Ghosh, Surath An analytical approach for the fractional-order hepatitis B model using new operator. (English) Zbl 1519.92254 Int. J. Biomath. 17, No. 1, Article ID 2350008, 22 p. (2024). MSC: 92D30 34A08 PDF BibTeX XML Cite \textit{S. Ghosh}, Int. J. Biomath. 17, No. 1, Article ID 2350008, 22 p. (2024; Zbl 1519.92254) Full Text: DOI
Zhang, Heng; Huang, Bin; Liu, Yuhao; Xiang, Xu; Wu, Zhifeng A new stochastic residual error based homotopy approach for stability analysis of structures with large fluctuation of random parameters. (English) Zbl 07769203 Int. J. Numer. Methods Eng. 124, No. 1, 183-216 (2023). MSC: 74Gxx 74Sxx 74Hxx PDF BibTeX XML Cite \textit{H. Zhang} et al., Int. J. Numer. Methods Eng. 124, No. 1, 183--216 (2023; Zbl 07769203) Full Text: DOI
Pandey, S. C.; Raturi, A. K. On solutions to the arms race model using some techniques of fractional calculus. (English) Zbl 07743256 J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 45-60 (2023). MSC: 26A33 35A99 91B74 PDF BibTeX XML Cite \textit{S. C. Pandey} and \textit{A. K. Raturi}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 45--60 (2023; Zbl 07743256) Full Text: Link
Modanli, Mahmut; Murad, Muhammad Amin Sadiq; Abdulazeez, Sadeq Taha A new computational method-based integral transform for solving time-fractional equation arises in electromagnetic waves. (English) Zbl 07741473 Z. Angew. Math. Phys. 74, No. 5, Paper No. 186, 15 p. (2023). MSC: 65R10 65M25 PDF BibTeX XML Cite \textit{M. Modanli} et al., Z. Angew. Math. Phys. 74, No. 5, Paper No. 186, 15 p. (2023; Zbl 07741473) Full Text: DOI
Narayanamoorthy, Samayan; Thomas, Reetha; Kang, Daekook An approximate mathematical solution for glucose insulin regulatory system using homotopy perturbation method. (English) Zbl 1520.92017 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 1, 1-20 (2023). MSC: 92C30 34A07 34A30 34D10 92C50 PDF BibTeX XML Cite \textit{S. Narayanamoorthy} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 1, 1--20 (2023; Zbl 1520.92017) Full Text: Link Link
Liu, Fenglian; Wang, Shu; Nadeem, Muhammad A fractal solution of Camassa-Holm and Degasperis-Procesi models under two-scale dimension approach. (English) Zbl 07726796 Fractals 31, No. 5, Article ID 2350053, 10 p. (2023). MSC: 35Qxx 34Axx 35Bxx PDF BibTeX XML Cite \textit{F. Liu} et al., Fractals 31, No. 5, Article ID 2350053, 10 p. (2023; Zbl 07726796) Full Text: DOI
Ahmad, Shabir; Saifullah, Sayed Analysis of the seventh-order Caputo fractional KdV equation: applications to the Sawada-Kotera-Ito and Lax equations. (English) Zbl 1519.35351 Commun. Theor. Phys. 75, No. 8, Article ID 085002, 11 p. (2023). MSC: 35R11 35Q53 26A33 PDF BibTeX XML Cite \textit{S. Ahmad} and \textit{S. Saifullah}, Commun. Theor. Phys. 75, No. 8, Article ID 085002, 11 p. (2023; Zbl 1519.35351) Full Text: DOI
Ajibade, Abiodun O.; Kabir, Tafida M. Viscous dissipation effect on steady natural convection Couette flow with convective boundary condition. (English) Zbl 07715040 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 4, 1461-1476 (2023). MSC: 76-XX 80-XX PDF BibTeX XML Cite \textit{A. O. Ajibade} and \textit{T. M. Kabir}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 4, 1461--1476 (2023; Zbl 07715040) Full Text: DOI
Arora, Gourav; Kumar, Rajesh; Mammeri, Youcef Homotopy perturbation and Adomian decomposition methods for condensing coagulation and Lifshitz-Slyzov models. (English) Zbl 1517.45006 GEM. Int. J. Geomath. 14, Paper No. 4, 25 p. (2023). MSC: 45K05 45L05 65R20 PDF BibTeX XML Cite \textit{G. Arora} et al., GEM. Int. J. Geomath. 14, Paper No. 4, 25 p. (2023; Zbl 1517.45006) Full Text: DOI
Liaqat, Muhammad Imran; Khan, Aziz; Alqudah, Manar A.; Abdeljawad, Thabet Adapted homotopy perturbation method with Shehu transform for solving conformable fractional nonlinear partial differential equations. (English) Zbl 1518.35634 Fractals 31, No. 2, Article ID 2340027, 19 p. (2023). MSC: 35R11 35A22 35Q84 PDF BibTeX XML Cite \textit{M. I. Liaqat} et al., Fractals 31, No. 2, Article ID 2340027, 19 p. (2023; Zbl 1518.35634) Full Text: DOI
Liu, Fenglian; Yang, Lei; Nadeem, Muhammad A new fractal transform for the approximate solution of Drinfeld-Sokolov-Wilson model with fractal derivatives. (English) Zbl 1518.35637 Fractals 31, No. 1, Article ID 2350007, 9 p. (2023). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{F. Liu} et al., Fractals 31, No. 1, Article ID 2350007, 9 p. (2023; Zbl 1518.35637) Full Text: DOI
Nadeem, Muhammad; Wahash, Hanan A. Analysis of fractional Kundu-Eckhaus and massive Thirring equations using a hybridization scheme. (English) Zbl 1518.35642 J. Funct. Spaces 2023, Article ID 6704537, 7 p. (2023). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{M. Nadeem} and \textit{H. A. Wahash}, J. Funct. Spaces 2023, Article ID 6704537, 7 p. (2023; Zbl 1518.35642) Full Text: DOI
