Cullinan, John Realizations of unisingular representations by hyperelliptic Jacobians. (English) Zbl 07760735 Commun. Algebra 51, No. 12, 5297-5312 (2023). MSC: 11G10 11G30 11R32 PDF BibTeX XML Cite \textit{J. Cullinan}, Commun. Algebra 51, No. 12, 5297--5312 (2023; Zbl 07760735) Full Text: DOI arXiv
Komatsu, Toru Imaginary quadratic integral points on a hyperelliptic curve of certain type. (English) Zbl 07757041 Bull. Hell. Math. Soc. 67, 59-72 (2023). MSC: 11D41 11G30 11R11 PDF BibTeX XML Cite \textit{T. Komatsu}, Bull. Hell. Math. Soc. 67, 59--72 (2023; Zbl 07757041) Full Text: Link
Kudo, Momonari; Nakagawa, Tasuku; Takagi, Tsuyoshi Efficient search for superspecial hyperelliptic curves of genus four with automorphism group containing \(\mathbf{C}_6\). (English) Zbl 07753617 Math. Comput. Sci. 17, No. 3-4, Paper No. 21, 18 p. (2023). MSC: 11G20 14G15 14H25 14H37 14H45 14Q05 14Q25 PDF BibTeX XML Cite \textit{M. Kudo} et al., Math. Comput. Sci. 17, No. 3--4, Paper No. 21, 18 p. (2023; Zbl 07753617) Full Text: DOI arXiv
Cotterill, Ethan; Darago, Ignacio; Han, Changho Arithmetic inflection formulae for linear series on hyperelliptic curves. (English) Zbl 07749438 Math. Nachr. 296, No. 8, 3272-3300 (2023). MSC: 14C20 14C35 14N10 14P25 14Hxx 11Gxx 11Txx 19E15 PDF BibTeX XML Cite \textit{E. Cotterill} et al., Math. Nachr. 296, No. 8, 3272--3300 (2023; Zbl 07749438) Full Text: DOI arXiv
Duque-Rosero, Juanita; Hashimoto, Sachi; Spelier, Pim Geometric quadratic Chabauty and \(p\)-adic heights. (English) Zbl 07745041 Expo. Math. 41, No. 3, 631-674 (2023). MSC: 14G05 11G50 PDF BibTeX XML Cite \textit{J. Duque-Rosero} et al., Expo. Math. 41, No. 3, 631--674 (2023; Zbl 07745041) Full Text: DOI arXiv
Creutz, Brendan; Srivastava, Duttatrey Nath Brauer-Manin obstructions on hyperelliptic curves. (English) Zbl 07741088 Adv. Math. 431, Article ID 109238, 28 p. (2023). MSC: 14G12 11G30 14G05 PDF BibTeX XML Cite \textit{B. Creutz} and \textit{D. N. Srivastava}, Adv. Math. 431, Article ID 109238, 28 p. (2023; Zbl 07741088) Full Text: DOI arXiv
Antón-Sancho, Álvaro Galois \(E_6\)-bundles over a hyperelliptic algebraic curve. (English) Zbl 07740211 Bull. Iran. Math. Soc. 49, No. 4, Paper No. 46, 15 p. (2023). MSC: 14H10 14H60 57R57 53C10 PDF BibTeX XML Cite \textit{Á. Antón-Sancho}, Bull. Iran. Math. Soc. 49, No. 4, Paper No. 46, 15 p. (2023; Zbl 07740211) Full Text: DOI
Chen, Chao; Guan, Peidong; Huang, Yan; Zhang, Fangguo Quantum circuits for hyperelliptic curve discrete logarithms over the mersenne prime fields. (English) Zbl 07725867 Quantum Inf. Process. 22, No. 7, Paper No. 274, 20 p. (2023). MSC: 81P68 PDF BibTeX XML Cite \textit{C. Chen} et al., Quantum Inf. Process. 22, No. 7, Paper No. 274, 20 p. (2023; Zbl 07725867) Full Text: DOI
Boxall, John On the number of points of given order on odd-degree hyperelliptic curves. (English) Zbl 07725142 Rocky Mt. J. Math. 53, No. 2, 357-382 (2023). MSC: 14H40 14H45 14G17 PDF BibTeX XML Cite \textit{J. Boxall}, Rocky Mt. J. Math. 53, No. 2, 357--382 (2023; Zbl 07725142) Full Text: DOI arXiv Link
Ohashi, Ryo; Kudo, Momonari; Harashita, Shushi Fast enumeration of superspecial hyperelliptic curves of genus 4 with automorphism group \(V_4\). (English) Zbl 07724812 Mesnager, Sihem (ed.) et al., Arithmetic of finite fields. 9th international workshop, WAIFI 2022, Chengdu, China, August 29 – September 2, 2022. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13638, 107-124 (2023). MSC: 11Txx PDF BibTeX XML Cite \textit{R. Ohashi} et al., Lect. Notes Comput. Sci. 13638, 107--124 (2023; Zbl 07724812) Full Text: DOI
Camara, Moustapha; Fall, Moussa; Sall, Oumar Algebraic points on the hyperelliptic curves \(y^2 = x^5 + n^2\). (English) Zbl 1517.14021 Ann. Univ. Paedagog. Crac., Stud. Math. 385(22), 21-31 (2023). MSC: 14H50 14H40 11D41 11G30 12F05 14G25 PDF BibTeX XML Cite \textit{M. Camara} et al., Ann. Univ. Paedagog. Crac., Stud. Math. 385(22), 21--31 (2023; Zbl 1517.14021) Full Text: DOI
Van Thinh, Dao 2-Selmer groups of even hyperelliptic curves over function fields. (English) Zbl 07709417 Trans. Am. Math. Soc. 376, No. 7, 4679-4712 (2023). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 14D05 14D10 PDF BibTeX XML Cite \textit{D. Van Thinh}, Trans. Am. Math. Soc. 376, No. 7, 4679--4712 (2023; Zbl 07709417) Full Text: DOI arXiv
Wang, Bei; Ouyang, Yi; Li, Songsong; Hu, Honggang A new twofold Cornacchia-type algorithm and its applications. (English) Zbl 1514.14036 Adv. Math. Commun. 17, No. 4, 873-887 (2023). MSC: 14H52 14G50 94A60 PDF BibTeX XML Cite \textit{B. Wang} et al., Adv. Math. Commun. 17, No. 4, 873--887 (2023; Zbl 1514.14036) Full Text: DOI
