Sidi, Avram \(\mathrm{PVTSI}^{(m)}\): a novel approach to computation of Hadamard finite parts of nonperiodic singular integrals. (English) Zbl 07462048 Calcolo 59, No. 1, Paper No. 7, 36 p. (2022). MSC: 41A55 41A60 45B05 45E05 65B05 65B15 65D30 65D32 PDF BibTeX XML Cite \textit{A. Sidi}, Calcolo 59, No. 1, Paper No. 7, 36 p. (2022; Zbl 07462048) Full Text: DOI OpenURL
Gayen, Rupanwita; Gupta, Sourav; Chakrabarti, Aloknath Water wave scattering by a thin vertical submerged permeable plate. (English) Zbl 07443840 Math. Model. Anal. 26, No. 2, 223-235 (2021). MSC: 76B15 45E99 PDF BibTeX XML Cite \textit{R. Gayen} et al., Math. Model. Anal. 26, No. 2, 223--235 (2021; Zbl 07443840) Full Text: DOI OpenURL
Kundu, Souvik; Gayen, R.; Gupta, Sourav Propagation of surface waves past asymmetric elastic plates. (English) Zbl 07443339 J. Eng. Math. 126, Paper No. 4, 25 p. (2021). MSC: 76B15 PDF BibTeX XML Cite \textit{S. Kundu} et al., J. Eng. Math. 126, Paper No. 4, 25 p. (2021; Zbl 07443339) Full Text: DOI OpenURL
Setukha, A. V.; Sukmanyuk, S. V. Existence of hypersingular integrals with a power singularity of arbitrary integer order. (English. Russian original) Zbl 07441912 Mosc. Univ. Comput. Math. Cybern. 45, No. 3, 126-133 (2021); translation from Vestn. Mosk. Univ., Ser. XV 2021, No. 3, 44-51 (2021). MSC: 45E05 26A39 26A42 PDF BibTeX XML Cite \textit{A. V. Setukha} and \textit{S. V. Sukmanyuk}, Mosc. Univ. Comput. Math. Cybern. 45, No. 3, 126--133 (2021; Zbl 07441912); translation from Vestn. Mosk. Univ., Ser. XV 2021, No. 3, 44--51 (2021) Full Text: DOI OpenURL
Hamzah, K. B.; Nik Long, N. M. A.; Senu, N.; Eshkuvatov, Z. K. Numerical solution for the thermally insulated cracks in bonded dissimilar materials using hypersingular integral equations. (English) Zbl 1481.74660 Appl. Math. Modelling 91, 358-373 (2021). MSC: 74R10 74F05 45F15 PDF BibTeX XML Cite \textit{K. B. Hamzah} et al., Appl. Math. Modelling 91, 358--373 (2021; Zbl 1481.74660) Full Text: DOI OpenURL
Setukha, A. V. On the solvability of a hypersingular integral equation on a surface with isothermal coordinates. (English. Russian original) Zbl 1478.45002 Differ. Equ. 57, No. 9, 1256-1272 (2021); translation from Differ. Uravn. 57, No. 9, 1280-1296 (2021). MSC: 45E99 35J05 PDF BibTeX XML Cite \textit{A. V. Setukha}, Differ. Equ. 57, No. 9, 1256--1272 (2021; Zbl 1478.45002); translation from Differ. Uravn. 57, No. 9, 1280--1296 (2021) Full Text: DOI OpenURL
Naskar, Sanjib; Kundu, Souvik; Gayen, R. An integral equation method for wave scattering by a pair of horizontal porous plates. (English) Zbl 1470.74042 Singh, Harendra (ed.) et al., Topics in integral and integro-differential equations. Theory and applications. Cham: Springer. Stud. Syst. Decis. Control 340, 229-255 (2021). MSC: 74J20 45E05 45F15 45G05 45K05 PDF BibTeX XML Cite \textit{S. Naskar} et al., Stud. Syst. Decis. Control 340, 229--255 (2021; Zbl 1470.74042) Full Text: DOI OpenURL
Boykov, Ilya Approximate methods for solving hypersingular integral equations. (English) Zbl 1470.65210 Singh, Harendra (ed.) et al., Topics in integral and integro-differential equations. Theory and applications. Cham: Springer. Stud. Syst. Decis. Control 340, 63-101 (2021). MSC: 65R20 45G05 45E10 45L05 PDF BibTeX XML Cite \textit{I. Boykov}, Stud. Syst. Decis. Control 340, 63--101 (2021; Zbl 1470.65210) Full Text: DOI OpenURL
De Bonis, M. C.; Occorsio, D.; Themistoclakis, W. Filtered interpolation for solving Prandtl’s integro-differential equations. (English) Zbl 07401538 Numer. Algorithms 88, No. 2, 679-709 (2021). MSC: 65R20 47G20 PDF BibTeX XML Cite \textit{M. C. De Bonis} et al., Numer. Algorithms 88, No. 2, 679--709 (2021; Zbl 07401538) Full Text: DOI arXiv OpenURL
Ayele, Tsegaye G.; Dagnaw, Mulugeta A. Boundary-domain integral equation systems to the Dirichlet and Neumann problems for compressible Stokes equations with variable viscosity in 2D. (English) Zbl 1480.76100 Math. Methods Appl. Sci. 44, No. 12, 9876-9898 (2021). MSC: 76N10 35Q30 PDF BibTeX XML Cite \textit{T. G. Ayele} and \textit{M. A. Dagnaw}, Math. Methods Appl. Sci. 44, No. 12, 9876--9898 (2021; Zbl 1480.76100) Full Text: DOI OpenURL