Kai, Yue; Zhang, Kai; Yin, Zhixiang HTR approach to the asymptotic solutions of supersonic boundary layer problem: the case of slow acoustic waves interacting with streamwise isolated wall roughness. (English) Zbl 1516.76070 Math. Sci., Springer 17, No. 1, 21-30 (2023). MSC: 76N20 76J20 76Q05 76M45 76M20 PDF BibTeX XML Cite \textit{Y. Kai} et al., Math. Sci., Springer 17, No. 1, 21--30 (2023; Zbl 1516.76070) Full Text: DOI
Chergui, Djamila; Merad, Ahcene; Pinelas, Sandra Existence and uniqueness of solutions to higher order fractional partial differential equations with purely integral conditions. (English) Zbl 1510.35372 Analysis, München 43, No. 1, 1-13 (2023). MSC: 35R11 35B45 35L82 44A10 PDF BibTeX XML Cite \textit{D. Chergui} et al., Analysis, München 43, No. 1, 1--13 (2023; Zbl 1510.35372) Full Text: DOI
Khirsariya, Sagar R.; Rao, Snehal B.; Chauhan, Jignesh P. A novel hybrid technique to obtain the solution of generalized fractional-order differential equations. (English) Zbl 07627996 Math. Comput. Simul. 205, 272-290 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. R. Khirsariya} et al., Math. Comput. Simul. 205, 272--290 (2023; Zbl 07627996) Full Text: DOI
He, Ji-Huan; Jiao, Man-Li; Gepreel, Khaled A.; Khan, Yasir Homotopy perturbation method for strongly nonlinear oscillators. (English) Zbl 07619060 Math. Comput. Simul. 204, 243-258 (2023). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{J.-H. He} et al., Math. Comput. Simul. 204, 243--258 (2023; Zbl 07619060) Full Text: DOI
Shokhanda, Rachana; Goswami, Pranay; Nápoles Valdés, Juan E. Analytical solution of generalized diffusion-like equation of fractional order. (English) Zbl 1516.35476 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, Spec. Iss., 168-177 (2022). MSC: 35R11 65M06 PDF BibTeX XML Cite \textit{R. Shokhanda} et al., Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, 168--177 (2022; Zbl 1516.35476) Full Text: DOI
Iqbal, Sajad; Martínez, Francisco; Kaabar, Mohammed K. A.; Samei, Mohammad Esmael A novel Elzaki transform homotopy perturbation method for solving time-fractional non-linear partial differential equations. (English) Zbl 1512.65239 Bound. Value Probl. 2022, Paper No. 91, 23 p. (2022). MSC: 65M99 PDF BibTeX XML Cite \textit{S. Iqbal} et al., Bound. Value Probl. 2022, Paper No. 91, 23 p. (2022; Zbl 1512.65239) Full Text: DOI
Mohapatra, Jugal; Panda, Abhilipsa; Reddy, Narahari Raji A comparative study on some semi-analytical methods for the solutions of fractional partial integro-differential equations. (English) Zbl 07689840 Fract. Differ. Calc. 12, No. 2, 223-233 (2022). MSC: 35R11 35R09 65R20 26A33 PDF BibTeX XML Cite \textit{J. Mohapatra} et al., Fract. Differ. Calc. 12, No. 2, 223--233 (2022; Zbl 07689840) Full Text: DOI
Marinca, Vasile; Ene, Remus Daniel; Marinca, Bogdan Optimal homotopy perturbation method for nonlinear problems with applications. (English) Zbl 07667392 Appl. Comput. Math. 21, No. 2, 123-136 (2022). MSC: 76-XX 65D99 76M25 PDF BibTeX XML Cite \textit{V. Marinca} et al., Appl. Comput. Math. 21, No. 2, 123--136 (2022; Zbl 07667392) Full Text: Link
Xu, Bo; Zhang, Sheng Modified homotopy perturbation method and approximate solutions to a class of local fractional integrodifferential equations. (English) Zbl 1518.65148 Adv. Math. Phys. 2022, Article ID 7087481, 8 p. (2022). MSC: 65R20 45J05 26A33 PDF BibTeX XML Cite \textit{B. Xu} and \textit{S. Zhang}, Adv. Math. Phys. 2022, Article ID 7087481, 8 p. (2022; Zbl 1518.65148) Full Text: DOI
Qayyum, Mubashir; Ismail, Farnaz; Shah, Syed Inayat Ali; Sohail, Muhammad; Asogwa, Kanayo Kenneth; Zohra, Fatema Tuz Analysis of fractional thin film flow of third grade fluid in lifting and drainage via homotopy perturbation procedure. (English) Zbl 1507.76015 Adv. Math. Phys. 2022, Article ID 2847993, 10 p. (2022). MSC: 76A20 76A05 76M45 26A33 PDF BibTeX XML Cite \textit{M. Qayyum} et al., Adv. Math. Phys. 2022, Article ID 2847993, 10 p. (2022; Zbl 1507.76015) Full Text: DOI
Liaqat, Muhammad Imran; Akgül, Ali A novel approach for solving linear and nonlinear time-fractional Schrödinger equations. (English) Zbl 1506.35268 Chaos Solitons Fractals 162, Article ID 112487, 20 p. (2022). MSC: 35R11 35Q55 26A33 PDF BibTeX XML Cite \textit{M. I. Liaqat} and \textit{A. Akgül}, Chaos Solitons Fractals 162, Article ID 112487, 20 p. (2022; Zbl 1506.35268) Full Text: DOI
Liu, Tao Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method. (English) Zbl 1505.76085 Chaos Solitons Fractals 158, Article ID 112007, 9 p. (2022). MSC: 76S05 76M21 PDF BibTeX XML Cite \textit{T. Liu}, Chaos Solitons Fractals 158, Article ID 112007, 9 p. (2022; Zbl 1505.76085) Full Text: DOI
Mohamed, Mohamed. Z.; Yousif, Mohammed; Hamza, Amjad E. Solving nonlinear fractional partial differential equations using the Elzaki transform method and the homotopy perturbation method. (English) Zbl 1502.35195 Abstr. Appl. Anal. 2022, Article ID 4743234, 9 p. (2022). MSC: 35R11 26A33 65M06 PDF BibTeX XML Cite \textit{Mohamed. Z. Mohamed} et al., Abstr. Appl. Anal. 2022, Article ID 4743234, 9 p. (2022; Zbl 1502.35195) Full Text: DOI