Zarhin, Yuri G. Non-isogenous elliptic curves and hyperelliptic Jacobians. (English) Zbl 07700306 Math. Res. Lett. 30, No. 1, 267-294 (2023). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G05 11G30 14H25 14H40 14H52 PDF BibTeX XML Cite \textit{Y. G. Zarhin}, Math. Res. Lett. 30, No. 1, 267--294 (2023; Zbl 07700306) Full Text: DOI arXiv
Darbar, Pranendu; Lumley, Allysa Selberg’s central limit theorem for quadratic Dirichlet \(L\)-functions over function fields. (English) Zbl 07698598 Monatsh. Math. 201, No. 4, 1027-1058 (2023). MSC: 11G20 11R29 PDF BibTeX XML Cite \textit{P. Darbar} and \textit{A. Lumley}, Monatsh. Math. 201, No. 4, 1027--1058 (2023; Zbl 07698598) Full Text: DOI arXiv
Bisogno, Dean; Li, Wanlin; Litt, Daniel; Srinivasan, Padmavathi Group-theoretic Johnson classes and a non-hyperelliptic curve with torsion Ceresa class. (English) Zbl 07694982 Épijournal de Géom. Algébr., EPIGA 7, Article 8, 19 p. (2023). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 14C25 PDF BibTeX XML Cite \textit{D. Bisogno} et al., Épijournal de Géom. Algébr., EPIGA 7, Article 8, 19 p. (2023; Zbl 07694982) Full Text: DOI arXiv
Zhao, Qiulan; Li, Caixue; Li, Xinyue Algebro-geometric constructions of a hierarchy of integrable semi-discrete equations. (English) Zbl 1509.37096 J. Nonlinear Math. Phys. 30, No. 1, 156-183 (2023). MSC: 37K10 39A36 37K06 37K60 37K20 14H70 PDF BibTeX XML Cite \textit{Q. Zhao} et al., J. Nonlinear Math. Phys. 30, No. 1, 156--183 (2023; Zbl 1509.37096) Full Text: DOI
Geng, Xue; Guan, Liang Algebro-geometric solutions of the sine-Gordon hierarchy. (English) Zbl 1509.37088 J. Nonlinear Math. Phys. 30, No. 1, 114-134 (2023). MSC: 37K10 37K20 14H70 PDF BibTeX XML Cite \textit{X. Geng} and \textit{L. Guan}, J. Nonlinear Math. Phys. 30, No. 1, 114--134 (2023; Zbl 1509.37088) Full Text: DOI
Müller, J. Steffen; Reitsma, Berno Computing torsion subgroups of Jacobians of hyperelliptic curves of genus 3. (English) Zbl 07674890 Res. Number Theory 9, No. 2, Paper No. 23, 26 p. (2023). Reviewer: Sungkon Chang (Savannah) MSC: 11G30 PDF BibTeX XML Cite \textit{J. S. Müller} and \textit{B. Reitsma}, Res. Number Theory 9, No. 2, Paper No. 23, 26 p. (2023; Zbl 07674890) Full Text: DOI arXiv
Bojakli, Mustafa; Sankari, Hasan Weierstrass points on modular curves \(X_0(N)\) fixed by the Atkin-Lehner involutions. (English) Zbl 07674366 Arab J. Math. Sci. 29, No. 1, 63-72 (2023). MSC: 11G18 14H55 PDF BibTeX XML Cite \textit{M. Bojakli} and \textit{H. Sankari}, Arab J. Math. Sci. 29, No. 1, 63--72 (2023; Zbl 07674366) Full Text: DOI
Dokchitser, Tim; Dokchitser, Vladimir; Maistret, Céline; Morgan, Adam Arithmetic of hyperelliptic curves over local fields. (English) Zbl 1520.11061 Math. Ann. 385, No. 3-4, 1213-1322 (2023). Reviewer: Caleb Ji (New York) MSC: 11G20 11G10 14D10 14F20 14H45 PDF BibTeX XML Cite \textit{T. Dokchitser} et al., Math. Ann. 385, No. 3--4, 1213--1322 (2023; Zbl 1520.11061) Full Text: DOI arXiv
Di Lorenzo, Andrea; Pirisi, Roberto Cohomological invariants of root stacks and admissible double coverings. (English) Zbl 1506.14039 Can. J. Math. 75, No. 1, 202-224 (2023). MSC: 14F22 14H10 14C15 14A20 PDF BibTeX XML Cite \textit{A. Di Lorenzo} and \textit{R. Pirisi}, Can. J. Math. 75, No. 1, 202--224 (2023; Zbl 1506.14039) Full Text: DOI arXiv
Jeong, Keunyoung; Park, Junyeong; Yhee, Donggeon On the Jacobian of a family of hyperelliptic curves. (English) Zbl 1514.11041 Osaka J. Math. 60, No. 1, 43-60 (2023). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 11G10 11F27 PDF BibTeX XML Cite \textit{K. Jeong} et al., Osaka J. Math. 60, No. 1, 43--60 (2023; Zbl 1514.11041) Full Text: arXiv Link
Dokchitser, Vladimir; Morgan, Adam A note on hyperelliptic curves with ordinary reduction over 2-adic fields. (English) Zbl 07641106 J. Number Theory 244, 264-278 (2023). Reviewer: Josep M. Miret Biosca (Lleida) MSC: 11G20 14D10 14H25 14H45 PDF BibTeX XML Cite \textit{V. Dokchitser} and \textit{A. Morgan}, J. Number Theory 244, 264--278 (2023; Zbl 07641106) Full Text: DOI arXiv
Dina, Bogdan; Ionica, Sorina; Sijsling, Jeroen Isogenous hyperelliptic and non-hyperelliptic Jacobians with maximal complex multiplication. (English) Zbl 1507.14044 Math. Comput. 92, No. 339, 349-383 (2023). Reviewer: Tony Ezome (Libreville) MSC: 14H40 14H25 14H45 14H50 14K20 14K22 PDF BibTeX XML Cite \textit{B. Dina} et al., Math. Comput. 92, No. 339, 349--383 (2023; Zbl 1507.14044) Full Text: DOI arXiv
Novoselov, S. A.; Boltnev, Yu. F. On the number of points on the curve \(y^2 = x^7 + ax^4 + bx\) over a finite field. (Russian. English summary) Zbl 1505.11094 Diskretn. Anal. Issled. Oper. 29, No. 2, 62-79 (2022). MSC: 11G20 14G15 11Y16 PDF BibTeX XML Cite \textit{S. A. Novoselov} and \textit{Yu. F. Boltnev}, Diskretn. Anal. Issled. Oper. 29, No. 2, 62--79 (2022; Zbl 1505.11094) Full Text: DOI MNR
