shanker Solution of the local fractional generalized KdV equation using homotopy analysis method. (English) Zbl 1482.35064 Fractals 29, No. 5, Article ID 2140014, 10 p. (2021). MSC: 35C05 35Q53 35R11 PDF BibTeX XML Cite \textit{H. Jafari} et al., Fractals 29, No. 5, Article ID 2140014, 10 p. (2021; Zbl 1482.35064) Full Text: DOI OpenURL
Yang, Xiaoyan; Dias, Frederic; Liu, Zeng; Liao, Shijun Finite-amplitude steady-state resonant waves in a circular basin. (English) Zbl 1497.76017 J. Fluid Mech. 915, Paper No. A136, 24 p. (2021). MSC: 76B15 76B07 76M99 PDF BibTeX XML Cite \textit{X. Yang} et al., J. Fluid Mech. 915, Paper No. A136, 24 p. (2021; Zbl 1497.76017) Full Text: DOI OpenURL
Rashidinia, Jalil; Sajjadian, Mehri Continuously bursting simulations and analytical solutions of the neocortical neurons model. (English) Zbl 1491.92017 Differ. Equ. Dyn. Syst. 29, No. 4, 751-763 (2021). Reviewer: Haydar Akca (Abu Dhabi) MSC: 92B20 92C20 PDF BibTeX XML Cite \textit{J. Rashidinia} and \textit{M. Sajjadian}, Differ. Equ. Dyn. Syst. 29, No. 4, 751--763 (2021; Zbl 1491.92017) Full Text: DOI OpenURL
Khan, Imran; Ullah, Hakeem; AlSalman, Hussain; Fiza, Mehreen; Islam, Saeed; Shoaib, Muhammad; Raja, Muhammad Asif Zahoor; Gumaei, Abdu; Ikhlaq, Farkhanda Fractional analysis of MHD boundary layer flow over a stretching sheet in porous medium: a new stochastic method. (English) Zbl 1495.76132 J. Funct. Spaces 2021, Article ID 5844741, 19 p. (2021). MSC: 76W05 76S05 76M35 76M45 26A33 68T05 PDF BibTeX XML Cite \textit{I. Khan} et al., J. Funct. Spaces 2021, Article ID 5844741, 19 p. (2021; Zbl 1495.76132) Full Text: DOI OpenURL
Zhao, Minghao; Ma, Zelong; Lu, Chunsheng; Zhang, Qiaoyun Application of the homotopy analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber. (Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber.) (English) Zbl 1480.74075 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 5, 665-676 (2021). MSC: 74F15 74G10 78A55 PDF BibTeX XML Cite \textit{M. Zhao} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 5, 665--676 (2021; Zbl 1480.74075) Full Text: DOI OpenURL
Oliveira, D. S.; de Oliveira, E. Capelas Analytical solutions for Navier-Stokes equations with Caputo fractional derivative. (English) Zbl 1487.35302 S\(\vec{\text{e}}\)MA J. 78, No. 1, 137-154 (2021). MSC: 35Q30 76D05 26A33 35G10 35R11 PDF BibTeX XML Cite \textit{D. S. Oliveira} and \textit{E. C. de Oliveira}, S\(\vec{\text{e}}\)MA J. 78, No. 1, 137--154 (2021; Zbl 1487.35302) Full Text: DOI arXiv OpenURL
Rasool, Ghulam; Shafiq, Anum; Khalique, Chaudry Masood Marangoni forced convective Casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. (English) Zbl 1487.76077 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2517-2533 (2021). MSC: 76R05 76D45 76A05 76T20 76W05 76M99 80A19 PDF BibTeX XML Cite \textit{G. Rasool} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2517--2533 (2021; Zbl 1487.76077) Full Text: DOI OpenURL