Mondal, Subhabrata; Mandal, B. N. Approximate solution of hypersingular integral equation by using differential transform method. (English) Zbl 1477.65270 Giri, Debasis (ed.) et al., Proceedings of the fifth international conference on mathematics and computing, ICMC 2019, Bhubaneswar, India, February 6–9, 2019. Singapore: Springer. Adv. Intell. Syst. Comput. 1170, 181-186 (2021). MSC: 65R20 45E05 PDF BibTeX XML Cite \textit{S. Mondal} and \textit{B. N. Mandal}, Adv. Intell. Syst. Comput. 1170, 181--186 (2021; Zbl 1477.65270) Full Text: DOI OpenURL
Setukha, A. V. Method of boundary integral equations with hypersingular integrals in boundary-value problems. (English. Russian original) Zbl 1475.30093 J. Math. Sci., New York 257, No. 1, 114-126 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 160, 114-125 (2019). MSC: 30E25 45E99 65N38 PDF BibTeX XML Cite \textit{A. V. Setukha}, J. Math. Sci., New York 257, No. 1, 114--126 (2021; Zbl 1475.30093); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 160, 114--125 (2019) Full Text: DOI OpenURL
De Bonis, Maria Carmela; Occorsio, Donatella Quadrature methods for integro-differential equations of Prandtl’s type in weighted spaces of continuous functions. (English) Zbl 1474.65493 Appl. Math. Comput. 393, Article ID 125721, 19 p. (2021). MSC: 65R20 65L05 41A05 45E05 PDF BibTeX XML Cite \textit{M. C. De Bonis} and \textit{D. Occorsio}, Appl. Math. Comput. 393, Article ID 125721, 19 p. (2021; Zbl 1474.65493) Full Text: DOI arXiv OpenURL
Chai, Hao; Bao, Yumei; Zhang, Zheng Numerical solutions of hypersingular integral equations for interface circular crack under axisymmetric loadings. (English) Zbl 1464.74386 Eng. Anal. Bound. Elem. 122, 35-42 (2021). MSC: 74S99 65R20 45F05 74R10 PDF BibTeX XML Cite \textit{H. Chai} et al., Eng. Anal. Bound. Elem. 122, 35--42 (2021; Zbl 1464.74386) Full Text: DOI OpenURL
Szibrik, Sándor Hypersingular boundary integral equations for plane orthotropic elasticity in terms of first-order stress functions. (English) Zbl 1474.74106 J. Comput. Appl. Mech. 15, No. 2, 185-207 (2020). MSC: 74S15 45F15 PDF BibTeX XML Cite \textit{S. Szibrik}, J. Comput. Appl. Mech. 15, No. 2, 185--207 (2020; Zbl 1474.74106) Full Text: DOI OpenURL
Xu, Boxi; Cheng, Jin; Leung, Shingyu; Qian, Jianliang Efficient algorithms for computing multidimensional integral fractional Laplacians via spherical means. (English) Zbl 1458.78024 SIAM J. Sci. Comput. 42, No. 5, A2910-A2942 (2020). Reviewer: David Kapanadze (Tbilisi) MSC: 78M20 78M35 78A05 78A46 65N06 65N21 65R10 35Q05 35R11 PDF BibTeX XML Cite \textit{B. Xu} et al., SIAM J. Sci. Comput. 42, No. 5, A2910--A2942 (2020; Zbl 1458.78024) Full Text: DOI OpenURL
Cordeiro, Sergio Gustavo Ferreira; Leonel, Edson Denner Subtraction singularity technique applied to the regularization of singular and hypersingular integrals in high-order curved boundary elements in plane anisotropic elasticity. (English) Zbl 1464.74254 Eng. Anal. Bound. Elem. 119, 214-224 (2020). MSC: 74S15 65N38 65D30 74A10 74M25 PDF BibTeX XML Cite \textit{S. G. F. Cordeiro} and \textit{E. D. Leonel}, Eng. Anal. Bound. Elem. 119, 214--224 (2020; Zbl 1464.74254) Full Text: DOI OpenURL
Fikl, Alexandru; Bodony, Daniel J. Jump relations of certain hypersingular Stokes kernels on regular surfaces. (English) Zbl 1452.31008 SIAM J. Appl. Math. 80, No. 5, 2226-2248 (2020). MSC: 31B10 41A58 45L05 PDF BibTeX XML Cite \textit{A. Fikl} and \textit{D. J. Bodony}, SIAM J. Appl. Math. 80, No. 5, 2226--2248 (2020; Zbl 1452.31008) Full Text: DOI OpenURL
Khubezhty, Shalva Solomonovich On numerical solution of hypersingular integral equations of the first kind. (Russian. English summary) Zbl 1463.65424 Vladikavkaz. Mat. Zh. 22, No. 1, 85-92 (2020). MSC: 65R20 45E05 PDF BibTeX XML Cite \textit{S. S. Khubezhty}, Vladikavkaz. Mat. Zh. 22, No. 1, 85--92 (2020; Zbl 1463.65424) Full Text: DOI MNR OpenURL