Anupindi, Vishnupriya Linear complexity of sequences on Koblitz curves of genus 2. (English) Zbl 1522.11052 Unif. Distrib. Theory 17, No. 2, 1-20 (2022). Reviewer: Cherng-tiao Perng (Norfolk) MSC: 11G05 11G20 11K45 11T71 PDF BibTeX XML Cite \textit{V. Anupindi}, Unif. Distrib. Theory 17, No. 2, 1--20 (2022; Zbl 1522.11052) Full Text: DOI arXiv
Dao, Van Thinh Average size of 2-Selmer groups of Jacobians of odd hyperelliptic curves over function fields. (English) Zbl 1511.11060 Pac. J. Math. 319, No. 2, 259-305 (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 14H40 PDF BibTeX XML Cite \textit{V. T. Dao}, Pac. J. Math. 319, No. 2, 259--305 (2022; Zbl 1511.11060) Full Text: DOI
Bisatt, Matthew Root number of the Jacobian of \(y^2 = x^p+a\). (English. French summary) Zbl 07607144 J. Théor. Nombres Bordx. 34, No. 2, 575-582 (2022). Reviewer: Alonso Castellanos (Uberlândia) MSC: 11G20 11G40 PDF BibTeX XML Cite \textit{M. Bisatt}, J. Théor. Nombres Bordx. 34, No. 2, 575--582 (2022; Zbl 07607144) Full Text: DOI arXiv
Coppola, Nirvana Wild Galois representations: a family of hyperelliptic curves with large inertia image. (English) Zbl 07605296 Math. Proc. Camb. Philos. Soc. 173, No. 3, 619-633 (2022). MSC: 11G20 11F80 11F85 11G20 11G20 11-04 PDF BibTeX XML Cite \textit{N. Coppola}, Math. Proc. Camb. Philos. Soc. 173, No. 3, 619--633 (2022; Zbl 07605296) Full Text: DOI arXiv
Fu, Hang; Stoll, Michael Elliptic curves with common torsion \(x\)-coordinates and hyperelliptic torsion packets. (English) Zbl 1514.11035 Proc. Am. Math. Soc. 150, No. 12, 5137-5149 (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G05 11G30 14H40 14H45 14H52 PDF BibTeX XML Cite \textit{H. Fu} and \textit{M. Stoll}, Proc. Am. Math. Soc. 150, No. 12, 5137--5149 (2022; Zbl 1514.11035) Full Text: DOI arXiv
Reyes-Bustos, Cid; Wakayama, Masato Degeneracy and hidden symmetry for the asymmetric quantum Rabi model with integral bias. (English) Zbl 1513.81056 Commun. Number Theory Phys. 16, No. 3, 615-672 (2022). MSC: 81Q10 11G05 34L40 81S05 PDF BibTeX XML Cite \textit{C. Reyes-Bustos} and \textit{M. Wakayama}, Commun. Number Theory Phys. 16, No. 3, 615--672 (2022; Zbl 1513.81056) Full Text: DOI arXiv
Lyamaev, S. Yu. On approximate summation of Poincaré series in the Schottky model. (English. Russian original) Zbl 1502.30127 Dokl. Math. 106, No. 1, 247-250 (2022); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 505, 42-45 (2022). MSC: 30F40 PDF BibTeX XML Cite \textit{S. Yu. Lyamaev}, Dokl. Math. 106, No. 1, 247--250 (2022; Zbl 1502.30127); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 505, 42--45 (2022) Full Text: DOI
Gong, Cheng; Gu, Yi; Lu, Jun; Pollack, Paul On the stable reduction of hyperelliptic curves. (English) Zbl 1494.14012 Tôhoku Math. J. (2) 74, No. 2, 195-213 (2022). MSC: 14D05 14D06 14J25 11J71 14H30 11K06 PDF BibTeX XML Cite \textit{C. Gong} et al., Tôhoku Math. J. (2) 74, No. 2, 195--213 (2022; Zbl 1494.14012) Full Text: DOI
Lyamaev, S. Yu. Summation of Poincaré theta series in the Schottky model. (English. Russian original) Zbl 1497.65006 Comput. Math. Math. Phys. 62, No. 7, 1059-1073 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1085-1099 (2022). MSC: 65B10 30F10 PDF BibTeX XML Cite \textit{S. Yu. Lyamaev}, Comput. Math. Math. Phys. 62, No. 7, 1059--1073 (2022; Zbl 1497.65006); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1085--1099 (2022) Full Text: DOI
Liu, Qing Global Weierstrass equations of hyperelliptic curves. (English) Zbl 1504.11073 Trans. Am. Math. Soc. 375, No. 8, 5889-5906 (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 11G05 14D10 14H25 PDF BibTeX XML Cite \textit{Q. Liu}, Trans. Am. Math. Soc. 375, No. 8, 5889--5906 (2022; Zbl 1504.11073) Full Text: DOI arXiv
Laga, Jef The average size of the 2-Selmer group of a family of non-hyperelliptic curves of genus 3. (English) Zbl 1518.11052 Algebra Number Theory 16, No. 5, 1161-1212 (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 11E72 11N45 14G05 14G25 14H40 14H45 PDF BibTeX XML Cite \textit{J. Laga}, Algebra Number Theory 16, No. 5, 1161--1212 (2022; Zbl 1518.11052) Full Text: DOI arXiv
Moschetti, Riccardo; Pirola, Gian Pietro Hyperelliptic odd coverings. (English) Zbl 1498.14078 Isr. J. Math. 249, No. 1, 477-500 (2022). Reviewer: Sarah Faria Monteiro Mazzini (Belo Horizonte) MSC: 14H30 14H52 14J10 PDF BibTeX XML Cite \textit{R. Moschetti} and \textit{G. P. Pirola}, Isr. J. Math. 249, No. 1, 477--500 (2022; Zbl 1498.14078) Full Text: DOI arXiv
Greicius, Quinn; Landesman, Aaron An explicit abelian surface with maximal Galois action. (English) Zbl 1497.11168 Exp. Math. 31, No. 2, 689-693 (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 11F80 11G10 PDF BibTeX XML Cite \textit{Q. Greicius} and \textit{A. Landesman}, Exp. Math. 31, No. 2, 689--693 (2022; Zbl 1497.11168) Full Text: DOI arXiv