Kumar Mishra, Hradyesh; Pandey, Rishi Kumar Time-fractional nonlinear dispersive type of the Zakharov-Kuznetsov equation via HAFSTM. (English) Zbl 1490.35521 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 1, 97-110 (2021). MSC: 35R11 65M99 35Q53 PDF BibTeX XML Cite \textit{H. Kumar Mishra} and \textit{R. K. Pandey}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 1, 97--110 (2021; Zbl 1490.35521) Full Text: DOI OpenURL
Jawad, Muhammad; Jan, Rashid; Boulaaras, Salah; Amin, Ibni; Shah, Niaz Ali; Idris, Sahar Ahmed Unsteady electrohydrodynamic stagnation point flow of hybrid nanofluid past a convective heated stretch/shrink sheet. (English) Zbl 1494.76099 Adv. Math. Phys. 2021, Article ID 6229706, 9 p. (2021). MSC: 76T20 76W05 76M45 80A19 PDF BibTeX XML Cite \textit{M. Jawad} et al., Adv. Math. Phys. 2021, Article ID 6229706, 9 p. (2021; Zbl 1494.76099) Full Text: DOI OpenURL
Malagi, Naveen S.; Veeresha, P.; Prasannakumara, B. C.; Prasanna, G. D.; Prakasha, D. G. A new computational technique for the analytic treatment of time-fractional Emden-Fowler equations. (English) Zbl 07431521 Math. Comput. Simul. 190, 362-376 (2021). MSC: 65-XX 92-XX PDF BibTeX XML Cite \textit{N. S. Malagi} et al., Math. Comput. Simul. 190, 362--376 (2021; Zbl 07431521) Full Text: DOI OpenURL
Hosseini, Kamyar; Ilie, Mousa; Mirzazadeh, Mohammad; Yusuf, Abdullahi; Sulaiman, Tukur Abdulkadir; Baleanu, Dumitru; Salahshour, Soheil An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense. (English) Zbl 07428957 Math. Comput. Simul. 187, 248-260 (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{K. Hosseini} et al., Math. Comput. Simul. 187, 248--260 (2021; Zbl 07428957) Full Text: DOI OpenURL
Madhusudhan, R.; Nargund, Achala L.; Sathyanarayana, S. B. The effect of magnetic field on compressible boundary layer by homotopy analysis method. (English) Zbl 1488.76120 J. Indian Math. Soc., New Ser. 88, No. 1-2, 125-145 (2021). MSC: 76N20 76W05 PDF BibTeX XML Cite \textit{R. Madhusudhan} et al., J. Indian Math. Soc., New Ser. 88, No. 1--2, 125--145 (2021; Zbl 1488.76120) Full Text: DOI OpenURL
Ibrahim, Dachas; Daba, Mitiku; Bati, Solomon Optimal homotopy asymptotic method for investigation of effects of thermal radiation, internal heat generation, and buoyancy on velocity and heat transfer in the Blasius flow. (English) Zbl 1476.80008 Adv. Math. Phys. 2021, Article ID 5598817, 11 p. (2021). MSC: 80A21 80A19 76R10 35B40 35A24 80M35 PDF BibTeX XML Cite \textit{D. Ibrahim} et al., Adv. Math. Phys. 2021, Article ID 5598817, 11 p. (2021; Zbl 1476.80008) Full Text: DOI OpenURL
Eswaramoorthi, S.; Alessa, Nazek; Sangeethavaanee, M.; Namgyel, Ngawang Numerical and analytical investigation for Darcy-Forchheimer flow of a Williamson fluid over a Riga plate with double stratification and Cattaneo-Christov dual flux. (English) Zbl 1481.76210 Adv. Math. Phys. 2021, Article ID 1867824, 15 p. (2021). MSC: 76S05 76T20 76W05 76M99 80A19 80A21 PDF BibTeX XML Cite \textit{S. Eswaramoorthi} et al., Adv. Math. Phys. 2021, Article ID 1867824, 15 p. (2021; Zbl 1481.76210) Full Text: DOI OpenURL