Kaur, Ramandeep; Kapuria, Santosh Thermoelastic wave propagation in thin beams under thermal shock loading. (English) Zbl 1505.74117 Appl. Math. Modelling 105, 584-614 (2022). MSC: 74K10 74F05 74J40 PDF BibTeX XML Cite \textit{R. Kaur} and \textit{S. Kapuria}, Appl. Math. Modelling 105, 584--614 (2022; Zbl 1505.74117) Full Text: DOI
Qiu, Zhiping; Jiang, Nan A symplectic homotopy perturbation method for stochastic and interval Hamiltonian systems and its applications in structural dynamic systems. (English) Zbl 1513.65270 Comput. Appl. Math. 41, No. 8, Paper No. 363, 30 p. (2022). MSC: 65L99 65P10 70H15 PDF BibTeX XML Cite \textit{Z. Qiu} and \textit{N. Jiang}, Comput. Appl. Math. 41, No. 8, Paper No. 363, 30 p. (2022; Zbl 1513.65270) Full Text: DOI
Murad, Muhammad Amin Sadiq Modified integral equation combined with the decomposition method for time fractional differential equations with variable coefficients. (English) Zbl 1513.65432 Appl. Math., Ser. B (Engl. Ed.) 37, No. 3, 404-414 (2022). MSC: 65M99 44A10 35B20 26A33 35R11 35K35 PDF BibTeX XML Cite \textit{M. A. S. Murad}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 3, 404--414 (2022; Zbl 1513.65432) Full Text: DOI
Yousefi, Batoul; Baradaran, Hossein A homotopy analysis solution to large deformation of a nanowire based on nonlocal elasticity theory. (English) Zbl 1498.74046 Comput. Appl. Math. 41, No. 7, Paper No. 316, 19 p. (2022). MSC: 74K10 74B99 74G10 PDF BibTeX XML Cite \textit{B. Yousefi} and \textit{H. Baradaran}, Comput. Appl. Math. 41, No. 7, Paper No. 316, 19 p. (2022; Zbl 1498.74046) Full Text: DOI
Achar, Sindhu J.; Baishya, Chandrali Dynamics of modified fractional illicit drug consumption model. (English) Zbl 1495.92055 Palest. J. Math. 11, No. 3, 112-126 (2022). MSC: 92D25 34A08 92-10 PDF BibTeX XML Cite \textit{S. J. Achar} and \textit{C. Baishya}, Palest. J. Math. 11, No. 3, 112--126 (2022; Zbl 1495.92055) Full Text: Link
Akinshilo, A. T.; Davodi, A. G.; Rezazadeh, H.; Sobamowo, G.; Tunç, Cemil Heat transfer and flow of MHD micropolarnanofluid through the porous walls, magnetic fields and thermal radiaton. (English) Zbl 1497.76123 Palest. J. Math. 11, No. 2, 604-616 (2022). MSC: 76W05 76T20 76S05 76M45 80A21 PDF BibTeX XML Cite \textit{A. T. Akinshilo} et al., Palest. J. Math. 11, No. 2, 604--616 (2022; Zbl 1497.76123) Full Text: Link
Shokhanda, Rachana; Goswami, Pranay Solution of generalized fractional Burgers equation with a nonlinear term. (English) Zbl 07584753 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 235, 14 p. (2022). MSC: 34A08 34A34 65M06 26A33 PDF BibTeX XML Cite \textit{R. Shokhanda} and \textit{P. Goswami}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 235, 14 p. (2022; Zbl 07584753) Full Text: DOI
Gupta, Neelam; Kanth, Neel Analytical and numerical calculation of heat transfer inside the hard nip calender. (English) Zbl 1513.74010 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 230, 30 p. (2022). MSC: 74A15 35A22 80M20 35K05 74F05 PDF BibTeX XML Cite \textit{N. Gupta} and \textit{N. Kanth}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 230, 30 p. (2022; Zbl 1513.74010) Full Text: DOI
Zeng, Jiao; Idrees, Asma; Abdo, Mohammed S. A new strategy for the approximate solution of hyperbolic telegraph equations in nonlinear vibration system. (English) Zbl 1497.35314 J. Funct. Spaces 2022, Article ID 8304107, 7 p. (2022). MSC: 35L20 35L71 35A22 PDF BibTeX XML Cite \textit{J. Zeng} et al., J. Funct. Spaces 2022, Article ID 8304107, 7 p. (2022; Zbl 1497.35314) Full Text: DOI
Aljahdaly, Noufe H.; Shah, Rasool; Naeem, Muhammed; Arefin, Mohammad Asif A comparative analysis of fractional space-time advection-dispersion equation via semi-analytical methods. (English) Zbl 1496.35414 J. Funct. Spaces 2022, Article ID 4856002, 11 p. (2022). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{N. H. Aljahdaly} et al., J. Funct. Spaces 2022, Article ID 4856002, 11 p. (2022; Zbl 1496.35414) Full Text: DOI
Karmakar, Somnath; Chakraverty, S. Thermal vibration of nonhomogeneous Euler nanobeam resting on Winkler foundation. (English) Zbl 1521.74091 Eng. Anal. Bound. Elem. 140, 581-591 (2022). MSC: 74H45 74K10 74S99 PDF BibTeX XML Cite \textit{S. Karmakar} and \textit{S. Chakraverty}, Eng. Anal. Bound. Elem. 140, 581--591 (2022; Zbl 1521.74091) Full Text: DOI
Fang, Jiahua; Nadeem, Muhammad; Habib, Mustafa; Karim, Shazia; Wahash, Hanan A. A new iterative method for the approximate solution of Klein-Gordon and sine-Gordon equations. (English) Zbl 1495.35006 J. Funct. Spaces 2022, Article ID 5365810, 9 p. (2022). MSC: 35A22 35C10 35J61 PDF BibTeX XML Cite \textit{J. Fang} et al., J. Funct. Spaces 2022, Article ID 5365810, 9 p. (2022; Zbl 1495.35006) Full Text: DOI