Pham, Duong Thanh; Le, Tung A posteriori error estimates for hypersingular integral equation on spheres with spherical splines. (English) Zbl 1452.65411 Acta Math. Vietnam. 45, No. 3, 661-692 (2020). MSC: 65R20 65R30 45E05 PDF BibTeX XML Cite \textit{D. T. Pham} and \textit{T. Le}, Acta Math. Vietnam. 45, No. 3, 661--692 (2020; Zbl 1452.65411) Full Text: DOI arXiv OpenURL
Minden, Victor; Ying, Lexing A simple solver for the fractional Laplacian in multiple dimensions. (English) Zbl 1437.65242 SIAM J. Sci. Comput. 42, No. 2, A878-A900 (2020). MSC: 65R20 35R11 65N06 26A33 PDF BibTeX XML Cite \textit{V. Minden} and \textit{L. Ying}, SIAM J. Sci. Comput. 42, No. 2, A878--A900 (2020; Zbl 1437.65242) Full Text: DOI arXiv OpenURL
Gayen, R.; Gupta, Sourav Scattering of surface waves by a pair of asymmetric thin elliptic arc shaped plates with variable permeability. (English) Zbl 1477.76016 Eur. J. Mech., B, Fluids 80, 122-132 (2020). MSC: 76B15 76S05 PDF BibTeX XML Cite \textit{R. Gayen} and \textit{S. Gupta}, Eur. J. Mech., B, Fluids 80, 122--132 (2020; Zbl 1477.76016) Full Text: DOI OpenURL
Islam, Najnin; Kundu, Souvik; Gayen, Rupanwita Scattering and radiation of water waves by a submerged rigid disc in a two-layer fluid. (English) Zbl 1472.76016 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2232, Article ID 20190331, 21 p. (2019). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{N. Islam} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2232, Article ID 20190331, 21 p. (2019; Zbl 1472.76016) Full Text: DOI OpenURL
Martynova, E. D. Torsion processes for cylindrical samples made of incompressible viscoelastic materials of the Maxwell type. (English. Russian original) Zbl 1460.74012 Mech. Solids 54, No. 2, 329-340 (2019); translation from Prikl. Mat. Mekh. 83, No. 1, 95-106 (2019). Reviewer: Vinod K. Arya (Dallas) MSC: 74D10 PDF BibTeX XML Cite \textit{E. D. Martynova}, Mech. Solids 54, No. 2, 329--340 (2019; Zbl 1460.74012); translation from Prikl. Mat. Mekh. 83, No. 1, 95--106 (2019) Full Text: DOI OpenURL
Boykov, I. V. Analytical and numerical methods for solving hypersingular integral equations. (Russian. English summary) Zbl 1453.65448 Din. Sist., Simferopol’ 9(37), No. 3, 244-272 (2019). MSC: 65R20 PDF BibTeX XML Cite \textit{I. V. Boykov}, Din. Sist., Simferopol' 9(37), No. 3, 244--272 (2019; Zbl 1453.65448) OpenURL
Obaiys, Suzan J.; Ibrahim, Rabha W.; Ahmad, Ahmad F. Hypersingular integrals in integral equations and inequalities: fundamental review study. (English) Zbl 1442.65462 Andrica, Dorin (ed.) et al., Differential and integral inequalities. Cham: Springer. Springer Optim. Appl. 151, 687-717 (2019). Reviewer: V. Lokesha (Bangalore) MSC: 65R20 45E05 45D05 26D15 65D30 PDF BibTeX XML Cite \textit{S. J. Obaiys} et al., Springer Optim. Appl. 151, 687--717 (2019; Zbl 1442.65462) Full Text: DOI OpenURL
Shilin, Andreĭ Petrovich Hypersingular integro-differential equations with power factors in coefficients. (Russian. English summary) Zbl 1448.45010 Zh. Beloruss. Gos. Univ., Mat., Inform. 2019, No. 3, 48-56 (2019). MSC: 45J05 45G05 PDF BibTeX XML Cite \textit{A. P. Shilin}, Zh. Beloruss. Gos. Univ., Mat., Inform. 2019, No. 3, 48--56 (2019; Zbl 1448.45010) Full Text: Link OpenURL
Shilin, Andreĭ Petrovich Explicit solution of one hypersingular integro-differential equation of the second order. (Russian. English summary) Zbl 1448.45009 Zh. Beloruss. Gos. Univ., Mat., Inform. 2019, No. 2, 67-72 (2019). MSC: 45J05 45G05 PDF BibTeX XML Cite \textit{A. P. Shilin}, Zh. Beloruss. Gos. Univ., Mat., Inform. 2019, No. 2, 67--72 (2019; Zbl 1448.45009) Full Text: Link OpenURL
Ran, Ran; Qin, Taiyan Analysis of hypersingular integral equation method to 3D dynamic crack. (Chinese. English summary) Zbl 1449.74208 Chin. J. Comput. Mech. 36, No. 3, 358-363 (2019). MSC: 74S99 74R99 PDF BibTeX XML Cite \textit{R. Ran} and \textit{T. Qin}, Chin. J. Comput. Mech. 36, No. 3, 358--363 (2019; Zbl 1449.74208) Full Text: DOI OpenURL