Maitama, Shehu; Zhao, Weidong Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives. (English) Zbl 1476.34009 Comput. Appl. Math. 40, No. 3, Paper No. 86, 30 p. (2021). MSC: 34A07 35R11 35R13 44A10 PDF BibTeX XML Cite \textit{S. Maitama} and \textit{W. Zhao}, Comput. Appl. Math. 40, No. 3, Paper No. 86, 30 p. (2021; Zbl 1476.34009) Full Text: DOI OpenURL
Kounta, Moussa; Dawson, Nathan J. Linear quadratic Gaussian homing for Markov processes with regime switching and applications to controlled population growth/decay. (English) Zbl 1475.93117 Methodol. Comput. Appl. Probab. 23, No. 3, 1155-1172 (2021). MSC: 93E20 49L25 49N10 60G40 60J20 PDF BibTeX XML Cite \textit{M. Kounta} and \textit{N. J. Dawson}, Methodol. Comput. Appl. Probab. 23, No. 3, 1155--1172 (2021; Zbl 1475.93117) Full Text: DOI OpenURL
Arafa, Anas A. M.; Hagag, Ahmed M. Sh. A different approach for study some fractional evolution equations. (English) Zbl 1476.35293 Anal. Math. Phys. 11, No. 4, Paper No. 162, 21 p. (2021). MSC: 35R11 35A22 41A58 PDF BibTeX XML Cite \textit{A. A. M. Arafa} and \textit{A. M. Sh. Hagag}, Anal. Math. Phys. 11, No. 4, Paper No. 162, 21 p. (2021; Zbl 1476.35293) Full Text: DOI OpenURL
Wu, Huan; Xu, Hang Studies of wave interaction of high-order Korteweg-de Vries equation by means of the homotopy strategy and neural network prediction. (English) Zbl 07412676 Phys. Lett., A 415, Article ID 127653, 12 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{H. Wu} and \textit{H. Xu}, Phys. Lett., A 415, Article ID 127653, 12 p. (2021; Zbl 07412676) Full Text: DOI OpenURL
Doeva, Olga; Masjedi, Pedram Khaneh; Weaver, Paul M. Static analysis of composite beams on variable stiffness elastic foundations by the homotopy analysis method. (English) Zbl 1484.74046 Acta Mech. 232, No. 10, 4169-4188 (2021). MSC: 74K10 74E30 74G10 PDF BibTeX XML Cite \textit{O. Doeva} et al., Acta Mech. 232, No. 10, 4169--4188 (2021; Zbl 1484.74046) Full Text: DOI OpenURL
Wang, Ping; Lu, Dongqiang Nonlinear hydroelastic waves traveling in a plate in terms of Plotnikov-Toland’s model. (English) Zbl 1488.74094 Adv. Appl. Math. Mech. 13, No. 3, 724-734 (2021). MSC: 74J30 76B07 74F10 74K20 PDF BibTeX XML Cite \textit{P. Wang} and \textit{D. Lu}, Adv. Appl. Math. Mech. 13, No. 3, 724--734 (2021; Zbl 1488.74094) Full Text: DOI OpenURL
Mitchell, Jonathan Simplified Liénard equation by homotopy analysis method. (English) Zbl 1483.34027 Differ. Equ. Dyn. Syst. 29, No. 3, 735-748 (2021). Reviewer: J. Peter Praveen (Guntur) MSC: 34A45 34C15 34E05 PDF BibTeX XML Cite \textit{J. Mitchell}, Differ. Equ. Dyn. Syst. 29, No. 3, 735--748 (2021; Zbl 1483.34027) Full Text: DOI OpenURL
Rodriguez, Jose Israel; Du, Jin-Hong; You, Yiling; Lim, Lek-Heng Fiber product homotopy method for multiparameter eigenvalue problems. (English) Zbl 1473.65061 Numer. Math. 148, No. 4, 853-888 (2021). MSC: 65H20 65H17 65H10 35P30 PDF BibTeX XML Cite \textit{J. I. Rodriguez} et al., Numer. Math. 148, No. 4, 853--888 (2021; Zbl 1473.65061) Full Text: DOI arXiv OpenURL
Kumar, Amit; Baleanu, Dumitru An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel. (English) Zbl 1475.35390 Math. Methods Appl. Sci. 44, No. 7, 5458-5474 (2021). MSC: 35R11 35A35 35K15 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{D. Baleanu}, Math. Methods Appl. Sci. 44, No. 7, 5458--5474 (2021; Zbl 1475.35390) Full Text: DOI OpenURL