Keyes, Christopher Growth of points on hyperelliptic curves over number fields. (English. French summary) Zbl 1501.11068 J. Théor. Nombres Bordx. 34, No. 1, 271-294 (2022). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11G30 12F05 12E05 PDF BibTeX XML Cite \textit{C. Keyes}, J. Théor. Nombres Bordx. 34, No. 1, 271--294 (2022; Zbl 1501.11068) Full Text: DOI arXiv
Bisatt, Matthew Clusters, inertia, and root numbers. (English) Zbl 07556752 Funct. Approximatio, Comment. Math. 66, No. 2, 203-243 (2022). Reviewer: Sungkon Chang (Savannah) MSC: 11G10 11G20 11S05 PDF BibTeX XML Cite \textit{M. Bisatt}, Funct. Approximatio, Comment. Math. 66, No. 2, 203--243 (2022; Zbl 07556752) Full Text: DOI arXiv
Chen, Dawei; Gendron, Quentin Towards a classification of connected components of the strata of \(k\)-differentials. (English) Zbl 1495.14043 Doc. Math. 27, 1031-1100 (2022). Reviewer: Scott Nollet (Fort Worth) MSC: 14H10 32G15 14H15 PDF BibTeX XML Cite \textit{D. Chen} and \textit{Q. Gendron}, Doc. Math. 27, 1031--1100 (2022; Zbl 1495.14043) Full Text: DOI arXiv
Bekker, Boris M.; Zarhin, Yuri G. Torsion points of small order on hyperelliptic curves. (English) Zbl 1498.14082 Eur. J. Math. 8, No. 2, 611-624 (2022). Reviewer: Irene Spelta (Pavia) MSC: 14H40 14G27 11G10 11G30 PDF BibTeX XML Cite \textit{B. M. Bekker} and \textit{Y. G. Zarhin}, Eur. J. Math. 8, No. 2, 611--624 (2022; Zbl 1498.14082) Full Text: DOI arXiv
Müller, Nicolas; Pink, Richard Hyperelliptic curves with many automorphisms. (English) Zbl 07536477 Int. J. Number Theory 18, No. 4, 913-930 (2022). MSC: 14H45 14H37 14K22 PDF BibTeX XML Cite \textit{N. Müller} and \textit{R. Pink}, Int. J. Number Theory 18, No. 4, 913--930 (2022; Zbl 07536477) Full Text: DOI arXiv
Jȩdrzejak, Tomasz Ranks in the family of hyperelliptic Jacobians of \(y^2= x^5+ax\). II. (English) Zbl 1497.11159 Int. J. Number Theory 18, No. 4, 813-837 (2022). Reviewer: Maciej Ulas (Kraków) MSC: 11G10 11G30 11G20 11G25 PDF BibTeX XML Cite \textit{T. Jȩdrzejak}, Int. J. Number Theory 18, No. 4, 813--837 (2022; Zbl 1497.11159) Full Text: DOI
Lorenzo García, Elisa On different expressions for invariants of hyperelliptic curves of genus 3. (English) Zbl 1498.11129 J. Math. Soc. Japan 74, No. 2, 403-426 (2022). Reviewer: Francesc Bars Cortina (Bellaterra) MSC: 11F37 11F46 11G10 11G15 14H15 14H42 14H45 14J15 14K10 14K25 14L24 14Q05 PDF BibTeX XML Cite \textit{E. Lorenzo García}, J. Math. Soc. Japan 74, No. 2, 403--426 (2022; Zbl 1498.11129) Full Text: DOI arXiv
Anupindi, Vishnupriya; Mérai, László Linear complexity of some sequences derived from hyperelliptic curves of genus 2. (English) Zbl 1484.11141 Cryptogr. Commun. 14, No. 1, 117-134 (2022). MSC: 11G20 11K45 11T71 PDF BibTeX XML Cite \textit{V. Anupindi} and \textit{L. Mérai}, Cryptogr. Commun. 14, No. 1, 117--134 (2022; Zbl 1484.11141) Full Text: DOI arXiv
Katz, Eric; Kaya, Enis \(p\)-adic integration on bad reduction hyperelliptic curves. (English) Zbl 1508.11108 Int. Math. Res. Not. 2022, No. 8, 6038-6106 (2022). Reviewer: Yilmaz Simsek (Antalya) MSC: 11S80 11G20 14G20 28C99 PDF BibTeX XML Cite \textit{E. Katz} and \textit{E. Kaya}, Int. Math. Res. Not. 2022, No. 8, 6038--6106 (2022; Zbl 1508.11108) Full Text: DOI arXiv
Baker, Alan [Masser, David] Transcendental number theory. With a new foreword by David Masser. Reprint of the 1990 paperback edition. (English) Zbl 1496.11001 Cambridge Mathematical Library. Cambridge: Cambridge University Press (ISBN 978-1-00-922994-4/pbk; 978-1-00-922993-7/ebook). xiv, 169 p. (2022). MSC: 11-01 01A75 11J81 11J86 11J85 11J89 11J83 11J68 11D41 11J91 11R29 11K60 11R11 PDF BibTeX XML Cite \textit{A. Baker}, Transcendental number theory. With a new foreword by David Masser. Reprint of the 1990 paperback edition. Cambridge: Cambridge University Press (2022; Zbl 1496.11001) Full Text: DOI
Ayano, Takanori; Buchstaber, Victor M. Relationships between hyperelliptic functions of genus 2 and elliptic functions. (English) Zbl 1481.14057 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 010, 30 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H40 14H42 14K25 32A20 33E05 PDF BibTeX XML Cite \textit{T. Ayano} and \textit{V. M. Buchstaber}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 010, 30 p. (2022; Zbl 1481.14057) Full Text: DOI arXiv
Emory, Melissa; Goodson, Heidi Sato-Tate distributions of \(y^2=x^p-1\) and \(y^2=x^{2p}-1\). (English) Zbl 07474387 J. Algebra 597, 241-265 (2022). MSC: 11M50 11G10 11G20 14G10 PDF BibTeX XML Cite \textit{M. Emory} and \textit{H. Goodson}, J. Algebra 597, 241--265 (2022; Zbl 07474387) Full Text: DOI arXiv
