Alías, Luis J.; Pastor, José A. Constant curvature spacelike hypersurfaces in the Lorentz-Minkowski space. (English) Zbl 0979.53069 Mladenov, I. M. (ed.) et al., Proceedings of the international conference on geometry, integrability and quantization, Varna, Bulgaria, September 1-10, 1999. Sofia: Coral Press Scientific Publishing. 17-26 (2000). The authors demonstrate some results about compact spacelike hypersurfaces with spherical boundary in \(L^{n+1}\). The authors prove:Theorem 1. The only compact spacelike hypersurfaces in the Lorentz-Minkowski space with constant mean curvature and spherical boundary are the hyperplanar balls and the hyperbolic caps.Theorem 2. The only compact spacelike hypersurfaces in the Lorentz-Minkowski space with nonzero constant scalar curvature and spherical boundary are the hyperbolic caps.For the entire collection see [Zbl 0940.00039]. Reviewer: V.T.Fomenko (Taganrog) MSC: 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) 53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics Keywords:compact spacelike hypersurfaces; constant mean curvature; hyperplanar balls; hyperbolic caps; constant scalar curvature PDF BibTeX XML Cite \textit{L. J. Alías} and \textit{J. A. Pastor}, in: Proceedings of the international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, September 1--10, 1999. Sofia: Coral Press Scientific Publishing. 17--26 (2000; Zbl 0979.53069)