Khan, Kashif Ali; Seadawy, Aly R.; Jhangeer, Adil Numerical appraisal under the influence of the time dependent Maxwell fluid flow over a stretching sheet. (English) Zbl 1471.35079 Math. Methods Appl. Sci. 44, No. 7, 5265-5279 (2021). MSC: 35C07 35C08 35C10 35Q35 35Q61 76W05 PDF BibTeX XML Cite \textit{K. A. Khan} et al., Math. Methods Appl. Sci. 44, No. 7, 5265--5279 (2021; Zbl 1471.35079) Full Text: DOI OpenURL
Hosseini, Kamyar; Ilie, Mousa; Mirzazadeh, Mohammad; Baleanu, Dumitru An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law. (English) Zbl 1471.35301 Math. Methods Appl. Sci. 44, No. 8, 6247-6258 (2021). MSC: 35R11 35A22 35K20 35K57 PDF BibTeX XML Cite \textit{K. Hosseini} et al., Math. Methods Appl. Sci. 44, No. 8, 6247--6258 (2021; Zbl 1471.35301) Full Text: DOI OpenURL
Padmavathi, V.; Prakash, A.; Alagesan, K.; Magesh, N. Analysis and numerical simulation of novel coronavirus (COVID-19) model with Mittag-Leffler kernel. (English) Zbl 1476.37104 Math. Methods Appl. Sci. 44, No. 2, 1863-1877 (2021). MSC: 37N25 37M05 34F05 92D30 PDF BibTeX XML Cite \textit{V. Padmavathi} et al., Math. Methods Appl. Sci. 44, No. 2, 1863--1877 (2021; Zbl 1476.37104) Full Text: DOI OpenURL
Mesdoui, Fatiha; Shawagfeh, Nabil; Ouannas, Adel Global synchronization of fractional-order and integer-order \(N\) component reaction diffusion systems: application to biochemical models. (English) Zbl 1476.37109 Math. Methods Appl. Sci. 44, No. 1, 1003-1012 (2021). MSC: 37N35 35K57 26A33 34D20 PDF BibTeX XML Cite \textit{F. Mesdoui} et al., Math. Methods Appl. Sci. 44, No. 1, 1003--1012 (2021; Zbl 1476.37109) Full Text: DOI OpenURL
Li, Yongqiang; Yao, Wenkai Double-mode modeling of nonlinear flexural vibration analysis for a symmetric rectangular honeycomb sandwich thin panel by the homotopy analysis method. (English) Zbl 1466.74015 Math. Methods Appl. Sci. 44, No. 1, 7-26 (2021). MSC: 74H45 74S99 PDF BibTeX XML Cite \textit{Y. Li} and \textit{W. Yao}, Math. Methods Appl. Sci. 44, No. 1, 7--26 (2021; Zbl 1466.74015) Full Text: DOI OpenURL
Georgieva, Atanaska Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method. (English) Zbl 1467.45002 Demonstr. Math. 54, 11-24 (2021). MSC: 45D05 45L05 65R20 PDF BibTeX XML Cite \textit{A. Georgieva}, Demonstr. Math. 54, 11--24 (2021; Zbl 1467.45002) Full Text: DOI OpenURL
Biswas, Swapan; Ghosh, Uttam Approximate solution of homogeneous and nonhomogeneous \(5\alpha\) th-order space-time fractional KdV equations. (English) Zbl 07342019 Int. J. Comput. Methods 18, No. 1, Article ID 2050018, 23 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. Biswas} and \textit{U. Ghosh}, Int. J. Comput. Methods 18, No. 1, Article ID 2050018, 23 p. (2021; Zbl 07342019) Full Text: DOI OpenURL