Setukha, A. V.; Semenova, Anastasia V. Numerical solution of a surface hypersingular integral equation by piecewise linear approximation and collocation methods. (English. Russian original) Zbl 1427.65426 Comput. Math. Math. Phys. 59, No. 6, 942-957 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 6, 990-1006 (2019). MSC: 65R20 45E10 65N35 PDF BibTeX XML Cite \textit{A. V. Setukha} and \textit{A. V. Semenova}, Comput. Math. Math. Phys. 59, No. 6, 942--957 (2019; Zbl 1427.65426); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 6, 990--1006 (2019) Full Text: DOI OpenURL
Avramov, K. V. Dynamic instability of shallow shells interacting with three-dimensional potential gas flow. (Russian, English) Zbl 1438.74086 Mat. Metody Fiz.-Mekh. Polya 61, No. 4, 140-143 (2018). Reviewer: A. Ja. Olejnik (Kyïv) MSC: 74H55 74K25 76X05 PDF BibTeX XML Cite \textit{K. V. Avramov}, Mat. Metody Fiz.-Mekh. Polya 61, No. 4, 140--143 (2018; Zbl 1438.74086) OpenURL
Khalilov, Elnur H.; Aliev, Araz R. Justification of a quadrature method for an integral equation to the external Neumann problem for the Helmholtz equation. (English) Zbl 1402.45003 Math. Methods Appl. Sci. 41, No. 16, 6921-6933 (2018). MSC: 45E05 31B10 PDF BibTeX XML Cite \textit{E. H. Khalilov} and \textit{A. R. Aliev}, Math. Methods Appl. Sci. 41, No. 16, 6921--6933 (2018; Zbl 1402.45003) Full Text: DOI OpenURL
Abatangelo, Nicola; Jarohs, Sven; Saldaña, Alberto Positive powers of the Laplacian: from hypersingular integrals to boundary value problems. (English) Zbl 1400.35091 Commun. Pure Appl. Anal. 17, No. 3, 899-922 (2018). MSC: 35J40 35R11 31B30 PDF BibTeX XML Cite \textit{N. Abatangelo} et al., Commun. Pure Appl. Anal. 17, No. 3, 899--922 (2018; Zbl 1400.35091) Full Text: DOI arXiv OpenURL
Gimperlein, Heiko; Meyer, Fabian; Özdemir, Ceyhun; Stark, David; Stephan, Ernst P. Boundary elements with mesh refinements for the wave equation. (English) Zbl 1407.65172 Numer. Math. 139, No. 4, 867-912 (2018). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65M38 65M15 35L20 76Q05 65M50 35C20 PDF BibTeX XML Cite \textit{H. Gimperlein} et al., Numer. Math. 139, No. 4, 867--912 (2018; Zbl 1407.65172) Full Text: DOI arXiv OpenURL
Novin, Reza; Araghi, Mohammad Ali Fariborzi; Mahmoudi, Yaghoub A novel fast modification of the Adomian decomposition method to solve integral equations of the first kind with hypersingular kernels. (English) Zbl 1451.65239 J. Comput. Appl. Math. 343, 619-634 (2018). MSC: 65R20 45B05 45E99 PDF BibTeX XML Cite \textit{R. Novin} et al., J. Comput. Appl. Math. 343, 619--634 (2018; Zbl 1451.65239) Full Text: DOI OpenURL
Acosta, Gabriel; Borthagaray, Juan Pablo; Bruno, Oscar; Maas, Martín Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. (English) Zbl 1409.65111 Math. Comput. 87, No. 312, 1821-1857 (2018). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65R20 35B65 33C45 PDF BibTeX XML Cite \textit{G. Acosta} et al., Math. Comput. 87, No. 312, 1821--1857 (2018; Zbl 1409.65111) Full Text: DOI arXiv OpenURL
Boykov, I. V.; Roudnev, V. A.; Boykova, A. I.; Baulina, O. A. New iterative method for solving linear and nonlinear hypersingular integral equations. (English) Zbl 1382.65466 Appl. Numer. Math. 127, 280-305 (2018). MSC: 65R20 45E10 45G05 PDF BibTeX XML Cite \textit{I. V. Boykov} et al., Appl. Numer. Math. 127, 280--305 (2018; Zbl 1382.65466) Full Text: DOI OpenURL
Gadjieva, Chinara A. A new approximate method for solving hypersingular integral equations with Hilbert kernel. (English) Zbl 1446.65208 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 43, No. 2, 316-329 (2017). MSC: 65R20 41A35 45E05 PDF BibTeX XML Cite \textit{C. A. Gadjieva}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 43, No. 2, 316--329 (2017; Zbl 1446.65208) OpenURL
Setukha, A. V.; Semenova, A. V. Convergence of the piecewise linear approximation and collocation method for a hypersingular integral equation on a closed surface. (English. Russian original) Zbl 1382.65472 Differ. Equ. 53, No. 9, 1231-1246 (2017); translation from Differ. Uravn. 53, No. 9, 1265-1280 (2017). Reviewer: Dana Černá (Liberec) MSC: 65R20 45E05 PDF BibTeX XML Cite \textit{A. V. Setukha} and \textit{A. V. Semenova}, Differ. Equ. 53, No. 9, 1231--1246 (2017; Zbl 1382.65472); translation from Differ. Uravn. 53, No. 9, 1265--1280 (2017) Full Text: DOI OpenURL
