×

Hybrid high-order methods for finite deformations of hyperelastic materials. (English) Zbl 1459.74020

Summary: We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order \(k\geq 1\) on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order \(k\) and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

MSC:

74B20 Nonlinear elasticity
74S99 Numerical and other methods in solid mechanics

Software:

MFront; Code_Aster
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ball, JM, Convexity conditions and existence theorems in nonlinear elasticity, Arch Ration Mech Anal, 63, 337-403, (1976) · Zbl 0368.73040 · doi:10.1007/BF00279992
[2] Ball, JM, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos Trans R Soc Lond Ser A, 306, 557-611, (1982) · Zbl 0513.73020 · doi:10.1098/rsta.1982.0095
[3] Beirão da Veiga, L.; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput Methods Appl Mech Eng, 295, 327-346, (2015) · doi:10.1016/j.cma.2015.07.013
[4] Boffi, D.; Botti, M.; Pietro, DA, A nonconforming high-order method for the Biot problem on general meshes, SIAM J Sci Comput, 38, a1508-a1537, (2016) · Zbl 1337.76042 · doi:10.1137/15M1025505
[5] Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge · Zbl 0891.73001
[6] Botti, M.; Pietro, DA; Sochala, P., A hybrid high-order method for nonlinear elasticity, SIAM J Numer Anal, 55, 2687-2717, (2017) · Zbl 1459.65212 · doi:10.1137/16M1105943
[7] Carstensen, C.; Hellwig, F., Low-order discontinuous Petrov-Galerkin finite element methods for linear elasticity, SIAM J Numer Anal, 54, 3388-3410, (2016) · Zbl 1457.65185 · doi:10.1137/15M1032582
[8] Chi, H.; Beirão da Veiga, L.; Paulino, GH, Some basic formulations of the virtual element method (VEM) for finite deformations, Comput Methods Appl Mech Eng, 318, 148-192, (2017) · doi:10.1016/j.cma.2016.12.020
[9] Ciarlet PG (1988) Mathematical elasticity. Vol. I, volume 20 of studies in mathematics and its applications. Three-dimensional elasticity. North-Holland Publishing Co., Amsterdam
[10] Cicuttin M, Di Pietro DA, Ern A (2017) Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. J Comput Appl Math. https://doi.org/10.1016/j.cam.2017.09.017 · Zbl 1471.74076
[11] Cockburn, B.; Pietro, DA; Ern, A., Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM Math Model Numer Anal, 50, 635-650, (2016) · Zbl 1341.65045 · doi:10.1051/m2an/2015051
[12] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J Numer Anal, 47, 1319-1365, (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[13] Cockburn, B.; Gopalakrishnan, J.; Nguyen, NC; Peraire, J.; Sayas, F-J, Analysis of HDG methods for Stokes flow, Math Comput, 80, 723-760, (2011) · Zbl 1410.76164 · doi:10.1090/S0025-5718-2010-02410-X
[14] Cockburn, B.; Schötzau, D.; Wang, J., Discontinuous Galerkin methods for incompressible elastic materials, Comput Methods Appl Mech Eng, 195, 3184-3204, (2006) · Zbl 1128.74041 · doi:10.1016/j.cma.2005.07.003
[15] Pietro, DA; Droniou, J.; Ern, A., A discontinuous-skeletal method for advection-diffusion-reaction on general meshes, SIAM J Numer Anal, 53, 2135-2157, (2015) · Zbl 1457.65194 · doi:10.1137/140993971
[16] Di Pietro DA, Droniou J, Manzini G (2018) Discontinuous Skeletal Gradient Discretisation Methods on polytopal meshes. J Comput Phys 355:397-425. https://doi.org/10.1016/j.jcp.2017.11.018 · Zbl 1380.65414
[17] Pietro, DA; Ern, A., A hybrid high-order locking-free method for linear elasticity on general meshes, Comput Methods Appl Mech Eng, 283, 1-21, (2015) · Zbl 1423.74876 · doi:10.1016/j.cma.2014.09.009
[18] Pietro, DA; Ern, A.; Lemaire, S., An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput Methods Appl Math, 14, 461-472, (2014) · Zbl 1304.65248 · doi:10.1515/cmam-2014-0018
[19] Di Pietro DA, Ern A, Lemaire S (2016) A review of hybrid high-order methods: formulations, computational aspects, comparison with other methods. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations, volume 114 of Lecture Notes in Computational Science and Engineering. Springer, pp 205-236 [Cham] · Zbl 1357.65258
[20] Pietro, DA; Ern, A.; Linke, A.; Schieweck, F., A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput Methods Appl Mech Eng, 306, 175-195, (2016) · doi:10.1016/j.cma.2016.03.033
[21] Pietro, DA; Krell, S., A hybrid high-order method for the steady incompressible Navier-Stokes problem, J Sci Comput, (2017) · Zbl 1384.76037 · doi:10.1007/s10915-017-0512-x
[22] Droniou, J.; Lamichhane, BP, Gradient schemes for linear and non-linear elasticity equations, Numer Math, 129, 251-277, (2015) · Zbl 1309.74068 · doi:10.1007/s00211-014-0636-y
[23] Dunavant, DA, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Int J Numer Methods Eng, 21, 1129-1148, (1985) · Zbl 0589.65021 · doi:10.1002/nme.1620210612
[24] Electricité de France (1989-2017) Finite element \(\mathbf{}code_aster\), structures and thermomechanics analysis for studies and research. Open source on http://www.code-aster.org
[25] Eymard R, Guichard C (2017) Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form. Comput Appl Math. https://doi.org/10.1007/s40314-017-0558-2 · Zbl 1402.65156
[26] Hansbo, P.; Larson, MG, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by nitsche’s method, Comput Methods Appl Mech Eng, 191, 1895-1908, (2002) · Zbl 1098.74693 · doi:10.1016/S0045-7825(01)00358-9
[27] Helfer, T.; Michel, B.; Proix, J-M; Salvo, M.; Sercombe, J.; Casella, M., Introducing the open-source mfront code generator: application to mechanical behaviours and material knowledge management within the PLEIADES fuel element modelling platform, Comput Math Appl, 70, 994-1023, (2015) · doi:10.1016/j.camwa.2015.06.027
[28] John, L.; Neilan, M.; Smears, I.; Karasözen, B. (ed.); Manguoğlu, M. (ed.); Tezer-Sezgin, M. (ed.); Göktepe, S. (ed.); Uğur, Ö (ed.), Stable discontinuous Galerkin FEM without penalty parameters, 165-173, (2016), Berlin · Zbl 1352.65517 · doi:10.1007/978-3-319-39929-4_17
[29] Kabaria, H.; Lew, AJ; Cockburn, B., A hybridizable discontinuous Galerkin formulation for non-linear elasticity, Comput Methods Appl Mech Eng, 283, 303-329, (2015) · Zbl 1423.74895 · doi:10.1016/j.cma.2014.08.012
[30] Krämer, J.; Wieners, C.; Wohlmuth, B.; Wunderlich, L., A hybrid weakly nonconforming discretization for linear elasticity, Proc Appl Math Mech, 16, 849-850, (2016) · doi:10.1002/pamm.201610413
[31] Lehrenfeld C (2010) Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Ph.D. thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen
[32] Lew, A.; Neff, P.; Sulsky, D.; Ortiz, M., Optimal BV estimates for a discontinuous Galerkin method for linear elasticity, AMRX Appl Math Res Express, 2004, 73-106, (2004) · Zbl 1115.74021 · doi:10.1155/S1687120004020052
[33] Lian, Y.; Li, Z., A numerical study on cavitation in nonlinear elasticity—defects and configurational forces, Math Models Methods Appl Sci, 21, 2551-2574, (2011) · Zbl 1242.74024 · doi:10.1142/S0218202511005830
[34] Nguyen, NC; Peraire, J., Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics, J Comput Phys, 231, 5955-5988, (2012) · Zbl 1277.65082 · doi:10.1016/j.jcp.2012.02.033
[35] Noels, L.; Radovitzky, R., A general discontinuous Galerkin method for finite hyperelasticity. formulation and numerical applications, Int J Numer Methods Eng, 68, 64-97, (2006) · Zbl 1145.74039 · doi:10.1002/nme.1699
[36] Ogden RW (1997) Non-linear elastic deformations. Dover Publication, New-York
[37] Soon S-C (2008) Hybridizable discontinuous Galerkin method for solid mechanics. Ph.D. thesis, University of Minnesota
[38] Soon, S-C; Cockburn, B.; Stolarski, HK, A hybridizable discontinuous Galerkin method for linear elasticity, Int J Numer Methods Eng, 80, 1058-1092, (2009) · Zbl 1176.74196 · doi:10.1002/nme.2646
[39] Eyck, A.; Celiker, F.; Lew, A., Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: analytical estimates, Comput Methods Appl Mech Eng, 197, 2989-3000, (2008) · Zbl 1194.74390 · doi:10.1016/j.cma.2008.02.022
[40] Eyck, A.; Celiker, F.; Lew, A., Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples, Comput Methods Appl Mech Eng, 197, 3605-3622, (2008) · Zbl 1194.74389 · doi:10.1016/j.cma.2008.02.020
[41] Eyck, A.; Lew, A., Discontinuous Galerkin methods for non-linear elasticity, Int J Numer Methods Eng, 67, 1204-1243, (2006) · Zbl 1113.74068 · doi:10.1002/nme.1667
[42] Wang, C.; Wang, J.; Wang, R.; Zhang, R., A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J Comput Appl Math, 307, 346-366, (2016) · Zbl 1338.74104 · doi:10.1016/j.cam.2015.12.015
[43] Wriggers, P.; Reddy, BD; Rust, W.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput Mech, 60, 253-268, (2017) · Zbl 1386.74146 · doi:10.1007/s00466-017-1405-4
[44] Wulfinghoff, S.; Bayat, HR; Alipour, A.; Reese, S., A low-order locking-free hybrid discontinuous Galerkin element formulation for large deformations, Comput Methods Appl Mech Eng, 323, 353-372, (2017) · doi:10.1016/j.cma.2017.05.018
[45] Xu, X.; Henao, D., An efficient numerical method for cavitation in nonlinear elasticity, Math Models Methods Appl Sci, 21, 1733-1760, (2011) · Zbl 1276.74007 · doi:10.1142/S0218202511005556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.