Betts, L. Alexander Variation of Tamagawa numbers of Jacobians of hyperelliptic curves with semistable reduction. (English) Zbl 1483.11125 J. Number Theory 231, 158-213 (2022). MSC: 11G20 11G40 14G20 20C10 PDF BibTeX XML Cite \textit{L. A. Betts}, J. Number Theory 231, 158--213 (2022; Zbl 1483.11125) Full Text: DOI arXiv
Yelton, Jeffrey Boundedness results for 2-adic Galois images associated to hyperelliptic Jacobians. (English) Zbl 1521.14058 Math. Nachr. 294, No. 8, 1629-1643 (2021). MSC: 14H40 11F80 11G30 14H30 20G25 PDF BibTeX XML Cite \textit{J. Yelton}, Math. Nachr. 294, No. 8, 1629--1643 (2021; Zbl 1521.14058) Full Text: DOI arXiv
Reyes-Bustos, Cid; Braak, Daniel; Wakayama, Masato Remarks on the hidden symmetry of the asymmetric quantum Rabi model. (English) Zbl 1519.81315 J. Phys. A, Math. Theor. 54, No. 28, Article ID 285202, 20 p. (2021). MSC: 81R12 81V80 PDF BibTeX XML Cite \textit{C. Reyes-Bustos} et al., J. Phys. A, Math. Theor. 54, No. 28, Article ID 285202, 20 p. (2021; Zbl 1519.81315) Full Text: DOI arXiv
Salam, Taspia; Hossen, Md. Sharif HECC (hyperelliptic curve cryptography). (English) Zbl 1504.94184 Bin Ahmad, Khairol Amali (ed.) et al., Functional encryption. Cham: Springer. EAI/Springer Innov. Commun. Comput., 59-78 (2021). MSC: 94A60 14H52 PDF BibTeX XML Cite \textit{T. Salam} and \textit{Md. S. Hossen}, in: Functional encryption. Cham: Springer. 59--78 (2021; Zbl 1504.94184) Full Text: DOI
Lercier, Reynald; Lorenzo García, Elisa; Ritzenthaler, Christophe Stable models of plane quartics with hyperelliptic reduction. (English) Zbl 1519.11035 Ballet, Stéphane (ed.) et al., Arithmetic, geometry, cryptography and coding theory, AGC2T, 17th international conference, Centre International de Rencontres Mathématiques, Marseilles, France, June 10–14, 2019. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 770, 223-237 (2021). Reviewer: Sungkon Chang (Savannah) MSC: 11G20 14Q05 14D10 14D20 14H25 PDF BibTeX XML Cite \textit{R. Lercier} et al., Contemp. Math. 770, 223--237 (2021; Zbl 1519.11035) Full Text: DOI arXiv
Hahn, Marvin Anas; Markwig, Hannah; Ren, Yue; Tyomkin, Ilya Tropicalized quartics and canonical embeddings for tropical curves of genus 3. (English) Zbl 1490.14099 Int. Math. Res. Not. 2021, No. 12, 8946-8976 (2021). Reviewer: Thomas Blomme (Paris) MSC: 14T10 14H50 PDF BibTeX XML Cite \textit{M. A. Hahn} et al., Int. Math. Res. Not. 2021, No. 12, 8946--8976 (2021; Zbl 1490.14099) Full Text: DOI arXiv
Platonov, V. P.; Fedorov, G. V. On the classification problem for polynomials \(f\) with a periodic continued fraction expansion of \(\sqrt{f}\) in hyperelliptic fields. (English. Russian original) Zbl 1483.11123 Izv. Math. 85, No. 5, 972-1007 (2021); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 5, 152-189 (2021). MSC: 11G16 11G30 11J70 11R58 PDF BibTeX XML Cite \textit{V. P. Platonov} and \textit{G. V. Fedorov}, Izv. Math. 85, No. 5, 972--1007 (2021; Zbl 1483.11123); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 85, No. 5, 152--189 (2021) Full Text: DOI
Celik, Turku Ozlum Thomae-Weber formula: algebraic computations of theta constants. (English) Zbl 1496.14029 Int. Math. Res. Not. 2021, No. 23, 17798-17822 (2021). Reviewer: Christophe Ritzenthaler (Rennes) MSC: 14H42 11E04 PDF BibTeX XML Cite \textit{T. O. Celik}, Int. Math. Res. Not. 2021, No. 23, 17798--17822 (2021; Zbl 1496.14029) Full Text: DOI arXiv
Zucconi, Francesco The rationality of the moduli space of two-pointed ineffective spin hyperelliptic curves. (English) Zbl 1486.14042 Q. J. Math. 72, No. 4, 1329-1356 (2021). Reviewer: Emilia Mezzetti (Trieste) MSC: 14H10 14E08 14M20 PDF BibTeX XML Cite \textit{F. Zucconi}, Q. J. Math. 72, No. 4, 1329--1356 (2021; Zbl 1486.14042) Full Text: DOI arXiv
Alcázar, Juan Gerardo; Hermoso, Carlos Computing projective equivalences of planar curves birationally equivalent to elliptic and hyperelliptic curves. (English) Zbl 1480.65042 Comput. Aided Geom. Des. 91, Article ID 102048, 18 p. (2021). MSC: 65D17 65D18 PDF BibTeX XML Cite \textit{J. G. Alcázar} and \textit{C. Hermoso}, Comput. Aided Geom. Des. 91, Article ID 102048, 18 p. (2021; Zbl 1480.65042) Full Text: DOI
Kewat, Pramod Kumar; Kumar, Ram Generalizations of Jacobsthal sums and hypergeometric series over finite fields. (English) Zbl 1475.11214 Ramanujan J. 56, No. 3, 993-1006 (2021). MSC: 11T24 11G20 PDF BibTeX XML Cite \textit{P. K. Kewat} and \textit{R. Kumar}, Ramanujan J. 56, No. 3, 993--1006 (2021; Zbl 1475.11214) Full Text: DOI arXiv
Hone, Andrew N. W. Continued fractions and Hankel determinants from hyperelliptic curves. (English) Zbl 1485.39030 Commun. Pure Appl. Math. 74, No. 11, 2310-2347 (2021). Reviewer: Ahmed Lesfari (El Jadida) MSC: 39A36 37J70 14H70 11B37 11A55 11Y65 15A15 PDF BibTeX XML Cite \textit{A. N. W. Hone}, Commun. Pure Appl. Math. 74, No. 11, 2310--2347 (2021; Zbl 1485.39030) Full Text: DOI arXiv