Setukha, Alexey V.; Bezobrazova, Elizaveta N. The method of hypersingular integral equations in the problem of electromagnetic wave diffraction by a dielectric body with a partial perfectly conducting coating. (English) Zbl 1375.78038 Russ. J. Numer. Anal. Math. Model. 32, No. 6, 371-380 (2017). MSC: 78M15 65R20 78A45 PDF BibTeX XML Cite \textit{A. V. Setukha} and \textit{E. N. Bezobrazova}, Russ. J. Numer. Anal. Math. Model. 32, No. 6, 371--380 (2017; Zbl 1375.78038) Full Text: DOI OpenURL
Gillman, Adrianna An integral equation technique for scattering problems with mixed boundary conditions. (English) Zbl 1372.65318 Adv. Comput. Math. 43, No. 2, 351-364 (2017). MSC: 65N38 35J05 PDF BibTeX XML Cite \textit{A. Gillman}, Adv. Comput. Math. 43, No. 2, 351--364 (2017; Zbl 1372.65318) Full Text: DOI arXiv OpenURL
Setukha, A. V. Convergence of a numerical method for solving a hypersingular integral equation on a segment with the use of piecewise linear approximations on a nonuniform grid. (English. Russian original) Zbl 1372.65353 Differ. Equ. 53, No. 2, 234-247 (2017); translation from Differ. Uravn. 53, No. 2, 237-249 (2017). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45E10 PDF BibTeX XML Cite \textit{A. V. Setukha}, Differ. Equ. 53, No. 2, 234--247 (2017; Zbl 1372.65353); translation from Differ. Uravn. 53, No. 2, 237--249 (2017) Full Text: DOI OpenURL
Mondal, Arpita; Panda, Srikumar; Gayen, R. Flexural-gravity wave scattering by a circular-arc-shaped porous plate. (English) Zbl 1360.35186 Stud. Appl. Math. 138, No. 1, 77-102 (2017). MSC: 35Q35 74K20 76B15 74F10 45E10 65R20 76S05 PDF BibTeX XML Cite \textit{A. Mondal} et al., Stud. Appl. Math. 138, No. 1, 77--102 (2017; Zbl 1360.35186) Full Text: DOI OpenURL
Farina, Leandro; da Gama, Rômulo L.; Korotov, Sergey; Ziebell, Juliana S. Radiation of water waves by a submerged nearly circular plate. (English) Zbl 1381.76033 J. Comput. Appl. Math. 310, 165-173 (2017). MSC: 76B07 74F10 86A05 PDF BibTeX XML Cite \textit{L. Farina} et al., J. Comput. Appl. Math. 310, 165--173 (2017; Zbl 1381.76033) Full Text: DOI OpenURL
Zhang, Xiaoping; Gunzburger, Max; Ju, Lili Nodal-type collocation methods for hypersingular integral equations and nonlocal diffusion problems. (English) Zbl 1425.65215 Comput. Methods Appl. Mech. Eng. 299, 401-420 (2016). MSC: 65R20 45E10 45F05 PDF BibTeX XML Cite \textit{X. Zhang} et al., Comput. Methods Appl. Mech. Eng. 299, 401--420 (2016; Zbl 1425.65215) Full Text: DOI OpenURL
Tsalamengas, John L. Gauss-Jacobi quadratures for weakly, strongly, hyper- and nearly-singular integrals in boundary integral equation methods for domains with sharp edges and corners. (English) Zbl 1378.65078 J. Comput. Phys. 325, 338-357 (2016). MSC: 65D32 45E10 PDF BibTeX XML Cite \textit{J. L. Tsalamengas}, J. Comput. Phys. 325, 338--357 (2016; Zbl 1378.65078) Full Text: DOI OpenURL
Szirbik, Sándor Hypersingular boundary integral formulations for plane elasticity in terms of first-order stress functions. (English) Zbl 1374.74124 J. Comput. Appl. Mech. 11, No. 1, 49-66 (2016). MSC: 74S15 45F15 PDF BibTeX XML Cite \textit{S. Szirbik}, J. Comput. Appl. Mech. 11, No. 1, 49--66 (2016; Zbl 1374.74124) OpenURL
Aliev, Rashid A.; Gadjieva, Chinara A. Approximation of hypersingular integral operators with Cauchy kernel. (English) Zbl 1351.41014 Numer. Funct. Anal. Optim. 37, No. 9, 1055-1065 (2016). MSC: 41A35 47A58 65R20 45E05 PDF BibTeX XML Cite \textit{R. A. Aliev} and \textit{C. A. Gadjieva}, Numer. Funct. Anal. Optim. 37, No. 9, 1055--1065 (2016; Zbl 1351.41014) Full Text: DOI OpenURL
Kostenko, O. V. A numerical method for solving a system of hypersingular integral equations of the second kind. (English. Russian original) Zbl 1354.65277 Cybern. Syst. Anal. 52, No. 3, 394-407 (2016); translation from Kibern. Sist. Anal. 2016, No. 3, 67-82 (2016). Reviewer: Ilia V. Boikov (Penza) MSC: 65R20 45F15 PDF BibTeX XML Cite \textit{O. V. Kostenko}, Cybern. Syst. Anal. 52, No. 3, 394--407 (2016; Zbl 1354.65277); translation from Kibern. Sist. Anal. 2016, No. 3, 67--82 (2016) Full Text: DOI OpenURL