Jani, Haresh P.; Singh, Twinkle R. Study of concentration arising in longitudinal dispersion phenomenon by aboodh transform homotopy perturbation method. (English) Zbl 07549892 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 152, 10 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{H. P. Jani} and \textit{T. R. Singh}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 152, 10 p. (2022; Zbl 07549892) Full Text: DOI
Umadevi, R.; Venugopal, K.; Jeyabarathi, P.; Rajendran, L.; Abukhaled, M. Analytical study of nonlinear roll motion of ships: a homotopy perturbation approach. (English) Zbl 1489.76003 Palest. J. Math. 11, No. 1, 316-325 (2022). MSC: 76-10 34A25 65L99 PDF BibTeX XML Cite \textit{R. Umadevi} et al., Palest. J. Math. 11, No. 1, 316--325 (2022; Zbl 1489.76003) Full Text: Link
Kumar, Manoj A hybrid method to solve time-space fractional PDEs with proportional delay. (English) Zbl 07541682 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 72, 15 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{M. Kumar}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 72, 15 p. (2022; Zbl 07541682) Full Text: DOI
Sunthrayuth, Pongsakorn; Alyousef, Haifa A.; El-Tantawy, S. A.; Khan, Adnan; Wyal, Noorolhuda Solving fractional-order diffusion equations in a plasma and fluids via a novel transform. (English) Zbl 1491.35103 J. Funct. Spaces 2022, Article ID 1899130, 19 p. (2022). MSC: 35C05 35A22 35R11 PDF BibTeX XML Cite \textit{P. Sunthrayuth} et al., J. Funct. Spaces 2022, Article ID 1899130, 19 p. (2022; Zbl 1491.35103) Full Text: DOI
Jyoti; Singh, Mandeep An iterative technique based on HPM for a class of one dimensional Bratu’s type problem. (English) Zbl 07538476 Math. Comput. Simul. 200, 50-64 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Jyoti} and \textit{M. Singh}, Math. Comput. Simul. 200, 50--64 (2022; Zbl 07538476) Full Text: DOI
Agarwal, Reshu An analytical study of non-Newtonian visco-inelastic fluid flow between two stretchable rotating disks. (English) Zbl 1512.76010 Palest. J. Math. 11, Spec. Iss. I, 184-201 (2022). MSC: 76A10 76U05 76M45 PDF BibTeX XML Cite \textit{R. Agarwal}, Palest. J. Math. 11, 184--201 (2022; Zbl 1512.76010) Full Text: Link
Panda, A.; Santra, S.; Mohapatra, J. Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. (English) Zbl 1490.35523 J. Appl. Math. Comput. 68, No. 3, 2065-2082 (2022). MSC: 35R11 35R09 35A22 65R20 26A33 PDF BibTeX XML Cite \textit{A. Panda} et al., J. Appl. Math. Comput. 68, No. 3, 2065--2082 (2022; Zbl 1490.35523) Full Text: DOI
Noeiaghdam, Samad; Fariborzi Araghi, Mohammad Ali; Sidorov, Denis Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method. (English) Zbl 1492.65367 J. Comput. Appl. Math. 411, Article ID 114226, 13 p. (2022). MSC: 65R20 PDF BibTeX XML Cite \textit{S. Noeiaghdam} et al., J. Comput. Appl. Math. 411, Article ID 114226, 13 p. (2022; Zbl 1492.65367) Full Text: DOI
Tripathi, Rajnee; Mishra, Hradyesh Kumar Application of homotopy perturbation method using Laplace transform intended for determining the temperature in the heterogeneous casting-mould system. (English) Zbl 1486.35110 Differ. Equ. Dyn. Syst. 30, No. 2, 301-314 (2022). MSC: 35C05 35A22 35K20 PDF BibTeX XML Cite \textit{R. Tripathi} and \textit{H. K. Mishra}, Differ. Equ. Dyn. Syst. 30, No. 2, 301--314 (2022; Zbl 1486.35110) Full Text: DOI
Arfan, Muhammad; Shah, Kamal; Ullah, Aman; Salahshour, Soheil; Ahmadian, Ali; Ferrara, Massimiliano A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. (English) Zbl 1492.35419 Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 315-338 (2022). MSC: 35R13 35R11 26A33 34A07 35L05 PDF BibTeX XML Cite \textit{M. Arfan} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 315--338 (2022; Zbl 1492.35419) Full Text: DOI
Rehman, Gohar; Qin, Shengwu; Ain, Qura Tul; Ullah, Zaheen; Zaheer, Muhammad; Talib, Muhammad Afnan; Mehmood, Qaiser; Baloch, Muhammad Yousuf Jat; ur Rahman, Naveed A study of moisture content in unsaturated porous medium by using homotopy perturbation method (HPM) and variational iteration method (VIM). (English) Zbl 1484.76077 GEM. Int. J. Geomath. 13, Paper No. 3, 10 p. (2022). MSC: 76S05 76M30 76M45 86A05 PDF BibTeX XML Cite \textit{G. Rehman} et al., GEM. Int. J. Geomath. 13, Paper No. 3, 10 p. (2022; Zbl 1484.76077) Full Text: DOI
Alesemi, Meshari; Iqbal, Naveed; Abdo, Mohammed S. Novel investigation of fractional-order Cauchy-reaction diffusion equation involving Caputo-Fabrizio operator. (English) Zbl 1485.35372 J. Funct. Spaces 2022, Article ID 4284060, 14 p. (2022). MSC: 35R11 35A22 35K15 35K59 PDF BibTeX XML Cite \textit{M. Alesemi} et al., J. Funct. Spaces 2022, Article ID 4284060, 14 p. (2022; Zbl 1485.35372) Full Text: DOI
El-Dib, Yusry O. The damping Helmholtz-Rayleigh-Duffing oscillator with the non-perturbative approach. (English) Zbl 07478814 Math. Comput. Simul. 194, 552-562 (2022). MSC: 82-XX 76-XX PDF BibTeX XML Cite \textit{Y. O. El-Dib}, Math. Comput. Simul. 194, 552--562 (2022; Zbl 07478814) Full Text: DOI