Patil, Sumit J.; Kashyap, Anisha R. V.; Kolwankar, Kiran M. Homotopy analysis method for oscillatory systems with cubic and trigonometric non-linearity. (English) Zbl 07332000 Mukherjee, Shaibal (ed.) et al., Computational mathematics, nanoelectronics, and astrophysics. Selected papers based on the presentations at the international conference, CMNA 2018, Indore, India, November 1–3, 2018. Singapore: Springer. Springer Proc. Math. Stat. 342, 25-45 (2021). MSC: 65L99 PDF BibTeX XML Cite \textit{S. J. Patil} et al., Springer Proc. Math. Stat. 342, 25--45 (2021; Zbl 07332000) Full Text: DOI OpenURL
Yang, Shuquan; Jia, Zhaoli; Wu, Qianqian; Wu, Huojun Homotopy analysis method for portfolio optimization problem under the 3/2 model. (English) Zbl 1460.91256 J. Syst. Sci. Complex. 34, No. 3, 1087-1101 (2021). MSC: 91G10 55P99 91G80 PDF BibTeX XML Cite \textit{S. Yang} et al., J. Syst. Sci. Complex. 34, No. 3, 1087--1101 (2021; Zbl 1460.91256) Full Text: DOI OpenURL
Veeresha, P.; Prakasha, D. G.; Hammouch, Zakia An efficient approach for the model of thrombin receptor activation mechanism with Mittag-Leffler function. (English) Zbl 1464.34072 Hammouch, Zakia (ed.) et al., Nonlinear analysis: problems, applications and computational methods. Proceedings of the 6th international congress of the Moroccan Society of Applied Mathematics, Beni-Mellal, Morocco, November 7–9, 2019. Cham: Springer. Lect. Notes Netw. Syst. 168, 44-60 (2021). MSC: 34C60 92C37 34A08 47N20 34A45 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Lect. Notes Netw. Syst. 168, 44--60 (2021; Zbl 1464.34072) Full Text: DOI OpenURL
Senol, Mehmet; Akinyemi, Lanre; Ata, Ayşe; Iyiola, Olaniyi S. Approximate and generalized solutions of conformable type Coudrey-Dodd-Gibbon-Sawada-Kotera equation. (English) Zbl 1455.35228 Int. J. Mod. Phys. B 35, No. 2, Article ID 2150021, 17 p. (2021). MSC: 35Q53 35R11 35A25 PDF BibTeX XML Cite \textit{M. Senol} et al., Int. J. Mod. Phys. B 35, No. 2, Article ID 2150021, 17 p. (2021; Zbl 1455.35228) Full Text: DOI OpenURL
Altaie, Huda Omran Two efficient methods for solving non-linear fourth-order PDEs. (English) Zbl 07623605 Int. J. Nonlinear Anal. Appl. 11, Spec. Iss., 543-546 (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{H. O. Altaie}, Int. J. Nonlinear Anal. Appl. 11, 543--546 (2020; Zbl 07623605) Full Text: DOI OpenURL
Acan, Omer; Firat, Omer; Keskin, Yildiray Conformable variational iteration method, conformable fractional reduced differential transform method and conformable homotopy analysis method for non-linear fractional partial differential equations. (English) Zbl 07583692 Waves Random Complex Media 30, No. 2, 250-268 (2020). MSC: 74-XX 78-XX PDF BibTeX XML Cite \textit{O. Acan} et al., Waves Random Complex Media 30, No. 2, 250--268 (2020; Zbl 07583692) Full Text: DOI OpenURL
Kumar, Sunil; Kumar, Amit; Abbas, Syed; Al Qurashi, Maysaa; Baleanu, Dumitru A modified analytical approach with existence and uniqueness for fractional Cauchy reaction-diffusion equations. (English) Zbl 1487.35410 Adv. Difference Equ. 2020, Paper No. 28, 18 p. (2020). MSC: 35R11 26A33 35K57 PDF BibTeX XML Cite \textit{S. Kumar} et al., Adv. Difference Equ. 2020, Paper No. 28, 18 p. (2020; Zbl 1487.35410) Full Text: DOI OpenURL
Prakash, Amit; Goyal, Manish; Baskonus, Haci Mehmet; Gupta, Shivangi A reliable hybrid numerical method for a time dependent vibration model of arbitrary order. (English) Zbl 1484.65283 AIMS Math. 5, No. 2, 979-1000 (2020). MSC: 65M99 35R11 44A10 PDF BibTeX XML Cite \textit{A. Prakash} et al., AIMS Math. 5, No. 2, 979--1000 (2020; Zbl 1484.65283) Full Text: DOI OpenURL
Korpinar, Zeliha; Inc, Mustafa; Baleanu, Dumitru On the fractional model of Fokker-Planck equations with two different operator. (English) Zbl 1484.35384 AIMS Math. 5, No. 1, 236-248 (2020). MSC: 35R11 35C08 82C31 35Q84 PDF BibTeX XML Cite \textit{Z. Korpinar} et al., AIMS Math. 5, No. 1, 236--248 (2020; Zbl 1484.35384) Full Text: DOI OpenURL
Chaudhary, Manish; Kumar, Rohit; Singh, Mritunjay Kumar Fractional convection-dispersion equation with conformable derivative approach. (English) Zbl 1496.35421 Chaos Solitons Fractals 141, Article ID 110426, 16 p. (2020). MSC: 35R11 26A24 86A04 PDF BibTeX XML Cite \textit{M. Chaudhary} et al., Chaos Solitons Fractals 141, Article ID 110426, 16 p. (2020; Zbl 1496.35421) Full Text: DOI OpenURL
Fadugba, Sunday Emmanuel Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation. (English) Zbl 1496.91100 Chaos Solitons Fractals 141, Article ID 110351, 7 p. (2020). MSC: 91G60 35R11 35Q91 65M99 91G20 PDF BibTeX XML Cite \textit{S. E. Fadugba}, Chaos Solitons Fractals 141, Article ID 110351, 7 p. (2020; Zbl 1496.91100) Full Text: DOI OpenURL
Rezapour, Shahram; Etemad, Sina; Mohammadi, Hakimeh A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals. (English) Zbl 1486.92273 Adv. Difference Equ. 2020, Paper No. 481, 30 p. (2020). MSC: 92D30 92D40 34A08 26A33 PDF BibTeX XML Cite \textit{S. Rezapour} et al., Adv. Difference Equ. 2020, Paper No. 481, 30 p. (2020; Zbl 1486.92273) Full Text: DOI OpenURL
Naik, Parvaiz Ahmad; Zu, Jian; Ghoreishi, Mohammad Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method. (English) Zbl 1495.92094 Chaos Solitons Fractals 131, Article ID 109500, 21 p. (2020). MSC: 92D30 92C60 PDF BibTeX XML Cite \textit{P. A. Naik} et al., Chaos Solitons Fractals 131, Article ID 109500, 21 p. (2020; Zbl 1495.92094) Full Text: DOI OpenURL
Malik, Sehrish; Ashraf, M. Bilal; Jahangir, Adnan Cattaneo-Christov heat flux model for three-dimensional flow of a viscoelastic fluid on an exponentially stretching surface. (English) Zbl 1500.76001 Math. Comput. Model. Dyn. Syst. 26, No. 4, 344-356 (2020). MSC: 76A10 76D10 76M99 80A19 PDF BibTeX XML Cite \textit{S. Malik} et al., Math. Comput. Model. Dyn. Syst. 26, No. 4, 344--356 (2020; Zbl 1500.76001) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Prakasha, D. G.; Baskonus, Haci Mehmet; Yel, Gulnur New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. (English) Zbl 1483.92078 Chaos Solitons Fractals 134, Article ID 109696, 11 p. (2020). MSC: 92C50 92D30 65H20 34A08 26A33 PDF BibTeX XML Cite \textit{W. Gao} et al., Chaos Solitons Fractals 134, Article ID 109696, 11 p. (2020; Zbl 1483.92078) Full Text: DOI OpenURL
Veeresha, P.; Baskonus, Haci Mehmet; Prakasha, D. G.; Gao, Wei; Yel, Gulnur Regarding new numerical solution of fractional schistosomiasis disease arising in biological phenomena. (English) Zbl 1483.92007 Chaos Solitons Fractals 133, Article ID 109661, 7 p. (2020). MSC: 92-08 65L99 34A08 92B05 92D30 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Chaos Solitons Fractals 133, Article ID 109661, 7 p. (2020; Zbl 1483.92007) Full Text: DOI OpenURL
Dubey, Ved Prakash; Kumar, Rajnesh; Kumar, Devendra A hybrid analytical scheme for the numerical computation of time fractional computer virus propagation model and its stability analysis. (English) Zbl 1483.68022 Chaos Solitons Fractals 133, Article ID 109626, 10 p. (2020). MSC: 68M11 92D30 65H20 PDF BibTeX XML Cite \textit{V. P. Dubey} et al., Chaos Solitons Fractals 133, Article ID 109626, 10 p. (2020; Zbl 1483.68022) Full Text: DOI OpenURL
Biazar, J.; Dehghan, M.; Houlari, T. Using homotopy analysis method to find the eigenvalues of higher order fractional Sturm-Liouville problems. (English) Zbl 1493.34231 Iran. J. Numer. Anal. Optim. 10, No. 1, 49-62 (2020). MSC: 34L16 34B24 34A08 34L15 PDF BibTeX XML Cite \textit{J. Biazar} et al., Iran. J. Numer. Anal. Optim. 10, No. 1, 49--62 (2020; Zbl 1493.34231) Full Text: DOI OpenURL
Hosseini, K.; Ilie, M.; Mirzazadeh, M.; Baleanu, D. A detailed study on a new \((2 + 1)\)-dimensional mKdV equation involving the Caputo-Fabrizio time-fractional derivative. (English) Zbl 1485.35390 Adv. Difference Equ. 2020, Paper No. 331, 13 p. (2020). MSC: 35R11 26A33 35Q53 47N20 PDF BibTeX XML Cite \textit{K. Hosseini} et al., Adv. Difference Equ. 2020, Paper No. 331, 13 p. (2020; Zbl 1485.35390) Full Text: DOI OpenURL
Baleanu, Dumitru; Mohammadi, Hakimeh; Rezapour, Shahram A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative. (English) Zbl 1485.37075 Adv. Difference Equ. 2020, Paper No. 299, 27 p. (2020). MSC: 37N25 34A08 26A33 92D30 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Adv. Difference Equ. 2020, Paper No. 299, 27 p. (2020; Zbl 1485.37075) Full Text: DOI OpenURL
Alomari, A. K. Homotopy-Sumudu transforms for solving system of fractional partial differential equations. (English) Zbl 1482.35241 Adv. Difference Equ. 2020, Paper No. 222, 16 p. (2020). MSC: 35R11 26A33 34A08 PDF BibTeX XML Cite \textit{A. K. Alomari}, Adv. Difference Equ. 2020, Paper No. 222, 16 p. (2020; Zbl 1482.35241) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Prakasha, D. G.; Senel, Bilgin; Baskonus, Haci Mehmet Iterative method applied to the fractional nonlinear systems arising in thermoelasticity with Mittag-Leffler kernel. (English) Zbl 07468622 Fractals 28, No. 8, Article ID 2040040, 16 p. (2020). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{W. Gao} et al., Fractals 28, No. 8, Article ID 2040040, 16 p. (2020; Zbl 07468622) Full Text: DOI OpenURL
Veeresha, P.; Prakasha, D. G.; Singh, Jagdev; Khan, Ilyas; Kumar, Devendra Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel. (English) Zbl 1482.35257 Adv. Difference Equ. 2020, Paper No. 174, 17 p. (2020). MSC: 35R11 26A33 47N20 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Adv. Difference Equ. 2020, Paper No. 174, 17 p. (2020; Zbl 1482.35257) Full Text: DOI OpenURL