Eminov, S. I.; Eminova, V. S. Justification of the Galerkin method for hypersingular equations. (English. Russian original) Zbl 1346.65074 Comput. Math. Math. Phys. 56, No. 3, 417-425 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 3, 432-440 (2016). Reviewer: Josef Kofroň (Praha) MSC: 65R20 45E10 45B05 78A45 PDF BibTeX XML Cite \textit{S. I. Eminov} and \textit{V. S. Eminova}, Comput. Math. Math. Phys. 56, No. 3, 417--425 (2016; Zbl 1346.65074); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 3, 432--440 (2016) Full Text: DOI OpenURL
Andreev, V. V. On solving the Schrödinger equation with hypersingular kernel in momentum space. (English. Russian summary) Zbl 1339.81029 Probl. Fiz. Mat. Tekh. 2016, No. 1(26), 7-10 (2016). MSC: 81Q05 45E99 PDF BibTeX XML Cite \textit{V. V. Andreev}, Probl. Fiz. Mat. Tekh. 2016, No. 1(26), 7--10 (2016; Zbl 1339.81029) Full Text: MNR OpenURL
Gintides, Drossos; Mindrinos, Leonidas The direct scattering problem of obliquely incident electromagnetic waves by a penetrable homogeneous cylinder. (English) Zbl 1358.35182 J. Integral Equations Appl. 28, No. 1, 91-122 (2016). Reviewer: Vincent Lescarret (Gif-sur-Yvette) MSC: 35Q61 35P25 45B05 45F15 78A25 PDF BibTeX XML Cite \textit{D. Gintides} and \textit{L. Mindrinos}, J. Integral Equations Appl. 28, No. 1, 91--122 (2016; Zbl 1358.35182) Full Text: DOI arXiv Euclid OpenURL
Führer, T.; Melenk, J. M.; Praetorius, Dirk; Rieder, Alexander Optimal additive Schwarz methods for the \(hp\)-BEM: the hypersingular integral operator in 3D on locally refined meshes. (English) Zbl 1443.65403 Comput. Math. Appl. 70, No. 7, 1583-1605 (2015). MSC: 65N38 65N55 45E05 PDF BibTeX XML Cite \textit{T. Führer} et al., Comput. Math. Appl. 70, No. 7, 1583--1605 (2015; Zbl 1443.65403) Full Text: DOI arXiv OpenURL
Wang, X.; Ang, W. T.; Fan, H. Hypersingular integral equation based micromechanical models for a microscopically damaged antiplane interface between a thin elastic layer and an elastic half space. (English) Zbl 1443.74123 Appl. Math. Modelling 39, No. 21, 6501-6516 (2015). MSC: 74-10 74A60 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Math. Modelling 39, No. 21, 6501--6516 (2015; Zbl 1443.74123) Full Text: DOI OpenURL
Wang, Xue; Ang, Whye-Teong; Fan, Hui Hypersingular integral and integro-differential micromechanical models for an imperfect interface between a thin orthotropic layer and an orthotropic half-space under inplane elastostatic deformations. (English) Zbl 1403.74068 Eng. Anal. Bound. Elem. 52, 32-43 (2015). MSC: 74M25 74S15 45E05 45J05 65R20 74M15 PDF BibTeX XML Cite \textit{X. Wang} et al., Eng. Anal. Bound. Elem. 52, 32--43 (2015; Zbl 1403.74068) Full Text: DOI OpenURL
Tsalamengas, John L. Quadrature rules for weakly singular, strongly singular, and hypersingular integrals in boundary integral equation methods. (English) Zbl 1349.65096 J. Comput. Phys. 303, 498-513 (2015). MSC: 65D30 65N38 PDF BibTeX XML Cite \textit{J. L. Tsalamengas}, J. Comput. Phys. 303, 498--513 (2015; Zbl 1349.65096) Full Text: DOI OpenURL
Chernov, Alexey; von Petersdorff, Tobias; Schwab, Christoph Quadrature algorithms for high dimensional singular integrands on simplices. (English) Zbl 1332.65035 Numer. Algorithms 70, No. 4, 847-874 (2015). MSC: 65D32 41A55 41A63 PDF BibTeX XML Cite \textit{A. Chernov} et al., Numer. Algorithms 70, No. 4, 847--874 (2015; Zbl 1332.65035) Full Text: DOI OpenURL
Zakharov, E. V.; Setukha, A. V.; Bezobrazova, E. N. Method of hypersingular integral equations in a three-dimensional problem of diffraction of electromagnetic waves on a piecewise homogeneous dielectric body. (English. Russian original) Zbl 1341.78020 Differ. Equ. 51, No. 9, 1197-1210 (2015); translation from Differ. Uravn. 51, No. 9, 1206-1219 (2015). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 78A45 45E05 65R20 78M25 65D30 PDF BibTeX XML Cite \textit{E. V. Zakharov} et al., Differ. Equ. 51, No. 9, 1197--1210 (2015; Zbl 1341.78020); translation from Differ. Uravn. 51, No. 9, 1206--1219 (2015) Full Text: DOI OpenURL