Dubey, Shweta; Chakraverty, S. Homotopy perturbation method for solving fuzzy fractional heat-conduction equation. (English) Zbl 1480.35403 Allahviranloo, Tofigh (ed.) et al., Advances in fuzzy integral and differential equations. Cham: Springer. Stud. Fuzziness Soft Comput. 412, 159-169 (2022). MSC: 35R13 35R11 35K05 35K15 PDF BibTeX XML Cite \textit{S. Dubey} and \textit{S. Chakraverty}, Stud. Fuzziness Soft Comput. 412, 159--169 (2022; Zbl 1480.35403) Full Text: DOI
Xia, Yuxin; Han, Bo; Gu, Ruixue An accelerated homotopy-perturbation-Kaczmarz method for solving nonlinear inverse problems. (English) Zbl 1483.65085 J. Comput. Appl. Math. 404, Article ID 113897, 20 p. (2022). MSC: 65J15 65J22 PDF BibTeX XML Cite \textit{Y. Xia} et al., J. Comput. Appl. Math. 404, Article ID 113897, 20 p. (2022; Zbl 1483.65085) Full Text: DOI
Fatima, Nahid; Dhariwal, Monika Solutions of differential equations for prediction of COVID-19 cases by homotopy perturbation method. (English) Zbl 1475.92160 Saba, Tanzila (ed.) et al., Intelligent computing applications for COVID-19. Predictions, diagnosis, and prevention. Boca Raton, FL: CRC Press. Innov. Health Inform. Healthc.: Using Artif. Intell. Smart Comput., 49-65 (2022). MSC: 92D30 65H20 PDF BibTeX XML Cite \textit{N. Fatima} and \textit{M. Dhariwal}, in: Intelligent computing applications for COVID-19. Predictions, diagnosis, and prevention. Boca Raton, FL: CRC Press. 49--65 (2022; Zbl 1475.92160) Full Text: DOI
Ajibade, Abiodun O.; Umar, Ayuba M. Effect of wall conduction on steady natural convection Couette flow in a vertical channel. (English) Zbl 1520.76079 Meccanica 56, No. 9, 2257-2267 (2021). MSC: 76R10 76M45 80A19 PDF BibTeX XML Cite \textit{A. O. Ajibade} and \textit{A. M. Umar}, Meccanica 56, No. 9, 2257--2267 (2021; Zbl 1520.76079) Full Text: DOI
Areshi, Mounirah; Zidan, A. M.; Shah, Rasool; Nonlaopon, Kamsing A modified techniques of fractional-order Cauchy-reaction diffusion equation via Shehu transform. (English) Zbl 1510.35364 J. Funct. Spaces 2021, Article ID 5726822, 15 p. (2021). MSC: 35R11 35K57 PDF BibTeX XML Cite \textit{M. Areshi} et al., J. Funct. Spaces 2021, Article ID 5726822, 15 p. (2021; Zbl 1510.35364) Full Text: DOI
Faydaoğlu, Ş.; Öziş, T. Periodic solutions for certain non-smooth oscillators with high nonlinearities. (English) Zbl 1506.34052 Appl. Comput. Math. 20, No. 3, 366-380 (2021). MSC: 34C15 34A45 34C25 PDF BibTeX XML Cite \textit{Ş. Faydaoğlu} and \textit{T. Öziş}, Appl. Comput. Math. 20, No. 3, 366--380 (2021; Zbl 1506.34052) Full Text: Link
Batra, Luckshay; Taneja, H. C. Approximate-analytical solution to the information measure’s based quanto option pricing model. (English) Zbl 1498.91428 Chaos Solitons Fractals 153, Part 1, Article ID 111493, 10 p. (2021). MSC: 91G20 PDF BibTeX XML Cite \textit{L. Batra} and \textit{H. C. Taneja}, Chaos Solitons Fractals 153, Part 1, Article ID 111493, 10 p. (2021; Zbl 1498.91428) Full Text: DOI
Alqahtani, Obaid Analytical solution of non-linear fractional diffusion equation. (English) Zbl 1494.35154 Adv. Difference Equ. 2021, Paper No. 327, 14 p. (2021). MSC: 35R11 35A25 PDF BibTeX XML Cite \textit{O. Alqahtani}, Adv. Difference Equ. 2021, Paper No. 327, 14 p. (2021; Zbl 1494.35154) Full Text: DOI
Batiha, Belal; Ghanim, Firas Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation. (English) Zbl 1491.65074 Bul. Acad. Științe Repub. Mold., Mat. 2021, No. 3(97), 21-29 (2021). MSC: 65L99 PDF BibTeX XML Cite \textit{B. Batiha} and \textit{F. Ghanim}, Bul. Acad. Științe Repub. Mold., Mat. 2021, No. 3(97), 21--29 (2021; Zbl 1491.65074) Full Text: Link
Ajibade, A. O.; Onoja, T. U. Entropy generation due to natural convection Couette flow of viscous incompressible fluids in a vertical parallel porous channel. (English) Zbl 1494.76082 J. Niger. Math. Soc. 40, No. 3, 183-204 (2021). MSC: 76R10 76S05 76D05 76M45 80A19 PDF BibTeX XML Cite \textit{A. O. Ajibade} and \textit{T. U. Onoja}, J. Niger. Math. Soc. 40, No. 3, 183--204 (2021; Zbl 1494.76082) Full Text: Link
He, Ji-Huan; El-Dib, Yusry O. A tutorial introduction to the two-scale fractal calculus and its application to the fractal Zhiber-Shabat oscillator. (English) Zbl 1506.35200 Fractals 29, No. 8, Article ID 2150268, 9 p. (2021). MSC: 35Q53 28A80 35B05 35B35 35B20 35-01 34A34 34C15 PDF BibTeX XML Cite \textit{J.-H. He} and \textit{Y. O. El-Dib}, Fractals 29, No. 8, Article ID 2150268, 9 p. (2021; Zbl 1506.35200) Full Text: DOI
Lu, Junfeng; Sun, Yi Numerical approaches to time fractional Boussinesq-Burgers equations. (English) Zbl 1506.35201 Fractals 29, No. 8, Article ID 2150244, 10 p. (2021). MSC: 35Q53 35Q35 35A22 35B20 26A33 35R11 65M99 PDF BibTeX XML Cite \textit{J. Lu} and \textit{Y. Sun}, Fractals 29, No. 8, Article ID 2150244, 10 p. (2021; Zbl 1506.35201) Full Text: DOI
Sene, Ndolane Fractional advection-dispersion equation described by the Caputo left generalized fractional derivative. (English) Zbl 1490.35525 Palest. J. Math. 10, No. 2, 562-579 (2021). MSC: 35R11 35A22 35K57 76R50 PDF BibTeX XML Cite \textit{N. Sene}, Palest. J. Math. 10, No. 2, 562--579 (2021; Zbl 1490.35525) Full Text: Link
Akinyemi, Lanre; Şenol, Mehmet; Huseen, Shaheed N. Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. (English) Zbl 1487.65129 Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021). MSC: 65M25 65H20 35R11 26A33 PDF BibTeX XML Cite \textit{L. Akinyemi} et al., Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021; Zbl 1487.65129) Full Text: DOI
Pareek, Neelu; Gupta, Arvind An analytical approach to the fractional biological population model via exponential law and Mittag-Leffler kernel. (English) Zbl 1499.35591 J. Rajasthan Acad. Phys. Sci. 20, No. 1-2, 57-72 (2021). MSC: 35Q92 35R11 65M99 PDF BibTeX XML Cite \textit{N. Pareek} and \textit{A. Gupta}, J. Rajasthan Acad. Phys. Sci. 20, No. 1--2, 57--72 (2021; Zbl 1499.35591) Full Text: Link
Derakhshan, Mohammadhossein Analytical solutions for the equal width equations containing generalized fractional derivative using the efficient combined method. (English) Zbl 1491.35430 Int. J. Differ. Equ. 2021, Article ID 7066398, 14 p. (2021). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{M. Derakhshan}, Int. J. Differ. Equ. 2021, Article ID 7066398, 14 p. (2021; Zbl 1491.35430) Full Text: DOI
Prakash, Amit; Kumar, Ajay; Baskonus, Haci Mehmet; Kumar, Ashok Numerical analysis of nonlinear fractional Klein-Fock-Gordon equation arising in quantum field theory via Caputo-Fabrizio fractional operator. (English) Zbl 1486.35446 Math. Sci., Springer 15, No. 3, 269-281 (2021). MSC: 35R11 PDF BibTeX XML Cite \textit{A. Prakash} et al., Math. Sci., Springer 15, No. 3, 269--281 (2021; Zbl 1486.35446) Full Text: DOI
Hou, Jinjiao; Niu, Jing; Xu, Minqiang; Ngolo, Welreach A new numerical method to solve nonlinear Volterra-Fredholm integro-differential equations. (English) Zbl 1492.65361 Math. Model. Anal. 26, No. 3, 469-478 (2021). MSC: 65R20 45G10 45D05 45B05 PDF BibTeX XML Cite \textit{J. Hou} et al., Math. Model. Anal. 26, No. 3, 469--478 (2021; Zbl 1492.65361) Full Text: DOI
Shah, Kunjan; Patel, Himanshu A hybrid solution approach to the Korteweg-de Vries and Burgers’ equations. (English) Zbl 1499.65601 Math. Appl. (Warsaw) 49, No. 2, 159-170 (2021). MSC: 65M99 35Q53 44A10 PDF BibTeX XML Cite \textit{K. Shah} and \textit{H. Patel}, Math. Appl. (Warsaw) 49, No. 2, 159--170 (2021; Zbl 1499.65601) Full Text: DOI
Goyal, Manish; Prakash, Amit; Gupta, Shivangi An efficient perturbation Sumudu transform technique for the time-fractional vibration equation with a memory dependent fractional derivative in Liouville-Caputo sense. (English) Zbl 1496.74064 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 156, 18 p. (2021). MSC: 74H45 74K15 74S40 74H10 26A33 PDF BibTeX XML Cite \textit{M. Goyal} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 156, 18 p. (2021; Zbl 1496.74064) Full Text: DOI
Shah, Nehad Ali; El-Zahar, Essam R.; Aljoufi, Mona D.; Chung, Jae Dong An efficient approach for solution of fractional-order Helmholtz equations. (English) Zbl 1485.35407 Adv. Difference Equ. 2021, Paper No. 14, 15 p. (2021). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{N. A. Shah} et al., Adv. Difference Equ. 2021, Paper No. 14, 15 p. (2021; Zbl 1485.35407) Full Text: DOI
Surabhi, K. M.; Ravikanti, Arpitha; Srikanth, D.; Srinivasacharya, D. Couple stress nanofluid flow through a bifurcated artery – application of catheterization process. (English) Zbl 1499.92024 Appl. Math., Ser. B (Engl. Ed.) 36, No. 4, 492-511 (2021). MSC: 92C35 35Q35 35Q30 76A05 76Z05 PDF BibTeX XML Cite \textit{K. M. Surabhi} et al., Appl. Math., Ser. B (Engl. Ed.) 36, No. 4, 492--511 (2021; Zbl 1499.92024) Full Text: DOI
Baishya, Chandrali Dynamics of fractional Holling type-II predator-prey model with prey refuge and additional food to predator. (English) Zbl 1478.92147 J. Appl. Nonlinear Dyn. 10, No. 2, 315-328 (2021). MSC: 92D25 34A08 37N25 PDF BibTeX XML Cite \textit{C. Baishya}, J. Appl. Nonlinear Dyn. 10, No. 2, 315--328 (2021; Zbl 1478.92147) Full Text: DOI
Swain, B. K.; Das, M.; Dash, G. C. Heat transfer of MHD channel flow of viscoelastic (PTT) fluid. (English) Zbl 1510.80010 Paikray, Susanta Kumar (ed.) et al., New trends in applied analysis and computational mathematics. Proceedings of the international conference on advances in mathematics and computing, ICAMC 2020, Odisha, India, February 7–8, 2020. Singapore: Springer. Adv. Intell. Syst. Comput. 1356, 45-57 (2021). MSC: 80A19 76A05 76S05 35B20 35Q79 35Q35 PDF BibTeX XML Cite \textit{B. K. Swain} et al., Adv. Intell. Syst. Comput. 1356, 45--57 (2021; Zbl 1510.80010) Full Text: DOI
Wang, Kang-Le; Wang, Hao A novel variational approach for fractal Ginzburg-Landau equation. (English) Zbl 1496.65195 Fractals 29, No. 7, Article ID 2150205, 7 p. (2021). MSC: 65M99 28A80 26A33 35R11 35A15 35Q56 PDF BibTeX XML Cite \textit{K.-L. Wang} and \textit{H. Wang}, Fractals 29, No. 7, Article ID 2150205, 7 p. (2021; Zbl 1496.65195) Full Text: DOI
Chu, Yu-Ming; Shah, Nehad Ali; Ahmad, Hijaz; Chung, Jae Dong; Khaled, S. M. A comparative study of semi-analytical methods for solving fractional-order Cauchy reaction-diffusion equation. (English) Zbl 07467680 Fractals 29, No. 6, Article ID 2150143, 15 p. (2021). MSC: 65Mxx 45-XX PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Fractals 29, No. 6, Article ID 2150143, 15 p. (2021; Zbl 07467680) Full Text: DOI
Yao, Shao-Wen A rigid pendulum in a microgravity: some special properties and a two-scale fractal model. (English) Zbl 1482.35260 Fractals 29, No. 6, Article ID 2150127, 7 p. (2021). MSC: 35R11 35L71 PDF BibTeX XML Cite \textit{S.-W. Yao}, Fractals 29, No. 6, Article ID 2150127, 7 p. (2021; Zbl 1482.35260) Full Text: DOI
He, Chun-Hui; Liu, Chao; He, Ji-Huan; Gepreel, Khaled A. Low frequency property of a fractal vibration model for a concrete beam. (English) Zbl 1482.74083 Fractals 29, No. 5, Article ID 2150117, 7 p. (2021). MSC: 74H45 74K10 74F10 74H10 28A80 PDF BibTeX XML Cite \textit{C.-H. He} et al., Fractals 29, No. 5, Article ID 2150117, 7 p. (2021; Zbl 1482.74083) Full Text: DOI
Zhao, Minghao; Ma, Zelong; Lu, Chunsheng; Zhang, Qiaoyun Application of the homotopy analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber. (Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber.) (English) Zbl 1480.74075 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 5, 665-676 (2021). MSC: 74F15 74G10 78A55 PDF BibTeX XML Cite \textit{M. Zhao} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 5, 665--676 (2021; Zbl 1480.74075) Full Text: DOI
Ray, Santanu Saha; Giri, Subodha New soliton solutions of the time fractional Drinfeld-Sokolov-Satsuma-Hirota system in dispersive water waves. (English) Zbl 1484.35130 Math. Methods Appl. Sci. 44, No. 18, 14217-14235 (2021). MSC: 35C08 35R11 26A33 34A08 PDF BibTeX XML Cite \textit{S. S. Ray} and \textit{S. Giri}, Math. Methods Appl. Sci. 44, No. 18, 14217--14235 (2021; Zbl 1484.35130) Full Text: DOI
Das, Anupam; Hazarika, Bipan; Saikia, Nipen; Mahato, Nihar Kumar Iterative method to find approximate solution of system of integral equations via generalized Meir-Keeler condensing operator. (English) Zbl 07438689 São Paulo J. Math. Sci. 15, No. 2, 957-972 (2021). MSC: 47H09 46B45 47H08 47H10 PDF BibTeX XML Cite \textit{A. Das} et al., São Paulo J. Math. Sci. 15, No. 2, 957--972 (2021; Zbl 07438689) Full Text: DOI
Biswal, Uddhaba; Chakraverty, S.; Ojha, B. K. Application of homotopy perturbation method in inverse analysis of Jeffery-Hamel flow problem. (English) Zbl 1494.76059 Eur. J. Mech., B, Fluids 86, 107-112 (2021). MSC: 76M21 76M45 PDF BibTeX XML Cite \textit{U. Biswal} et al., Eur. J. Mech., B, Fluids 86, 107--112 (2021; Zbl 1494.76059) Full Text: DOI
Li, Meng Study on dynamic characteristics of the cubic nonlinear economic system with time-varying parameters. (English) Zbl 1479.35308 Math. Methods Appl. Sci. 44, No. 16, 12236-12243 (2021). MSC: 35J25 35Q35 PDF BibTeX XML Cite \textit{M. Li}, Math. Methods Appl. Sci. 44, No. 16, 12236--12243 (2021; Zbl 1479.35308) Full Text: DOI
Ahmad, Shabir; Ullah, Aman; Akgül, Ali; de la Sen, Manuel A novel homotopy perturbation method with applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel. (English) Zbl 1475.35380 J. Funct. Spaces 2021, Article ID 8770488, 11 p. (2021). MSC: 35R11 35A22 35Q53 PDF BibTeX XML Cite \textit{S. Ahmad} et al., J. Funct. Spaces 2021, Article ID 8770488, 11 p. (2021; Zbl 1475.35380) Full Text: DOI
Doeva, Olga; Masjedi, Pedram Khaneh; Weaver, Paul M. Static analysis of composite beams on variable stiffness elastic foundations by the homotopy analysis method. (English) Zbl 1484.74046 Acta Mech. 232, No. 10, 4169-4188 (2021). MSC: 74K10 74E30 74G10 PDF BibTeX XML Cite \textit{O. Doeva} et al., Acta Mech. 232, No. 10, 4169--4188 (2021; Zbl 1484.74046) Full Text: DOI
Putri, Endah R. M.; Mardianto, Lutfi; Hakam, Amirul; Imron, Chairul; Susanto, Hadi Removing non-smoothness in solving Black-Scholes equation using a perturbation method. (English) Zbl 07409884 Phys. Lett., A 402, Article ID 127367, 9 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{E. R. M. Putri} et al., Phys. Lett., A 402, Article ID 127367, 9 p. (2021; Zbl 07409884) Full Text: DOI arXiv
Jia, Honggang; Nie, Yufeng; Zhao, Yanmin Approximate solution of time fractional Fisher nonlinear population diffusion model. (Chinese. English summary) Zbl 1488.35562 Math. Appl. 34, No. 3, 536-542 (2021). MSC: 35R11 35K57 92D25 PDF BibTeX XML Cite \textit{H. Jia} et al., Math. Appl. 34, No. 3, 536--542 (2021; Zbl 1488.35562)
Hariharan, G.; Padma, S. Wavelet method for steady state immobilized enzyme kinetic model: an operational matrix approach. (English) Zbl 1471.92138 J. Math. Chem. 59, No. 9, 1994-2008 (2021). MSC: 92C45 92C47 PDF BibTeX XML Cite \textit{G. Hariharan} and \textit{S. Padma}, J. Math. Chem. 59, No. 9, 1994--2008 (2021; Zbl 1471.92138) Full Text: DOI
Goswami, Amit; Rathore, Sushila; Singh, Jagdev; Kumar, Devendra Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. (English) Zbl 1477.35004 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3589-3610 (2021). MSC: 35A22 26A33 35Q55 35R11 PDF BibTeX XML Cite \textit{A. Goswami} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3589--3610 (2021; Zbl 1477.35004) Full Text: DOI
Xia, Yuxin; Han, Bo; Fu, Zhenwu An accelerated homotopy perturbation iteration for nonlinear ill-posed problems in Banach spaces with uniformly convex penalty. (English) Zbl 1481.65086 Inverse Probl. 37, No. 10, Article ID 105003, 28 p. (2021). MSC: 65J20 65J15 PDF BibTeX XML Cite \textit{Y. Xia} et al., Inverse Probl. 37, No. 10, Article ID 105003, 28 p. (2021; Zbl 1481.65086) Full Text: DOI
Saha, Dipankar; Sen, Mausumi Existence criteria and solution search by the analytic technique of functional integral equation. (English) Zbl 1473.45007 J. Integral Equations Appl. 33, No. 2, 247-257 (2021). MSC: 45G05 45G10 PDF BibTeX XML Cite \textit{D. Saha} and \textit{M. Sen}, J. Integral Equations Appl. 33, No. 2, 247--257 (2021; Zbl 1473.45007) Full Text: DOI
Akinaga, T.; Harvey-Ball, T. M.; Itano, T.; Generalis, S. C.; Aifantis, E. C. On the problem of resonant incompressible flow in ventilated double glazing. (English) Zbl 1472.76042 Lobachevskii J. Math. 42, No. 8, 1753-1767 (2021). MSC: 76E06 76R10 76M99 76A05 80A19 PDF BibTeX XML Cite \textit{T. Akinaga} et al., Lobachevskii J. Math. 42, No. 8, 1753--1767 (2021; Zbl 1472.76042) Full Text: DOI
Prasad, K. M.; Yasa, P. R. Micropolar fluid flow in tapering stenosed arteries having permeable walls. (English) Zbl 1471.76097 Malays. J. Math. Sci. 15, No. 1, 147-160 (2021). MSC: 76Z05 76T20 76M45 80A19 92C35 PDF BibTeX XML Cite \textit{K. M. Prasad} and \textit{P. R. Yasa}, Malays. J. Math. Sci. 15, No. 1, 147--160 (2021; Zbl 1471.76097) Full Text: Link
Chou, So-Hsiang; Attanayake, C.; Thapa, C. A homotopy perturbation method for a class of truly nonlinear oscillators. (English) Zbl 1491.34052 Ann. Math. Sci. Appl. 6, No. 1, 3-23 (2021). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 34C15 34E10 33F05 PDF BibTeX XML Cite \textit{S.-H. Chou} et al., Ann. Math. Sci. Appl. 6, No. 1, 3--23 (2021; Zbl 1491.34052) Full Text: DOI
Ashrafi, Tareq Ghanbari; Hoseinzadeh, Siamak; Sohani, Ali; Shahverdian, Mohammad Hassan Applying homotopy perturbation method to provide an analytical solution for Newtonian fluid flow on a porous flat plate. (English) Zbl 1471.76070 Math. Methods Appl. Sci. 44, No. 8, 7017-7030 (2021). MSC: 76S05 76M45 PDF BibTeX XML Cite \textit{T. G. Ashrafi} et al., Math. Methods Appl. Sci. 44, No. 8, 7017--7030 (2021; Zbl 1471.76070) Full Text: DOI
Tong, Shanshan; Wang, Wei; Han, Bo Accelerated homotopy perturbation iteration method for a non-smooth nonlinear ill-posed problem. (English) Zbl 1472.65067 Appl. Numer. Math. 169, 122-145 (2021). MSC: 65J20 PDF BibTeX XML Cite \textit{S. Tong} et al., Appl. Numer. Math. 169, 122--145 (2021; Zbl 1472.65067) Full Text: DOI
Khader, Maisa; DarAssi, Mahmoud H. Residual power series method for solving nonlinear reaction-diffusion-convection problems. (English) Zbl 1488.35314 Bol. Soc. Parana. Mat. (3) 39, No. 3, 177-188 (2021). MSC: 35K59 35K57 35C10 PDF BibTeX XML Cite \textit{M. Khader} and \textit{M. H. DarAssi}, Bol. Soc. Parana. Mat. (3) 39, No. 3, 177--188 (2021; Zbl 1488.35314) Full Text: Link
Aydın, Derya; Şahin, Serpil Solutions of linear parabolic equations with homotopy perturbation method. (English) Zbl 1462.35018 Palest. J. Math. 10, No. 1, 120-127 (2021). MSC: 35A35 35K05 65M06 PDF BibTeX XML Cite \textit{D. Aydın} and \textit{S. Şahin}, Palest. J. Math. 10, No. 1, 120--127 (2021; Zbl 1462.35018) Full Text: Link
Yu, Qiang A hierarchical wavelet method for nonlinear bending of materially and geometrically anisotropic thin plate. (English) Zbl 1452.74074 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105498, 20 p. (2021). MSC: 74K20 74G10 74E10 PDF BibTeX XML Cite \textit{Q. Yu}, Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105498, 20 p. (2021; Zbl 1452.74074) Full Text: DOI
Kaur, Gurmeet; Singh, Randhir; Singh, Mehakpreet; Kumar, Jitendra; Matsoukas, Themis Reply to: “Comment on: “Analytical approach for solving population balances: a homotopy perturbation method””. (English) Zbl 1519.92201 J. Phys. A, Math. Theor. 53, No. 38, Article ID 388002, 3 p. (2020). MSC: 92D25 35Q92 35R09 45J05 PDF BibTeX XML Cite \textit{G. Kaur} et al., J. Phys. A, Math. Theor. 53, No. 38, Article ID 388002, 3 p. (2020; Zbl 1519.92201) Full Text: DOI