Ballico, Edoardo Space curves, \(X\)-ranks and cuspidal projections. (English) Zbl 1476.14066 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 217-229 (2021). Reviewer: Scott Nollet (Fort Worth) MSC: 14H50 14N05 PDF BibTeX XML Cite \textit{E. Ballico}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 217--229 (2021; Zbl 1476.14066) Full Text: DOI
Hu, Zhi; Lin, Dongdai; Zhao, Chang-An Fast scalar multiplication of degenerate divisors for hyperelliptic curve cryptosystems. (English) Zbl 1510.11120 Appl. Math. Comput. 404, Article ID 126239, 8 p. (2021). MSC: 11G20 14G50 94A60 PDF BibTeX XML Cite \textit{Z. Hu} et al., Appl. Math. Comput. 404, Article ID 126239, 8 p. (2021; Zbl 1510.11120) Full Text: DOI
Bars, Francesc; González, Josep; Xarles, Xavier Hyperelliptic parametrizations of \(\pmb{\mathbb{Q}}\)-curves. (English) Zbl 1480.11069 Ramanujan J. 56, No. 1, 103-120 (2021). Reviewer: Noburo Ishii (Kyoto) MSC: 11G05 11F11 11G30 14H25 14G35 11G18 PDF BibTeX XML Cite \textit{F. Bars} et al., Ramanujan J. 56, No. 1, 103--120 (2021; Zbl 1480.11069) Full Text: DOI arXiv
Lercier, Reynald; Liu, Qing; Lorenzo García, Elisa; Ritzenthaler, Christophe Reduction type of smooth plane quartics. (English) Zbl 1494.13006 Algebra Number Theory 15, No. 6, 1429-1468 (2021). Reviewer: Sophie Kriz (Ann Arbor) MSC: 13A50 14H10 14H25 14L24 PDF BibTeX XML Cite \textit{R. Lercier} et al., Algebra Number Theory 15, No. 6, 1429--1468 (2021; Zbl 1494.13006) Full Text: DOI arXiv
Darbar, Pranendu; Maiti, Gopal Correlation of shifted values of \(L\)-functions in the hyperelliptic ensemble. (English) Zbl 1483.11255 Finite Fields Appl. 76, Article ID 101928, 38 p. (2021). MSC: 11R59 11T06 11M50 PDF BibTeX XML Cite \textit{P. Darbar} and \textit{G. Maiti}, Finite Fields Appl. 76, Article ID 101928, 38 p. (2021; Zbl 1483.11255) Full Text: DOI arXiv
Emory, Melissa; Goodson, Heidi; Peyrot, Alexandre Towards the Sato-Tate groups of trinomial hyperelliptic curves. (English) Zbl 1474.11121 Int. J. Number Theory 17, No. 10, 2175-2206 (2021). MSC: 11G30 11G10 PDF BibTeX XML Cite \textit{M. Emory} et al., Int. J. Number Theory 17, No. 10, 2175--2206 (2021; Zbl 1474.11121) Full Text: DOI arXiv
Di Lorenzo, Andrea; Pirisi, Roberto Brauer groups of moduli of hyperelliptic curves via cohomological invariants. (English) Zbl 1486.14025 Forum Math. Sigma 9, Paper No. e64, 37 p. (2021). MSC: 14F22 14H10 14D23 PDF BibTeX XML Cite \textit{A. Di Lorenzo} and \textit{R. Pirisi}, Forum Math. Sigma 9, Paper No. e64, 37 p. (2021; Zbl 1486.14025) Full Text: DOI arXiv
Coelho, Juliana; Sercio, Frederico Characterizing gonality for two-component stable curves. (English) Zbl 1471.14063 Geom. Dedicata 214, 157-176 (2021). MSC: 14H10 14H51 PDF BibTeX XML Cite \textit{J. Coelho} and \textit{F. Sercio}, Geom. Dedicata 214, 157--176 (2021; Zbl 1471.14063) Full Text: DOI arXiv
Francaviglia, Stefano; Ruffoni, Lorenzo Local deformations of branched projective structures: Schiffer variations and the Teichmüller map. (English) Zbl 1480.57025 Geom. Dedicata 214, 21-48 (2021). Reviewer: Hongtaek Jung (Pohang) MSC: 57M50 14H15 32G05 PDF BibTeX XML Cite \textit{S. Francaviglia} and \textit{L. Ruffoni}, Geom. Dedicata 214, 21--48 (2021; Zbl 1480.57025) Full Text: DOI arXiv
König, Joachim; Legrand, François Density results for specialization sets of Galois covers. (English) Zbl 1481.11110 J. Inst. Math. Jussieu 20, No. 5, 1455-1496 (2021). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11R32 11G30 14E20 14G05 PDF BibTeX XML Cite \textit{J. König} and \textit{F. Legrand}, J. Inst. Math. Jussieu 20, No. 5, 1455--1496 (2021; Zbl 1481.11110) Full Text: DOI arXiv
Hirakawa, Yoshinosuke; Matsumura, Hideki Infinitely many hyperelliptic curves with exactly two rational points. (English) Zbl 1471.11201 Rocky Mt. J. Math. 51, No. 3, 883-889 (2021). MSC: 11G30 11G05 11D25 14G05 PDF BibTeX XML Cite \textit{Y. Hirakawa} and \textit{H. Matsumura}, Rocky Mt. J. Math. 51, No. 3, 883--889 (2021; Zbl 1471.11201) Full Text: DOI arXiv
Ozdemir, Enver Factoring polynomials over finite fields. (English) Zbl 1471.11288 Int. J. Number Theory 17, No. 7, 1517-1536 (2021). MSC: 11T06 14H40 11G99 PDF BibTeX XML Cite \textit{E. Ozdemir}, Int. J. Number Theory 17, No. 7, 1517--1536 (2021; Zbl 1471.11288) Full Text: DOI
Di Lorenzo, A. Cohomological invariants of the stack of hyperelliptic curves of odd genus. (English) Zbl 1486.14038 Transform. Groups 26, No. 1, 165-214 (2021). Reviewer: Angelina Zheng (Padova) MSC: 14H10 14D23 PDF BibTeX XML Cite \textit{A. Di Lorenzo}, Transform. Groups 26, No. 1, 165--214 (2021; Zbl 1486.14038) Full Text: DOI arXiv
Evink, Tim; van der Heiden, Gert-Jan; Top, Jaap Two-descent on some genus two curves. (English) Zbl 1480.11082 Indag. Math., New Ser. 32, No. 4, 883-900 (2021). Reviewer: Francesc Bars Cortina (Bellaterra) MSC: 11G30 14G05 PDF BibTeX XML Cite \textit{T. Evink} et al., Indag. Math., New Ser. 32, No. 4, 883--900 (2021; Zbl 1480.11082) Full Text: DOI arXiv Link
Qian, Xinjie; Shen, Yang; Yang, Jiazhong Invariant algebraic curves and hyperelliptic limit cycles of Liénard systems. (English) Zbl 1478.34041 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 44, 14 p. (2021). Reviewer: Weinian Zhang (Chengdu) MSC: 34C07 34C05 34C45 PDF BibTeX XML Cite \textit{X. Qian} et al., Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 44, 14 p. (2021; Zbl 1478.34041) Full Text: DOI
Dembner, Spencer; Jain, Vanshika Hyperelliptic curves and newform coefficients. (English) Zbl 1487.11064 J. Number Theory 225, 214-239 (2021). Reviewer: Francesc Bars Cortina (Bellaterra) MSC: 11G30 11F30 PDF BibTeX XML Cite \textit{S. Dembner} and \textit{V. Jain}, J. Number Theory 225, 214--239 (2021; Zbl 1487.11064) Full Text: DOI arXiv
Lario, Joan-C.; Somoza, Anna; Vincent, Christelle An inverse Jacobian algorithm for Picard curves. (English) Zbl 1482.14035 Res. Number Theory 7, No. 2, Paper No. 32, 23 p. (2021). Reviewer: Cherng-tiao Perng (Norfolk) MSC: 14H25 11G15 11G30 14H45 14K25 14Q05 PDF BibTeX XML Cite \textit{J.-C. Lario} et al., Res. Number Theory 7, No. 2, Paper No. 32, 23 p. (2021; Zbl 1482.14035) Full Text: DOI arXiv
Agostini, Daniele; Barros, Ignacio Pencils on surfaces with normal crossings and the Kodaira dimension of \(\overline{\mathcal{M}}_{g,n}\). (English) Zbl 1462.14030 Forum Math. Sigma 9, Paper No. e31, 22 p. (2021). Reviewer: Quentin Gendron (Guanajuato) MSC: 14H10 14H45 14M20 PDF BibTeX XML Cite \textit{D. Agostini} and \textit{I. Barros}, Forum Math. Sigma 9, Paper No. e31, 22 p. (2021; Zbl 1462.14030) Full Text: DOI arXiv
Morrison, Ralph Tropical hyperelliptic curves in the plane. (English) Zbl 1460.14147 J. Algebr. Comb. 53, No. 2, 369-388 (2021). MSC: 14T20 14H51 PDF BibTeX XML Cite \textit{R. Morrison}, J. Algebr. Comb. 53, No. 2, 369--388 (2021; Zbl 1460.14147) Full Text: DOI arXiv
Gillibert, Jean From Picard groups of hyperelliptic curves to class groups of quadratic fields. (English) Zbl 1479.11111 Trans. Am. Math. Soc. 374, No. 6, 3919-3946 (2021). Reviewer: Francesc Bars Cortina (Bellaterra) MSC: 11G30 11E12 14H40 PDF BibTeX XML Cite \textit{J. Gillibert}, Trans. Am. Math. Soc. 374, No. 6, 3919--3946 (2021; Zbl 1479.11111) Full Text: DOI arXiv
Di Lorenzo, Andrea; Pirisi, Roberto A complete description of the cohomological invariants of even genus hyperelliptic curves. (English) Zbl 1471.14064 Doc. Math. 26, 199-230 (2021). MSC: 14H10 14F43 14D23 14H30 PDF BibTeX XML Cite \textit{A. Di Lorenzo} and \textit{R. Pirisi}, Doc. Math. 26, 199--230 (2021; Zbl 1471.14064) Full Text: DOI arXiv
Jędrzejak, Tomasz Ranks in the family of hyperelliptic Jacobians of \(y^2=x^5+ax\). (English) Zbl 1468.11135 J. Number Theory 223, 35-52 (2021). Reviewer: Maciej Ulas (Kraków) MSC: 11G10 11G30 11G20 11G25 PDF BibTeX XML Cite \textit{T. Jędrzejak}, J. Number Theory 223, 35--52 (2021; Zbl 1468.11135) Full Text: DOI
Andrade, J. C.; Macmillan, J. The first moment of \(L\bigl(\frac{1}{2},\chi\bigr)\) for real quadratic function fields. (English) Zbl 1486.11141 Acta Arith. 198, No. 1, 1-35 (2021). Reviewer: Gabriel D. Villa Salvador (Ciudad de México) MSC: 11R59 11M38 11G20 11M06 PDF BibTeX XML Cite \textit{J. C. Andrade} and \textit{J. Macmillan}, Acta Arith. 198, No. 1, 1--35 (2021; Zbl 1486.11141) Full Text: DOI arXiv
Andrica, Dorin; Ţurcaş, George C. Pairs of rational triangles with equal symmetric invariants. (English) Zbl 1453.14072 J. Number Theory 221, 496-504 (2021). MSC: 14G05 11G05 11G30 11Y50 PDF BibTeX XML Cite \textit{D. Andrica} and \textit{G. C. Ţurcaş}, J. Number Theory 221, 496--504 (2021; Zbl 1453.14072) Full Text: DOI
Huang, Yan; Su, Zhaofeng; Zhang, Fangguo; Ding, Yong; Cheng, Rong Quantum algorithm for solving hyperelliptic curve discrete logarithm problem. (English) Zbl 1508.81680 Quantum Inf. Process. 19, No. 2, Paper No. 62, 17 p. (2020). MSC: 81P94 11T71 81P68 94A62 PDF BibTeX XML Cite \textit{Y. Huang} et al., Quantum Inf. Process. 19, No. 2, Paper No. 62, 17 p. (2020; Zbl 1508.81680) Full Text: DOI
Ganguly, Anindya; Das, Abhijit; Chowdhury, Dipanwita Roy; Mehta, Deval A family of subfield hyperelliptic curves for use in cryptography. (English) Zbl 1515.94069 Meng, Weizhi (ed.) et al., Information and communications security. 22nd international conference, ICICS 2020, Copenhagen, Denmark, August 24–26, 2020. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12282, 543-561 (2020). MSC: 94A60 14H52 PDF BibTeX XML Cite \textit{A. Ganguly} et al., Lect. Notes Comput. Sci. 12282, 543--561 (2020; Zbl 1515.94069) Full Text: DOI
Lindner, Sebastian; Imbert, Laurent; Jacobson, Michael J. jun. Improved divisor arithmetic on generic hyperelliptic curves. (English) Zbl 1499.11225 ACM Commun. Comput. Algebra 54, No. 3, 95-99 (2020). MSC: 11G20 68W30 PDF BibTeX XML Cite \textit{S. Lindner} et al., ACM Commun. Comput. Algebra 54, No. 3, 95--99 (2020; Zbl 1499.11225) Full Text: DOI
Andrica, Dorin; Ţurcaş, George C. Rational triangles as a bridge between geometry and number theory. (English) Zbl 1513.14005 Int. J. Geom. 9, No. 2, 150-162 (2020). MSC: 14G05 11G30 11Y50 PDF BibTeX XML Cite \textit{D. Andrica} and \textit{G. C. Ţurcaş}, Int. J. Geom. 9, No. 2, 150--162 (2020; Zbl 1513.14005) Full Text: Link
Faraggi, Omri; Nowell, Sarah Models of hyperelliptic curves with tame potentially semistable reduction. (English) Zbl 1492.11107 Trans. Lond. Math. Soc. 7, No. 1, 49-95 (2020). MSC: 11G20 14H25 PDF BibTeX XML Cite \textit{O. Faraggi} and \textit{S. Nowell}, Trans. Lond. Math. Soc. 7, No. 1, 49--95 (2020; Zbl 1492.11107) Full Text: DOI arXiv
Sohn, Gyoyong Study on the Jacobian varieties of hyperelliptic curves over finite fields. (English) Zbl 1499.11228 Adv. Stud. Contemp. Math., Kyungshang 30, No. 3, 429-433 (2020). MSC: 11G25 11G10 PDF BibTeX XML Cite \textit{G. Sohn}, Adv. Stud. Contemp. Math., Kyungshang 30, No. 3, 429--433 (2020; Zbl 1499.11228) Full Text: DOI
Françoise, Jean-Pierre; Tarama, Daisuke The rigid body dynamics in an ideal fluid: Clebsch top and Kummer surfaces. (English) Zbl 1483.37075 Donagi, Ron (ed.) et al., Integrable systems and algebraic geometry. A celebration of Emma Previato’s 65th birthday. Volume 2. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 459, 288-312 (2020). MSC: 37J35 37J39 37J38 70E40 14J28 14H70 PDF BibTeX XML Cite \textit{J.-P. Françoise} and \textit{D. Tarama}, Lond. Math. Soc. Lect. Note Ser. 459, 288--312 (2020; Zbl 1483.37075) Full Text: DOI arXiv Link
Andrica, Dorin; Bagdasar, Ovidiu; Ţurcaş, George Cătălin The number of partitions of a set and superelliptic Diophantine equations. (English) Zbl 1470.11177 Raigorodskii, Andrei M. (ed.) et al., Discrete mathematics and applications. Cham: Springer. Springer Optim. Appl. 165, 35-55 (2020). MSC: 11G30 05A18 11P81 11Y50 14G05 PDF BibTeX XML Cite \textit{D. Andrica} et al., Springer Optim. Appl. 165, 35--55 (2020; Zbl 1470.11177) Full Text: DOI
Malygina, E. S.; Novoselov, S. A. Division polynomials for hyperelliptic curves defined by Dickson polynomials. (English) Zbl 1470.11173 Mat. Vopr. Kriptografii 11, No. 2, 69-81 (2020). MSC: 11G20 94A60 PDF BibTeX XML Cite \textit{E. S. Malygina} and \textit{S. A. Novoselov}, Mat. Vopr. Kriptografii 11, No. 2, 69--81 (2020; Zbl 1470.11173) Full Text: DOI MNR
Kunzweiler, Sabrina Differential forms on hyperelliptic curves with semistable reduction. (English) Zbl 1469.11205 Res. Number Theory 6, No. 2, Paper No. 25, 17 p. (2020). MSC: 11G20 14H25 11G40 PDF BibTeX XML Cite \textit{S. Kunzweiler}, Res. Number Theory 6, No. 2, Paper No. 25, 17 p. (2020; Zbl 1469.11205) Full Text: DOI arXiv
Dragović, Vladimir; Radnović, Milena Periodic trajectories of ellipsoidal billiards in the 3-dimensional Minkowski space. (English) Zbl 1464.37063 Nijhoff, Frank (ed.) et al., Asymptotic, algebraic and geometric aspects of integrable systems. In honor of Nalini Joshi on her 60th birthday. Selected papers of the workshop, TSIMF, Sanya, China, April 9–13, 2018. Cham: Springer. Springer Proc. Math. Stat. 338, 159-174 (2020). MSC: 37J46 37J38 37C35 37C83 PDF BibTeX XML Cite \textit{V. Dragović} and \textit{M. Radnović}, Springer Proc. Math. Stat. 338, 159--174 (2020; Zbl 1464.37063) Full Text: DOI arXiv
Dina, Bogdan Adrian; Ionica, Sorina Genus 3 hyperelliptic curves with CM via Shimura reciprocity. (English) Zbl 1457.11093 Galbraith, Steven D. (ed.), ANTS XIV. Proceedings of the fourteenth algorithmic number theory symposium, Auckland, New Zealand, virtual event, June 29 – July 4, 2020. Berkeley, CA: Mathematical Sciences Publishers (MSP). Open Book Ser. 4, 161-178 (2020). MSC: 11G30 11G15 PDF BibTeX XML Cite \textit{B. A. Dina} and \textit{S. Ionica}, Open Book Ser. 4, 161--178 (2020; Zbl 1457.11093) Full Text: DOI arXiv
Novoselov, S. A. Counting points on hyperelliptic curves of type \(y^2=x^{2g+1}+ax^{g+1}+bx\). (English) Zbl 1455.11168 Finite Fields Appl. 68, Article ID 101757, 27 p. (2020). MSC: 11Y16 14H45 14Q05 11G20 11T06 PDF BibTeX XML Cite \textit{S. A. Novoselov}, Finite Fields Appl. 68, Article ID 101757, 27 p. (2020; Zbl 1455.11168) Full Text: DOI arXiv