×

Found 35 Documents (Results 1–35)

Colourings of polyhedra and hyperelliptic 3-manifolds. (English) Zbl 1061.57005

Cho, Jung Rae (ed.) et al., Recent advances in group theory and low-dimensional topology. Proceedings of the 2nd German-Korean workshop on algebra and topology, Pusan, Korea, August 14–26, 2000. Lemgo: Heldermann Verlag (ISBN 3-88538-227-X/pbk). Res. Expo. Math. 27, 123-131 (2003).
MSC:  57M12 20F55 57M50
PDFBibTeX XMLCite

On automorphisms and volumes of Riemann surfaces and three-dimensional hyperbolic manifolds. (Russian) Zbl 0951.57009

Reshetnyak, Yu. G. (ed.) et al., Algebra, geometry, analysis and mathematical physics. Twelfth Siberian school, Novosibirsk, Russia, July 20-24, 1998. Novosibirsk: Izdatel’stvo Instituta Matematiki SO RAN. 21-27 (1999).
MSC:  57N10 30F40 57M10 57M50
PDFBibTeX XMLCite

Genus two Heegaard splittings of orientable three-manifolds. (English) Zbl 0962.57013

Hass, Joel (ed.) et al., Proceedings of the Kirbyfest, Berkeley, CA, USA, June 22-26, 1998. Warwick: University of Warwick, Institute of Mathematics, Geom. Topol. Monogr. 2, 489-553 (1999); correction ibid. 2, 577-581 (1999).
MSC:  57N10 57M50
PDFBibTeX XMLCite
Full Text: arXiv EMIS

Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions. (English. Russian original) Zbl 0931.57012

Sib. Math. J. 40, No. 5, 873-886 (1999); translation from Sib. Mat. Zh. 40, No. 5, 1035-1051 (1999).
MSC:  57M50 30F40 57N10 57M10
PDFBibTeX XMLCite
Full Text: DOI

At most 27 length inequalities define Maskit’s fundamental domain for the modular group in genus 2. (English) Zbl 0901.57021

Rivin, Igor (ed.) et al., The Epstein Birthday Schrift dedicated to David Epstein on the occasion of his 60th birthday. Warwick: University of Warwick, Institute of Mathematics, Geom. Topol. Monogr. 1, 167-182 (1998).
MSC:  57M50 14H55 30F60 57N05 53C22
PDFBibTeX XMLCite
Full Text: arXiv EMIS

Filter Results by …

Document Type

all top 5

Year of Publication

all top 3

Main Field