Zozulya, V. V. Regularization of divergent integrals: a comparison of the classical and generalized-functions approaches. (English) Zbl 1329.65291 Adv. Comput. Math. 41, No. 4, 727-780 (2015). MSC: 65N38 35J25 65R30 PDF BibTeX XML Cite \textit{V. V. Zozulya}, Adv. Comput. Math. 41, No. 4, 727--780 (2015; Zbl 1329.65291) Full Text: DOI OpenURL
Nguyen, Dinh-Liem; Nguyen, Thi-Phong Electromagnetic scattering by periodic structures with sign-changing coefficients. (Diffraction électromagnétique par un réseau périodique avec des coefficients qui changent de signe.) (English. French summary) Zbl 1328.35233 C. R., Math., Acad. Sci. Paris 353, No. 10, 893-898 (2015). MSC: 35Q60 78A45 45E99 PDF BibTeX XML Cite \textit{D.-L. Nguyen} and \textit{T.-P. Nguyen}, C. R., Math., Acad. Sci. Paris 353, No. 10, 893--898 (2015; Zbl 1328.35233) Full Text: DOI OpenURL
Chandler-Wilde, S. N.; Hewett, D. P. Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens. (English) Zbl 1320.65186 Integral Equations Oper. Theory 82, No. 3, 423-449 (2015). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65N38 35Q60 35J05 76Q05 76M15 PDF BibTeX XML Cite \textit{S. N. Chandler-Wilde} and \textit{D. P. Hewett}, Integral Equations Oper. Theory 82, No. 3, 423--449 (2015; Zbl 1320.65186) Full Text: DOI arXiv Link OpenURL
Jaworski, Dawid; Linkov, Aleksandr; Rybarska-Rusinek, Liliana A note on evaluation of temporal derivative of hypersingular integrals over open surface with propagating contour. (English) Zbl 1317.30059 J. Elasticity 120, No. 1, 121-128 (2015). MSC: 30E20 45E05 74G70 PDF BibTeX XML Cite \textit{D. Jaworski} et al., J. Elasticity 120, No. 1, 121--128 (2015; Zbl 1317.30059) Full Text: DOI OpenURL
Gülsu, Mustafa; Öztürk, Yalçın Numerical approach for the solution of hypersingular integro-differential equations. (English) Zbl 1410.65495 Appl. Math. Comput. 230, 701-710 (2014). MSC: 65R20 65L06 45J05 PDF BibTeX XML Cite \textit{M. Gülsu} and \textit{Y. Öztürk}, Appl. Math. Comput. 230, 701--710 (2014; Zbl 1410.65495) Full Text: DOI OpenURL
Lu, Wangtao; Lu, Ya Yan Efficient high order waveguide mode solvers based on boundary integral equations. (English) Zbl 1349.78085 J. Comput. Phys. 272, 507-525 (2014). MSC: 78M15 65N38 78A50 PDF BibTeX XML Cite \textit{W. Lu} and \textit{Y. Y. Lu}, J. Comput. Phys. 272, 507--525 (2014; Zbl 1349.78085) Full Text: DOI OpenURL
Hu, Chaolang; Lu, Jing; He, Xiaoming Numerical solutions of a hypersingular integral equation with application to productivity formulae of horizontal wells producing at constant wellbore pressure. (English) Zbl 1463.65422 Int. J. Numer. Anal. Model., Ser. B 5, No. 3, 269-288 (2014). MSC: 65R20 65Z05 PDF BibTeX XML Cite \textit{C. Hu} et al., Int. J. Numer. Anal. Model., Ser. B 5, No. 3, 269--288 (2014; Zbl 1463.65422) Full Text: Link OpenURL
Kostenko, A. V. Numerical method for the solution of a hypersingular integral equation of the second kind. (English. Ukrainian original) Zbl 1327.65282 Ukr. Math. J. 65, No. 9, 1373-1383 (2014); translation from Ukr. Mat. Zh. 65, No. 9, 1236-1244 (2013). MSC: 65R20 45E10 PDF BibTeX XML Cite \textit{A. V. Kostenko}, Ukr. Math. J. 65, No. 9, 1373--1383 (2014; Zbl 1327.65282); translation from Ukr. Mat. Zh. 65, No. 9, 1236--1244 (2013) Full Text: DOI OpenURL
Hiptmair, Ralf; Jerez-Hanckes, Carlos; Urzúa-Torres, Carolina Mesh-independent operator preconditioning for boundary elements on open curves. (English) Zbl 1310.65155 SIAM J. Numer. Anal. 52, No. 5, 2295-2314 (2014). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N38 65N22 65F08 35J05 PDF BibTeX XML Cite \textit{R. Hiptmair} et al., SIAM J. Numer. Anal. 52, No. 5, 2295--2314 (2014; Zbl 1310.65155) Full Text: DOI OpenURL
Domínguez, Víctor; Lu, Sijiang L.; Sayas, Francisco-Javier A Nyström method for the two dimensional Helmholtz hypersingular equation. (English) Zbl 1310.65153 Adv. Comput. Math. 40, No. 5-6, 1121-1157 (2014). Reviewer: Andreas Kleefeld (Cottbus) MSC: 65N38 65N12 35J05 PDF BibTeX XML Cite \textit{V. Domínguez} et al., Adv. Comput. Math. 40, No. 5--6, 1121--1157 (2014; Zbl 1310.65153) Full Text: DOI arXiv OpenURL
Zakharov, E. V.; Ryzhakov, G. V.; Setukha, A. V. Numerical solution of 3D problems of electromagnetic wave diffraction on a system of ideally conducting surfaces by the method of hypersingular integral equations. (English. Russian original) Zbl 1308.78011 Differ. Equ. 50, No. 9, 1240-1251 (2014); translation from Differ. Uravn. 50, No. 9, 1253-1263 (2014). Reviewer: Teodora-Liliana Rădulescu (Craiova) MSC: 78A45 78M25 45E05 65N35 PDF BibTeX XML Cite \textit{E. V. Zakharov} et al., Differ. Equ. 50, No. 9, 1240--1251 (2014; Zbl 1308.78011); translation from Differ. Uravn. 50, No. 9, 1253--1263 (2014) Full Text: DOI OpenURL
Răpeanu, Eleonora; Carabineanu, Adrian A Green function approach for the investigation of the incompressible flow past an oscillatory thin hydrofoil including floor effects. (English) Zbl 1299.76021 Bound. Value Probl. 2014, Paper No. 104, 15 p. (2014). MSC: 76B10 65R20 45H99 31A10 PDF BibTeX XML Cite \textit{E. Răpeanu} and \textit{A. Carabineanu}, Bound. Value Probl. 2014, Paper No. 104, 15 p. (2014; Zbl 1299.76021) Full Text: DOI OpenURL
Zozulya, V. V. An approach based on generalized functions to regularize divergent integrals. (English) Zbl 1297.65188 Eng. Anal. Bound. Elem. 40, 162-180 (2014). MSC: 65N38 65D30 PDF BibTeX XML Cite \textit{V. V. Zozulya}, Eng. Anal. Bound. Elem. 40, 162--180 (2014; Zbl 1297.65188) Full Text: DOI OpenURL
Rejwer, Ewa; Rybarska-Rusinek, Liliana; Linkov, Aleksandr The complex variable fast multipole boundary element method for the analysis of strongly inhomogeneous media. (English) Zbl 1297.65183 Eng. Anal. Bound. Elem. 43, 105-116 (2014). MSC: 65N38 PDF BibTeX XML Cite \textit{E. Rejwer} et al., Eng. Anal. Bound. Elem. 43, 105--116 (2014; Zbl 1297.65183) Full Text: DOI OpenURL
Boykov, I. V.; Ventsel, E. S.; Roudnev, V. A.; Boykova, A. I. An approximate solution of nonlinear hypersingular integral equations. (English) Zbl 1297.65203 Appl. Numer. Math. 86, 1-21 (2014). MSC: 65R20 45E10 45G05 PDF BibTeX XML Cite \textit{I. V. Boykov} et al., Appl. Numer. Math. 86, 1--21 (2014; Zbl 1297.65203) Full Text: DOI OpenURL
Mahmoudi, Y. A new modified Adomian decomposition method for solving a class of hypersingular integral equations of second kind. (English) Zbl 1291.65384 J. Comput. Appl. Math. 255, 737-742 (2014). MSC: 65R20 PDF BibTeX XML Cite \textit{Y. Mahmoudi}, J. Comput. Appl. Math. 255, 737--742 (2014; Zbl 1291.65384) Full Text: DOI OpenURL
Farina, Leandro; Martin, P. A.; Péron, Victor Hypersingular integral equations over a disc: convergence of a spectral method and connection with Tranter’s method. (English) Zbl 1299.45006 J. Comput. Appl. Math. 269, 118-131 (2014). MSC: 45E99 42A10 42C10 PDF BibTeX XML Cite \textit{L. Farina} et al., J. Comput. Appl. Math. 269, 118--131 (2014; Zbl 1299.45006) Full Text: DOI OpenURL
Kress, Rainer Linear integral equations. 3rd ed. (English) Zbl 1328.45001 Applied Mathematical Sciences 82. New York, NY: Springer (ISBN 978-1-4614-9592-5/hbk; 978-1-4614-9593-2/ebook). xvi, 412 p. (2014). Reviewer: K. C. Gupta (Jaipur) MSC: 45-01 45A05 65R20 PDF BibTeX XML Cite \textit{R. Kress}, Linear integral equations. 3rd ed. New York, NY: Springer (2014; Zbl 1328.45001) Full Text: DOI OpenURL
Athanasius, L.; Ang, W. T. Magnetoelectroelastodynamic interaction of multiple arbitrarily oriented planar cracks. (English) Zbl 1438.74142 Appl. Math. Modelling 37, No. 10-11, 6979-6993 (2013). MSC: 74R10 74F15 74S15 PDF BibTeX XML Cite \textit{L. Athanasius} and \textit{W. T. Ang}, Appl. Math. Modelling 37, No. 10--11, 6979--6993 (2013; Zbl 1438.74142) Full Text: DOI OpenURL
Farina, Leandro; Ziebell, Juliana S. Solutions of hypersingular integral equations over circular domains by a spectral method. (English) Zbl 1340.65316 Brandts, J. (ed.) et al., Proceedings of the international conference ‘Applications of mathematics’, Prague, