Zhang, Hao; Dong, Yidao; Zheng, Shichao; Deng, Xiaogang Analysis of discontinuity detectors and hybrid WCNS schemes based on waveform recognition. (English) Zbl 07738858 Commun. Comput. Phys. 34, No. 2, 418-455 (2023). MSC: 65M06 65M12 35L65 35L04 PDF BibTeX XML Cite \textit{H. Zhang} et al., Commun. Comput. Phys. 34, No. 2, 418--455 (2023; Zbl 07738858) Full Text: DOI
Priyadarshana, S.; Mohapatra, J. Weighted variable based numerical scheme for time-lagged semilinear parabolic problems including small parameter. (English) Zbl 07734336 J. Appl. Math. Comput. 69, No. 3, 2439-2463 (2023). MSC: 65-XX 35K58 65M06 65M12 PDF BibTeX XML Cite \textit{S. Priyadarshana} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 3, 2439--2463 (2023; Zbl 07734336) Full Text: DOI
Abedian, Rooholah A modified high-order symmetrical WENO scheme for hyperbolic conservation laws. (English) Zbl 07715042 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 4, 1521-1538 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{R. Abedian}, Int. J. Nonlinear Sci. Numer. Simul. 24, No. 4, 1521--1538 (2023; Zbl 07715042) Full Text: DOI
Sharma, Amit; Rai, Pratima Analysis of a hybrid numerical scheme for singularly perturbed convection-diffusion type delay problems. (English) Zbl 07714939 Int. J. Comput. Methods 20, No. 1, Article ID 2250032, 28 p. (2023). MSC: 65L11 65L12 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, Int. J. Comput. Methods 20, No. 1, Article ID 2250032, 28 p. (2023; Zbl 07714939) Full Text: DOI
Wan, Yifei; Xia, Yinhua A hybrid WENO scheme for steady Euler equations in curved geometries on Cartesian grids. (English) Zbl 1514.65153 Commun. Comput. Phys. 33, No. 5, 1270-1331 (2023). MSC: 65N06 35L65 76M20 PDF BibTeX XML Cite \textit{Y. Wan} and \textit{Y. Xia}, Commun. Comput. Phys. 33, No. 5, 1270--1331 (2023; Zbl 1514.65153) Full Text: DOI
Sharma, Amit; Rai, Pratima Uniformly convergent hybrid numerical scheme for singularly perturbed turning point problems with delay. (English) Zbl 07705610 Int. J. Comput. Math. 100, No. 5, 1052-1077 (2023). MSC: 65L11 65L12 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, Int. J. Comput. Math. 100, No. 5, 1052--1077 (2023; Zbl 07705610) Full Text: DOI
Nhan, Thái Anh; Vulanović, Relja Analysis of a second-order hybrid scheme on Bakhvalov-type meshes: the truncation-error and barrier-function approach. (English) Zbl 07699031 Appl. Numer. Math. 186, 84-99 (2023). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{T. A. Nhan} and \textit{R. Vulanović}, Appl. Numer. Math. 186, 84--99 (2023; Zbl 07699031) Full Text: DOI
Zhang, Xin; Huang, Lintao; Qin, Xueyu; Qu, Feng; Yan, Chao An efficient finite difference IFWENO-THINC hybrid scheme for capturing discontinuities. (English) Zbl 1511.65089 Appl. Math. Comput. 446, Article ID 127889, 21 p. (2023). MSC: 65M06 35L03 35L65 PDF BibTeX XML Cite \textit{X. Zhang} et al., Appl. Math. Comput. 446, Article ID 127889, 21 p. (2023; Zbl 1511.65089) Full Text: DOI
Wang, Zhenming; Zhu, Jun; Wang, Chunwu; Zhao, Ning An efficient hybrid multi-resolution WCNS scheme for solving compressible flows. (English) Zbl 07652797 J. Comput. Phys. 477, Article ID 111877, 22 p. (2023). MSC: 65Mxx 76Mxx 35Lxx PDF BibTeX XML Cite \textit{Z. Wang} et al., J. Comput. Phys. 477, Article ID 111877, 22 p. (2023; Zbl 07652797) Full Text: DOI
Hasan, Md Mahmudul; Zeng, Xianyi A central compact hybrid-variable method with spectral-like resolution: one-dimensional case. (English) Zbl 1498.65135 J. Comput. Appl. Math. 421, Article ID 114894, 24 p. (2023). MSC: 65M06 65M08 65M22 PDF BibTeX XML Cite \textit{M. M. Hasan} and \textit{X. Zeng}, J. Comput. Appl. Math. 421, Article ID 114894, 24 p. (2023; Zbl 1498.65135) Full Text: DOI
Yadav, Swati; Rai, Pratima An almost second order parameter uniform scheme for 2D singularly perturbed boundary turning point problem. (English) Zbl 1501.65044 Calcolo 59, No. 4, Paper No. 44, 27 p. (2022). MSC: 65M06 65N06 65N50 65M12 65M15 35B25 PDF BibTeX XML Cite \textit{S. Yadav} and \textit{P. Rai}, Calcolo 59, No. 4, Paper No. 44, 27 p. (2022; Zbl 1501.65044) Full Text: DOI
Sharma, Amit; Rai, Pratima A hybrid numerical scheme for singular perturbation delay problems with integral boundary condition. (English) Zbl 1497.65114 J. Appl. Math. Comput. 68, No. 5, 3445-3472 (2022). MSC: 65L11 65L12 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{P. Rai}, J. Appl. Math. Comput. 68, No. 5, 3445--3472 (2022; Zbl 1497.65114) Full Text: DOI
Nee, Alexander; Chamkha, Ali J. Interaction of radiation and turbulent natural convection: a pseudo-direct numerical study. (English) Zbl 1513.80004 Adv. Appl. Math. Mech. 14, No. 6, 1567-1586 (2022). MSC: 80A21 80A19 76F65 76R10 76M28 80M20 PDF BibTeX XML Cite \textit{A. Nee} and \textit{A. J. Chamkha}, Adv. Appl. Math. Mech. 14, No. 6, 1567--1586 (2022; Zbl 1513.80004) Full Text: DOI
Govindarao, L.; Mohapatra, J. A numerical scheme to solve mixed parabolic-elliptic problem involving singular perturbation. (English) Zbl 1513.65286 Int. J. Comput. Math. 99, No. 10, 2069-2090 (2022). MSC: 65M06 65N06 65N50 65M12 65N12 35B25 PDF BibTeX XML Cite \textit{L. Govindarao} and \textit{J. Mohapatra}, Int. J. Comput. Math. 99, No. 10, 2069--2090 (2022; Zbl 1513.65286) Full Text: DOI
Lteif, Ralph; Gerbi, Stéphane A new class of higher-ordered/extended Boussinesq system for efficient numerical simulations by splitting operators. (English) Zbl 1510.76102 Appl. Math. Comput. 432, Article ID 127373, 30 p. (2022). MSC: 76M12 65M08 65M06 76B15 PDF BibTeX XML Cite \textit{R. Lteif} and \textit{S. Gerbi}, Appl. Math. Comput. 432, Article ID 127373, 30 p. (2022; Zbl 1510.76102) Full Text: DOI arXiv
K, Aarthika; Shiromani, Ram; Shanthi, V. A higher-order finite difference method for two-dimensional singularly perturbed reaction-diffusion with source-term-discontinuous problem. (English) Zbl 07546700 Comput. Math. Appl. 118, 56-73 (2022). MSC: 35B25 35J25 65N12 65N06 65N30 PDF BibTeX XML Cite \textit{A. K} et al., Comput. Math. Appl. 118, 56--73 (2022; Zbl 07546700) Full Text: DOI
Egorov, I. V.; Nguyen, N. C. Simulation of the laminar-turbulent transition by applying hybrid difference schemes. (English. Russian original) Zbl 1496.76096 Comput. Math. Math. Phys. 62, No. 4, 658-673 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 4, 677-693 (2022). MSC: 76M20 76F06 76F40 76J20 PDF BibTeX XML Cite \textit{I. V. Egorov} and \textit{N. C. Nguyen}, Comput. Math. Math. Phys. 62, No. 4, 658--673 (2022; Zbl 1496.76096); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 4, 677--693 (2022) Full Text: DOI
Wan, Yifei; Xia, Yinhua A hybrid WENO scheme for steady-state simulations of Euler equations. (English) Zbl 07536782 J. Comput. Phys. 463, Article ID 111292, 28 p. (2022). MSC: 65Mxx 35Lxx 76Mxx PDF BibTeX XML Cite \textit{Y. Wan} and \textit{Y. Xia}, J. Comput. Phys. 463, Article ID 111292, 28 p. (2022; Zbl 07536782) Full Text: DOI
Gupta, Aastha; Kaushik, Aditya A higher-order hybrid finite difference method based on grid equidistribution for fourth-order singularly perturbed differential equations. (English) Zbl 1486.65080 J. Appl. Math. Comput. 68, No. 2, 1163-1191 (2022). MSC: 65L11 65L10 65L12 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{A. Kaushik}, J. Appl. Math. Comput. 68, No. 2, 1163--1191 (2022; Zbl 1486.65080) Full Text: DOI
Koga, Kazuki; Kajishima, Takeo Low dissipative finite difference hybrid scheme by discontinuity sensor of detecting shock and material interface in multi-component compressible flows. (English) Zbl 07516832 J. Comput. Phys. 448, Article ID 110757, 21 p. (2022). MSC: 76Mxx 65Mxx 76Nxx PDF BibTeX XML Cite \textit{K. Koga} and \textit{T. Kajishima}, J. Comput. Phys. 448, Article ID 110757, 21 p. (2022; Zbl 07516832) Full Text: DOI
Tavakkol, Sasan; Son, Sangyoung; Lynett, Patrick Adaptive third order Adams-Bashforth time integration for extended Boussinesq equations. (English) Zbl 1516.76056 Comput. Phys. Commun. 265, Article ID 108006, 15 p. (2021). MSC: 76M20 76M12 76B15 76B25 PDF BibTeX XML Cite \textit{S. Tavakkol} et al., Comput. Phys. Commun. 265, Article ID 108006, 15 p. (2021; Zbl 1516.76056) Full Text: DOI arXiv
Zhao, Zhuang; Chen, Yibing; Qiu, Jianxian A hybrid WENO method with modified ghost fluid method for compressible two-medium flow problems. (English) Zbl 1499.65453 Numer. Math., Theory Methods Appl. 14, No. 4, 972-997 (2021). MSC: 65M06 65N06 65M12 76N10 35Q31 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Numer. Math., Theory Methods Appl. 14, No. 4, 972--997 (2021; Zbl 1499.65453) Full Text: DOI arXiv
Jayalakshmi, Govindarajan Janani; Tamilselvan, Ayyadurai Second order difference scheme for singularly perturbed boundary turning point problems. (English) Zbl 1499.65320 J. Math. Model. 9, No. 4, 633-643 (2021). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{G. J. Jayalakshmi} and \textit{A. Tamilselvan}, J. Math. Model. 9, No. 4, 633--643 (2021; Zbl 1499.65320) Full Text: DOI
Shakti, D.; Mohapatra, J. Uniform convergence analysis of monotone hybrid scheme for convection-diffusion problems on layer adapted meshes. (English) Zbl 07523869 Math. Rep., Buchar. 23(73), No. 3, 325-357 (2021). MSC: 65L10 65L12 PDF BibTeX XML Cite \textit{D. Shakti} and \textit{J. Mohapatra}, Math. Rep., Buchar. 23(73), No. 3, 325--357 (2021; Zbl 07523869) Full Text: Link
Gangadhar, K.; Lakshmi, K. Bhanu; Kannan, T. Thermal transport of magnetized \(\mathrm{Cu-Fe_3O_4} \)/water hybrid nanofluid over a curved surface. (English) Zbl 1487.76096 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 191, 21 p. (2021). MSC: 76T20 76W05 76M20 80A19 PDF BibTeX XML Cite \textit{K. Gangadhar} et al., Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 191, 21 p. (2021; Zbl 1487.76096) Full Text: DOI
Rai, Pratima; Yadav, Swati Robust numerical schemes for singularly perturbed delay parabolic convection-diffusion problems with degenerate coefficient. (English) Zbl 1480.65220 Int. J. Comput. Math. 98, No. 1, 195-221 (2021). MSC: 65M06 65M12 65M15 65M50 PDF BibTeX XML Cite \textit{P. Rai} and \textit{S. Yadav}, Int. J. Comput. Math. 98, No. 1, 195--221 (2021; Zbl 1480.65220) Full Text: DOI arXiv
Pirozzoli, Sergio; De Paoli, Marco; Zonta, Francesco; Soldati, Alfredo Towards the ultimate regime in Rayleigh-Darcy convection. (English) Zbl 1493.76093 J. Fluid Mech. 911, Paper No. R4, 13 p. (2021). MSC: 76R10 76S05 76M20 80A19 PDF BibTeX XML Cite \textit{S. Pirozzoli} et al., J. Fluid Mech. 911, Paper No. R4, 13 p. (2021; Zbl 1493.76093) Full Text: DOI
Li, Qin; Sun, Dong; Xu, Fengyuan WENO interpolation-based and upwind-biased free-stream preserving nonlinear schemes. (English) Zbl 1488.65261 Adv. Appl. Math. Mech. 13, No. 6, 1441-1484 (2021). MSC: 65M06 65N06 65L06 65D05 76B47 76L05 76J20 35Q31 PDF BibTeX XML Cite \textit{Q. Li} et al., Adv. Appl. Math. Mech. 13, No. 6, 1441--1484 (2021; Zbl 1488.65261) Full Text: DOI
Shestakov, A. A. Comparison of hybrid DDAD/ST and DDAD-TVDR schemes for solving 2D radiative heat transfer. (Russian. English summary) Zbl 1487.65121 Mat. Model. 33, No. 8, 114-126 (2021). MSC: 65M06 80A21 80M20 35Q79 PDF BibTeX XML Cite \textit{A. A. Shestakov}, Mat. Model. 33, No. 8, 114--126 (2021; Zbl 1487.65121) Full Text: DOI MNR
Jiang, Haiyan; Lu, Tiao; Yin, Xu A hybrid explicit-implicit scheme for the time-dependent Wigner equation. (English) Zbl 1474.65277 J. Comput. Math. 39, No. 1, 22-42 (2021). MSC: 65M06 65M70 65M15 65M12 35Q40 81Q05 PDF BibTeX XML Cite \textit{H. Jiang} et al., J. Comput. Math. 39, No. 1, 22--42 (2021; Zbl 1474.65277) Full Text: DOI
Cen, Zhongdi; Liu, Li-Bin; Xu, Aimin A second-order adaptive grid method for a nonlinear singularly perturbed problem with an integral boundary condition. (English) Zbl 1462.65088 J. Comput. Appl. Math. 385, Article ID 113205, 11 p. (2021). MSC: 65L11 65L10 65L12 PDF BibTeX XML Cite \textit{Z. Cen} et al., J. Comput. Appl. Math. 385, Article ID 113205, 11 p. (2021; Zbl 1462.65088) Full Text: DOI
Singh, Maneesh Kumar; Natesan, Srinivasan A parameter-uniform hybrid finite difference scheme for singularly perturbed system of parabolic convection-diffusion problems. (English) Zbl 1480.65224 Int. J. Comput. Math. 97, No. 4, 875-905 (2020). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{S. Natesan}, Int. J. Comput. Math. 97, No. 4, 875--905 (2020; Zbl 1480.65224) Full Text: DOI
Li, Liang; Wang, Hong-Bo; Zhao, Guo-Yan; Sun, Ming-Bo; Xiong, Da-Peng; Tang, Tao An efficient low-dissipation hybrid central/WENO scheme for compressible flows. (English) Zbl 1500.76061 Int. J. Comput. Fluid Dyn. 34, No. 10, 705-730 (2020). MSC: 76M20 76N15 76L05 PDF BibTeX XML Cite \textit{L. Li} et al., Int. J. Comput. Fluid Dyn. 34, No. 10, 705--730 (2020; Zbl 1500.76061) Full Text: DOI
Janani Jayalakshmi, G.; Tamilselvan, Ayyadurai Comparative study on difference schemes for singularly perturbed boundary turning point problems with Robin boundary conditions. (English) Zbl 1475.65056 J. Appl. Math. Comput. 62, No. 1-2, 341-360 (2020). MSC: 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{G. Janani Jayalakshmi} and \textit{A. Tamilselvan}, J. Appl. Math. Comput. 62, No. 1--2, 341--360 (2020; Zbl 1475.65056) Full Text: DOI
Li, Peng; Zhao, Xiqiang; Gao, Zhen; Wang, Bao-Shan High order hybrid weighted compact nonlinear schemes for hyperbolic conservation laws. (English) Zbl 1488.65258 Adv. Appl. Math. Mech. 12, No. 4, 972-991 (2020). MSC: 65M06 35L65 65M25 76L05 76M20 65D17 PDF BibTeX XML Cite \textit{P. Li} et al., Adv. Appl. Math. Mech. 12, No. 4, 972--991 (2020; Zbl 1488.65258) Full Text: DOI
Yang, Yang; Don, Wai Sun; Gao, Zhen; Wang, Baoshan Hybrid compact-WENO scheme with RBF-FD based discontinuity detection method for hyperbolic conservation laws. (Chinese. English summary) Zbl 1474.65297 J. Numer. Methods Comput. Appl. 41, No. 3, 232-245 (2020). MSC: 65M06 35L65 65D12 35L67 65M70 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Numer. Methods Comput. Appl. 41, No. 3, 232--245 (2020; Zbl 1474.65297)
Vulanović, Relja; Nhan, Thái Anh Robust hybrid schemes of higher order for singularly perturbed convection-diffusion problems. (English) Zbl 1474.65242 Appl. Math. Comput. 386, Article ID 125495, 12 p. (2020). MSC: 65L11 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{R. Vulanović} and \textit{T. A. Nhan}, Appl. Math. Comput. 386, Article ID 125495, 12 p. (2020; Zbl 1474.65242) Full Text: DOI
Zheng, Quan; Liu, Ying; Liu, Zhongli The hybrid finite difference schemes on the modified Bakhvalov-Shishkin mesh for the singularly perturbed problem. (Chinese. English summary) Zbl 1463.65201 J. Zhejiang Univ., Sci. Ed. 47, No. 4, 460-468 (2020). MSC: 65L10 65L12 65L70 PDF BibTeX XML Cite \textit{Q. Zheng} et al., J. Zhejiang Univ., Sci. Ed. 47, No. 4, 460--468 (2020; Zbl 1463.65201) Full Text: DOI
Roja, J. Christy; Tamilselvan, A. An overlapping numerical method for a partially singularly perturbed initial value problem. (English) Zbl 1441.34024 Comput. Math. Model. 31, No. 2, 135-142 (2020). MSC: 34A30 34D15 34A12 PDF BibTeX XML Cite \textit{J. C. Roja} and \textit{A. Tamilselvan}, Comput. Math. Model. 31, No. 2, 135--142 (2020; Zbl 1441.34024) Full Text: DOI
Sumit; Kumar, Sunil; Kuldeep; Kumar, Mukesh A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem. (English) Zbl 1463.65249 Comput. Appl. Math. 39, No. 3, Paper No. 209, 25 p. (2020). MSC: 65M06 65M12 65L11 68M15 35B25 35B41 35R07 PDF BibTeX XML Cite \textit{Sumit} et al., Comput. Appl. Math. 39, No. 3, Paper No. 209, 25 p. (2020; Zbl 1463.65249) Full Text: DOI
Ren, Yupeng; Xiong, Tao; Qiu, Jianxian A hybrid finite difference WENO-ZQ fast sweeping method for static Hamilton-Jacobi equations. (English) Zbl 1440.65099 J. Sci. Comput. 83, No. 3, Paper No. 54, 35 p. (2020). MSC: 65M06 35L65 35F21 PDF BibTeX XML Cite \textit{Y. Ren} et al., J. Sci. Comput. 83, No. 3, Paper No. 54, 35 p. (2020; Zbl 1440.65099) Full Text: DOI
Puvaneswari, A.; Valanarasu, T.; Ramesh Babu, A. A system of singularly perturbed periodic boundary value problem: hybrid difference scheme. (English) Zbl 1442.65133 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 86, 24 p. (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65L10 65L11 65L60 34B16 PDF BibTeX XML Cite \textit{A. Puvaneswari} et al., Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 86, 24 p. (2020; Zbl 1442.65133) Full Text: DOI
Yadav, Swati; Rai, Pratima A higher order numerical scheme for singularly perturbed parabolic turning point problems exhibiting twin boundary layers. (English) Zbl 1474.65296 Appl. Math. Comput. 376, Article ID 125095, 21 p. (2020). MSC: 65M06 65M12 65M50 65M15 35B25 PDF BibTeX XML Cite \textit{S. Yadav} and \textit{P. Rai}, Appl. Math. Comput. 376, Article ID 125095, 21 p. (2020; Zbl 1474.65296) Full Text: DOI arXiv
Shakti, D.; Mokhapatra, Dzh. Parameter-uniform numerical methods for a class of parameterized singular perturbation problems. (Russian. English summary) Zbl 1507.65129 Sib. Zh. Vychisl. Mat. 22, No. 2, 213-228 (2019). MSC: 65L11 34B15 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{D. Shakti} and \textit{Dzh. Mokhapatra}, Sib. Zh. Vychisl. Mat. 22, No. 2, 213--228 (2019; Zbl 1507.65129) Full Text: DOI MNR
Zhu, Yujie; Hu, Xiangyu Free-stream preserving linear-upwind and WENO schemes on curvilinear grids. (English) Zbl 1453.76147 J. Comput. Phys. 399, Article ID 108907, 21 p. (2019). MSC: 76M20 65M06 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{X. Hu}, J. Comput. Phys. 399, Article ID 108907, 21 p. (2019; Zbl 1453.76147) Full Text: DOI arXiv
Liu, Shengping; Shen, Yiqing Discontinuity-detecting method for a four-point stencil and its application to develop a third-order hybrid-WENO scheme. (English) Zbl 1448.65111 J. Sci. Comput. 81, No. 3, 1732-1766 (2019). MSC: 65M06 35L67 65M12 PDF BibTeX XML Cite \textit{S. Liu} and \textit{Y. Shen}, J. Sci. Comput. 81, No. 3, 1732--1766 (2019; Zbl 1448.65111) Full Text: DOI Link
Sahu, S. R.; Mohapatra, J. Parameter uniform numerical methods for singularly perturbed delay differential equation involving two small parameters. (English) Zbl 1436.65091 Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 129, 19 p. (2019). MSC: 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{S. R. Sahu} and \textit{J. Mohapatra}, Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 129, 19 p. (2019; Zbl 1436.65091) Full Text: DOI
Janani Jayalakshmi, G.; Tamilselvan, A. Hybrid difference scheme for singularly perturbed convection diffusion boundary turning point problems with discontinuous source term. (English) Zbl 1416.65218 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 88, 14 p. (2019). MSC: 65L11 65L10 34B05 65L12 65L20 PDF BibTeX XML Cite \textit{G. Janani Jayalakshmi} and \textit{A. Tamilselvan}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 88, 14 p. (2019; Zbl 1416.65218) Full Text: DOI
Zhao, Zhuang; Zhu, Jun; Chen, Yibing; Qiu, Jianxian A new hybrid WENO scheme for hyperbolic conservation laws. (English) Zbl 1411.76110 Comput. Fluids 179, 422-436 (2019). MSC: 76M20 65M06 35L65 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Comput. Fluids 179, 422--436 (2019; Zbl 1411.76110) Full Text: DOI
Zhu, Huajun; Yan, Zhenguo; Liu, Huayong; Mao, Meiliang; Deng, Xiaogang High-order hybrid WCNS-CPR schemes on hybrid meshes with curved edges for conservation laws. I: Spatial accuracy and geometric conservation laws. (English) Zbl 1488.65324 Commun. Comput. Phys. 23, No. 5, 1355-1392 (2018). MSC: 65M06 65M60 65M12 35L65 PDF BibTeX XML Cite \textit{H. Zhu} et al., Commun. Comput. Phys. 23, No. 5, 1355--1392 (2018; Zbl 1488.65324) Full Text: DOI
Gushchin, Valentin A. Large scale computations in fluid dynamics. (English) Zbl 1461.76352 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 11th international conference, LSSC 2017, Sozopol, Bulgaria, June 5–9, 2017. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 10665, 491-498 (2018). MSC: 76M20 76D05 76D50 80A19 PDF BibTeX XML Cite \textit{V. A. Gushchin}, Lect. Notes Comput. Sci. 10665, 491--498 (2018; Zbl 1461.76352) Full Text: DOI
Zhang, Fan; Liu, Tiegang; Cheng, Jian High order stable multi-domain hybrid RKDG and WENO-FD methods. (English) Zbl 1424.65175 J. Comput. Math. 36, No. 4, 517-541 (2018). MSC: 65M60 65M06 PDF BibTeX XML Cite \textit{F. Zhang} et al., J. Comput. Math. 36, No. 4, 517--541 (2018; Zbl 1424.65175) Full Text: DOI Link
Deryugin, Yu. N.; Emel’yanova, Ya. V.; Zhuchkov, R. N.; Utkina, A. A. Hybrid dissipation scheme as applied to computational aeroacoustics. (English. Russian original) Zbl 1448.76138 Comput. Math. Math. Phys. 58, No. 9, 1426-1434 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 9 (2018). MSC: 76Q05 76M20 PDF BibTeX XML Cite \textit{Yu. N. Deryugin} et al., Comput. Math. Math. Phys. 58, No. 9, 1426--1434 (2018; Zbl 1448.76138); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 9 (2018) Full Text: DOI
Lobanov, A. I.; Mirov, F. Kh. A hybrid difference scheme under generalized approximation condition in the space of undetermined coefficients. (English. Russian original) Zbl 1407.65117 Comput. Math. Math. Phys. 58, No. 8, 1270-1279 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 8 (2018). MSC: 65M06 90C05 65K05 35L02 35L10 PDF BibTeX XML Cite \textit{A. I. Lobanov} and \textit{F. Kh. Mirov}, Comput. Math. Math. Phys. 58, No. 8, 1270--1279 (2018; Zbl 1407.65117); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 8 (2018) Full Text: DOI
Lobanov, A. I. Difference schemes in the undetermined coefficient space and dual problems of linear programming. (English. Russian original) Zbl 1397.90265 Comput. Math. Math. Phys. 58, No. 6, 827-839 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 6, 859-872 (2018). MSC: 90C05 90C46 65N30 PDF BibTeX XML Cite \textit{A. I. Lobanov}, Comput. Math. Math. Phys. 58, No. 6, 827--839 (2018; Zbl 1397.90265); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 6, 859--872 (2018) Full Text: DOI
Roja, J. Christy; Tamilselvan, A. Schwarz method for singularly perturbed second order convection-diffusion equations. (English) Zbl 1403.65031 J. Appl. Math. Inform. 36, No. 3-4, 181-203 (2018). MSC: 65L11 65L10 65L12 PDF BibTeX XML Cite \textit{J. C. Roja} and \textit{A. Tamilselvan}, J. Appl. Math. Inform. 36, No. 3--4, 181--203 (2018; Zbl 1403.65031) Full Text: DOI
Roja, J. Christy; Tamilselvan, A. An overlapping Schwarz method for singularly perturbed third order convection-diffusion type. (English) Zbl 1403.65032 J. Appl. Math. Inform. 36, No. 1-2, 135-154 (2018). MSC: 65L12 65L10 65L11 PDF BibTeX XML Cite \textit{J. C. Roja} and \textit{A. Tamilselvan}, J. Appl. Math. Inform. 36, No. 1--2, 135--154 (2018; Zbl 1403.65032) Full Text: DOI
Gupta, Vikas; Kumar, Mukesh; Kumar, Sunil Higher order numerical approximation for time dependent singularly perturbed differential-difference convection-diffusion equations. (English) Zbl 1395.65017 Numer. Methods Partial Differ. Equations 34, No. 1, 357-380 (2018). Reviewer: Carlos A. De Moura (São Joã del-Rei) MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{V. Gupta} et al., Numer. Methods Partial Differ. Equations 34, No. 1, 357--380 (2018; Zbl 1395.65017) Full Text: DOI
Prabha, T.; Chandru, M.; Shanthi, V. Hybrid difference scheme for singularly perturbed reaction-convection-diffusion problem with boundary and interior layers. (English) Zbl 1426.65105 Appl. Math. Comput. 314, 237-256 (2017). MSC: 65L12 34E15 65L10 65L11 PDF BibTeX XML Cite \textit{T. Prabha} et al., Appl. Math. Comput. 314, 237--256 (2017; Zbl 1426.65105) Full Text: DOI
Ma, K.; Forsyth, P. A. An unconditionally monotone numerical scheme for the two-factor uncertain volatility model. (English) Zbl 1433.65162 IMA J. Numer. Anal. 37, No. 2, 905-944 (2017). MSC: 65M06 65M12 91B70 91G60 PDF BibTeX XML Cite \textit{K. Ma} and \textit{P. A. Forsyth}, IMA J. Numer. Anal. 37, No. 2, 905--944 (2017; Zbl 1433.65162) Full Text: DOI Link
Bourdarias, Christian; Gerbi, Stéphane; Lteif, Ralph A numerical scheme for an improved Green-Naghdi model in the Camassa-Holm regime for the propagation of internal waves. (English) Zbl 1390.76400 Comput. Fluids 156, 283-304 (2017). MSC: 76M12 65M08 76B55 76M20 65M06 PDF BibTeX XML Cite \textit{C. Bourdarias} et al., Comput. Fluids 156, 283--304 (2017; Zbl 1390.76400) Full Text: DOI arXiv
Gao, Zhen; Wen, Xiao; Don, Wai Sun Enhanced robustness of the hybrid compact-WENO finite difference scheme for hyperbolic conservation laws with multi-resolution analysis and Tukey’s boxplot method. (English) Zbl 1381.65065 J. Sci. Comput. 73, No. 2-3, 736-752 (2017). MSC: 65M06 35L65 76B15 76N15 76M20 PDF BibTeX XML Cite \textit{Z. Gao} et al., J. Sci. Comput. 73, No. 2--3, 736--752 (2017; Zbl 1381.65065) Full Text: DOI
Jourdana, Clément; Pietra, Paola; Vauchelet, Nicolas Hybrid coupling of a one-dimensional energy-transport Schrödinger system. (English) Zbl 1382.65209 Monatsh. Math. 184, No. 4, 563-596 (2017). Reviewer: Ivan Secrieru (Chişinău) MSC: 65L10 34L40 65L12 65L60 PDF BibTeX XML Cite \textit{C. Jourdana} et al., Monatsh. Math. 184, No. 4, 563--596 (2017; Zbl 1382.65209) Full Text: DOI HAL
Kadalbajoo, Mohan K.; Awasthi, Ashish Parameter free hybrid numerical method for solving modified Burgers’ equations on a nonuniform mesh. (English) Zbl 1372.65232 Asian-Eur. J. Math. 10, No. 2, Article ID 1750029, 11 p. (2017). MSC: 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{M. K. Kadalbajoo} and \textit{A. Awasthi}, Asian-Eur. J. Math. 10, No. 2, Article ID 1750029, 11 p. (2017; Zbl 1372.65232) Full Text: DOI
Mao, Meiliang; Jiang, Yi; Deng, Xiaogang; Liu, Huayong Noise prediction in subsonic flow using seventh-order dissipative compact scheme on curvilinear mesh. (English) Zbl 1488.65267 Adv. Appl. Math. Mech. 8, No. 2, 236-256 (2016). MSC: 65M06 76D05 76F65 76Q05 PDF BibTeX XML Cite \textit{M. Mao} et al., Adv. Appl. Math. Mech. 8, No. 2, 236--256 (2016; Zbl 1488.65267) Full Text: DOI
Bettaibi, Soufiene; Kuznik, Frédéric; Sediki, Ezeddine Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid. (English) Zbl 1400.76062 Physica A 444, 311-326 (2016). MSC: 76M28 80A20 PDF BibTeX XML Cite \textit{S. Bettaibi} et al., Physica A 444, 311--326 (2016; Zbl 1400.76062) Full Text: DOI
Sapetina, A. F. Supercomputer-aided comparison of the efficiency of using different mathematical statements of the 3D geophysical problem. (English) Zbl 1374.86047 Bull. Novosib. Comput. Cent., Ser. Numer. Anal. 18, 57-66 (2016). MSC: 86A15 74L05 74S20 74H45 PDF BibTeX XML Cite \textit{A. F. Sapetina}, Bull. Novosib. Comput. Cent., Ser. Numer. Anal. 18, 57--66 (2016; Zbl 1374.86047) Full Text: Link
Yang, Yan; Wan, Minping; Shi, Yipeng; Yang, Kun; Chen, Shiyi A hybrid scheme for compressible magnetohydrodynamic turbulence. (English) Zbl 1351.76196 J. Comput. Phys. 306, 73-91 (2016). MSC: 76M20 65M06 76F50 76W05 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Comput. Phys. 306, 73--91 (2016; Zbl 1351.76196) Full Text: DOI
Cheng, Jian; Wang, Kun; Liu, Tiegang Ageneral high-order multi-domain hybrid DG/WENO-FD method for hyperbolic conservation laws. (English) Zbl 1363.65160 J. Comput. Math. 34, No. 1, 30-48 (2016). MSC: 65M60 65M12 35L65 65M06 65M15 PDF BibTeX XML Cite \textit{J. Cheng} et al., J. Comput. Math. 34, No. 1, 30--48 (2016; Zbl 1363.65160)
Jiang, Yi; Mao, Meiliang; Deng, Xiaogang; Liu, Huayong Extending seventh-order dissipative compact scheme satisfying geometric conservation law to large eddy simulation on curvilinear grids. (English) Zbl 1488.76062 Adv. Appl. Math. Mech. 7, No. 4, 407-429 (2015). MSC: 76F65 76M20 PDF BibTeX XML Cite \textit{Y. Jiang} et al., Adv. Appl. Math. Mech. 7, No. 4, 407--429 (2015; Zbl 1488.76062) Full Text: DOI
Jain, Subit K.; Ray, Rajendra K.; Bhavsar, Arnav Iterative solvers for image denoising with diffusion models: a comparative study. (English) Zbl 1443.65129 Comput. Math. Appl. 70, No. 3, 191-211 (2015). MSC: 65M06 65M22 68U10 94A08 PDF BibTeX XML Cite \textit{S. K. Jain} et al., Comput. Math. Appl. 70, No. 3, 191--211 (2015; Zbl 1443.65129) Full Text: DOI
Choi, Yongho; Jeong, Darae; Lee, Seunggyu; Yoo, Minhyun; Kim, Junseok Motion by mean curvature of curves on surfaces using the Allen-Cahn Equation. (English) Zbl 1425.65038 Int. J. Eng. Sci. 97, 126-132 (2015). MSC: 65D18 65M06 PDF BibTeX XML Cite \textit{Y. Choi} et al., Int. J. Eng. Sci. 97, 126--132 (2015; Zbl 1425.65038) Full Text: DOI
Wang, Yuanyuan; Wang, Lisha Hybrid control of the Neimark-Sacker bifurcation in a delayed Nicholson’s blowflies equation. (English) Zbl 1422.65132 Adv. Difference Equ. 2015, Paper No. 306, 14 p. (2015). MSC: 65L12 37D45 92D25 34K18 34K20 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{L. Wang}, Adv. Difference Equ. 2015, Paper No. 306, 14 p. (2015; Zbl 1422.65132) Full Text: DOI
Deng, Xiaogang; Jiang, Yi; Mao, Meiliang; Liu, Huayong; Li, Song; Tu, Guohua A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law. (English) Zbl 1390.65065 Comput. Fluids 116, 29-45 (2015). MSC: 65M06 76M20 PDF BibTeX XML Cite \textit{X. Deng} et al., Comput. Fluids 116, 29--45 (2015; Zbl 1390.65065) Full Text: DOI
Glinskiĭ, B. M.; Martynov, V. N.; Sapetina, A. F. 3D modeling of seismic wave fields in a medium specific to volcanic structures. (Russian. English summary) Zbl 1374.86043 Mat. Zamet. SVFU 22, No. 3, 84-100 (2015). MSC: 86A15 86A17 PDF BibTeX XML Cite \textit{B. M. Glinskiĭ} et al., Mat. Zamet. SVFU 22, No. 3, 84--100 (2015; Zbl 1374.86043)
Choi, Jung J. Hybrid spectral difference/embedded finite volume method for conservation laws. (English) Zbl 1349.76440 J. Comput. Phys. 295, 285-306 (2015). MSC: 76M20 76M12 65M06 65M08 65M70 76L05 PDF BibTeX XML Cite \textit{J. J. Choi}, J. Comput. Phys. 295, 285--306 (2015; Zbl 1349.76440) Full Text: DOI arXiv
Niu, Yanpo; Gao, Zhen; Don, Wai Sun; Xie, Shusen; Li, Peng Hybrid compact-WENO finite difference scheme for detonation waves simulations. (English) Zbl 1352.65259 Kirby, Robert M. (ed.) et al., Spectral and high order methods for partial differential equations, ICOSAHOM 2014. Selected papers from the ICOSAHOM conference, June 23–27, 2014, Salt Lake City, UT, USA. Cham: Springer (ISBN 978-3-319-19799-9/hbk; 978-3-319-19800-2/ebook). Lecture Notes in Computational Science and Engineering 106, 179-187 (2015). Reviewer: Irina V. Konopleva (Ul’yanovsk) MSC: 65M06 35L67 PDF BibTeX XML Cite \textit{Y. Niu} et al., Lect. Notes Comput. Sci. Eng. 106, 179--187 (2015; Zbl 1352.65259) Full Text: DOI
Khokhlov, N. I.; Petrov, I. B. On bicompact grid-characteristic schemes for the linear advection equation. (English. Russian original) Zbl 1336.65137 Dokl. Math. 92, No. 3, 781-783 (2015); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 465, No. 5, 542-544 (2015). MSC: 65M06 35L02 65M25 PDF BibTeX XML Cite \textit{N. I. Khokhlov} and \textit{I. B. Petrov}, Dokl. Math. 92, No. 3, 781--783 (2015; Zbl 1336.65137); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 465, No. 5, 542--544 (2015) Full Text: DOI
Chandru, M.; Prabha, T.; Shanthi, V. A hybrid difference scheme for a second-order singularly perturbed reaction-diffusion problem with non-smooth data. (English) Zbl 1310.65082 Int. J. Appl. Comput. Math. 1, No. 1, 87-100 (2015). MSC: 65L10 34E15 65L11 65L12 65L50 65L20 PDF BibTeX XML Cite \textit{M. Chandru} et al., Int. J. Appl. Comput. Math. 1, No. 1, 87--100 (2015; Zbl 1310.65082) Full Text: DOI
Jiang, Yi; Mao, Meiliang; Deng, Xiaogang; Liu, Huayong Large eddy simulation on curvilinear meshes using seventh-order dissipative compact scheme. (English) Zbl 1391.76225 Comput. Fluids 104, 73-84 (2014). MSC: 76F65 76M20 65M06 PDF BibTeX XML Cite \textit{Y. Jiang} et al., Comput. Fluids 104, 73--84 (2014; Zbl 1391.76225) Full Text: DOI
Sun, Zhen-sheng; Luo, Lei; Ren, Yu-xin; Zhang, Shi-ying A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique. (English) Zbl 1349.76537 J. Comput. Phys. 270, 238-254 (2014). MSC: 76M20 65M06 76L05 PDF BibTeX XML Cite \textit{Z.-s. Sun} et al., J. Comput. Phys. 270, 238--254 (2014; Zbl 1349.76537) Full Text: DOI
Bettaibi, Soufiene; Kuznik, Frédéric; Sediki, Ezeddine Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity. (English) Zbl 1303.80001 Phys. Lett., A 378, No. 32-33, 2429-2435 (2014). MSC: 80A20 80M20 76M28 76R99 PDF BibTeX XML Cite \textit{S. Bettaibi} et al., Phys. Lett., A 378, No. 32--33, 2429--2435 (2014; Zbl 1303.80001) Full Text: DOI
Subburayan, V.; Ramanujam, N. An initial value technique for singularly perturbed reaction-diffusion problems with a negative shift. (English) Zbl 1363.65112 Novi Sad J. Math. 43, No. 2, 67-80 (2013). MSC: 65L03 34K10 34K26 34K28 65L10 65L11 65L12 65L70 65L50 PDF BibTeX XML Cite \textit{V. Subburayan} and \textit{N. Ramanujam}, Novi Sad J. Math. 43, No. 2, 67--80 (2013; Zbl 1363.65112)
Guo, Wei; Qiu, Jing-Mei Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation. (English) Zbl 1284.35438 J. Comput. Phys. 234, 108-132 (2013). MSC: 35Q83 65M06 65M60 PDF BibTeX XML Cite \textit{W. Guo} and \textit{J.-M. Qiu}, J. Comput. Phys. 234, 108--132 (2013; Zbl 1284.35438) Full Text: DOI
Subburayan, V.; Ramanujam, N. An initial value technique for singularly perturbed convection-diffusion problems with a negative shift. (English) Zbl 1272.49053 J. Optim. Theory Appl. 158, No. 1, 234-250 (2013). MSC: 49M25 49J15 PDF BibTeX XML Cite \textit{V. Subburayan} and \textit{N. Ramanujam}, J. Optim. Theory Appl. 158, No. 1, 234--250 (2013; Zbl 1272.49053) Full Text: DOI
Wan, Zhen-hua; Zhou, Lin; Sun, De-jun Robustness of the hybrid DRP-WENO scheme for shock flow computations. (English) Zbl 1412.76057 Int. J. Numer. Methods Fluids 70, No. 8, 985-1003 (2012). MSC: 76L05 76M20 PDF BibTeX XML Cite \textit{Z.-h. Wan} et al., Int. J. Numer. Methods Fluids 70, No. 8, 985--1003 (2012; Zbl 1412.76057) Full Text: DOI
Subburayan, V.; Ramanujam, N. Asymptotic initial value technique for singularly perturbed convection-diffusion delay problems with boundary and weak interior layers. (English) Zbl 1252.65113 Appl. Math. Lett. 25, No. 12, 2272-2278 (2012). MSC: 65L03 65L11 65L10 65L50 65L12 65L06 34K28 34K26 65L70 PDF BibTeX XML Cite \textit{V. Subburayan} and \textit{N. Ramanujam}, Appl. Math. Lett. 25, No. 12, 2272--2278 (2012; Zbl 1252.65113) Full Text: DOI
Chertock, Alina; Kurganov, Alexander; Wang, Xuefeng; Wu, Yaping On a chemotaxis model with saturated chemotactic flux. (English) Zbl 1398.92033 Kinet. Relat. Models 5, No. 1, 51-95 (2012). MSC: 92C17 76M20 35B32 35Q92 65M06 65M08 PDF BibTeX XML Cite \textit{A. Chertock} et al., Kinet. Relat. Models 5, No. 1, 51--95 (2012; Zbl 1398.92033) Full Text: DOI
Clavero, C.; Gracia, J. L. A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reaction-diffusion problems. (English) Zbl 1245.65108 Appl. Math. Comput. 218, No. 9, 5067-5080 (2012). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M12 35K57 35B25 PDF BibTeX XML Cite \textit{C. Clavero} and \textit{J. L. Gracia}, Appl. Math. Comput. 218, No. 9, 5067--5080 (2012; Zbl 1245.65108) Full Text: DOI
Ramanujam, N. Numerical methods for singularly perturbed second order ordinary differential equations with a delay. (English) Zbl 1329.65158 Subrahmanyam, P. V. (ed.) et al., Proceedings of the national symposium on mathematical methods and applications, NSMMA, Chennai, India, December 22, 2010. Invited talks. Chennai: Indian Institute of Technology Madras. 10-22 (2011). MSC: 65L10 65L11 PDF BibTeX XML Cite \textit{N. Ramanujam}, in: Proceedings of the national symposium on mathematical methods and applications, NSMMA, Chennai, India, December 22, 2010. Invited talks. Chennai: Indian Institute of Technology Madras. 10--22 (2011; Zbl 1329.65158)
Mukherjee, Kaushik; Natesan, Srinivasan \(\varepsilon\)-uniform error estimate of hybrid numerical scheme for singularly perturbed parabolic problems with interior layers. (English) Zbl 1227.65083 Numer. Algorithms 58, No. 1, 103-141 (2011). Reviewer: Yajuan Sun (Beijing) MSC: 65M15 65M06 65M12 35K20 35R05 35B25 65M50 PDF BibTeX XML Cite \textit{K. Mukherjee} and \textit{S. Natesan}, Numer. Algorithms 58, No. 1, 103--141 (2011; Zbl 1227.65083) Full Text: DOI
Chazel, F.; Lannes, D.; Marche, F. Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model. (English) Zbl 1419.76454 J. Sci. Comput. 48, No. 1-3, 105-116 (2011). MSC: 76M12 76M20 76B15 PDF BibTeX XML Cite \textit{F. Chazel} et al., J. Sci. Comput. 48, No. 1--3, 105--116 (2011; Zbl 1419.76454) Full Text: DOI
Clavero, C.; Gracia, J. L.; Stynes, M. A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems. (English) Zbl 1225.65084 J. Comput. Appl. Math. 235, No. 17, 5240-5248 (2011). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M06 35K20 65M12 PDF BibTeX XML Cite \textit{C. Clavero} et al., J. Comput. Appl. Math. 235, No. 17, 5240--5248 (2011; Zbl 1225.65084) Full Text: DOI
Sun, Zhensheng; Ren, Yuxin; Larricq, Cédric; Zhang, Shiying; Yang, Yuecheng A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. (English) Zbl 1416.76192 J. Comput. Phys. 230, No. 12, 4616-4635 (2011). MSC: 76M20 76F50 PDF BibTeX XML Cite \textit{Z. Sun} et al., J. Comput. Phys. 230, No. 12, 4616--4635 (2011; Zbl 1416.76192) Full Text: DOI
Bawa, Rajesh K.; Lal, A. K.; Kumar, Vinod An \(\varepsilon\)-uniform hybrid scheme for singularly perturbed delay differential equations. (English) Zbl 1220.65102 Appl. Math. Comput. 217, No. 21, 8216-8222 (2011). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65L11 65L12 34K28 34K26 65L70 65L50 PDF BibTeX XML Cite \textit{R. K. Bawa} et al., Appl. Math. Comput. 217, No. 21, 8216--8222 (2011; Zbl 1220.65102) Full Text: DOI
Cen, Zhongdi Uniformly convergent second-order difference scheme for a singularly perturbed periodical boundary value problem. (English) Zbl 1217.65149 Int. J. Comput. Math. 88, No. 1, 196-206 (2011). Reviewer: Snezhana Gocheva-Ilieva (Plovdiv) MSC: 65L10 65L12 65L50 65L11 34B05 34E15 PDF BibTeX XML Cite \textit{Z. Cen}, Int. J. Comput. Math. 88, No. 1, 196--206 (2011; Zbl 1217.65149) Full Text: DOI
Tamilselvan, A.; Ramanujam, N. An almost-second-order method for a system of singularly perturbed convection-diffusion equations with nonsmooth convection coefficients and source terms. (English) Zbl 1267.76077 Int. J. Comput. Methods 7, No. 2 (2010). MSC: 76M20 76R99 65L10 PDF BibTeX XML Full Text: DOI
Chen, Han-Taw; Liu, Li-Shie; Lee, Shin-Ku Estimation of heat-transfer characteristics from fins mounted on a horizontal plate in natural convection. (English) Zbl 1231.80054 CMES, Comput. Model. Eng. Sci. 65, No. 2, 155-178 (2010). MSC: 80M20 80A20 PDF BibTeX XML Cite \textit{H.-T. Chen} et al., CMES, Comput. Model. Eng. Sci. 65, No. 2, 155--178 (2010; Zbl 1231.80054) Full Text: DOI
Cen, Zhongdi; Xu, Aimin; Le, Anbo A second-order hybrid finite difference scheme for a system of singularly perturbed initial value problems. (English) Zbl 1197.65095 J. Comput. Appl. Math. 234, No. 12, 3445-3457 (2010). Reviewer: Kai Diethelm (Braunschweig) MSC: 65L12 65L11 65L05 34E15 65L70 65L20 34A34 PDF BibTeX XML Cite \textit{Z. Cen} et al., J. Comput. Appl. Math. 234, No. 12, 3445--3457 (2010; Zbl 1197.65095) Full Text: DOI
Kumar, Mukesh; Chandra Sekhara Rao, S. High order parameter-robust numerical method for singularly perturbed reaction-diffusion problems. (English) Zbl 1229.65129 Appl. Math. Comput. 216, No. 4, 1036-1046 (2010). Reviewer: Srinivasan Natesan (Assam) MSC: 65L11 65L10 65L12 34B05 34E15 65L70 PDF BibTeX XML Cite \textit{M. Kumar} and \textit{S. Chandra Sekhara Rao}, Appl. Math. Comput. 216, No. 4, 1036--1046 (2010; Zbl 1229.65129) Full Text: DOI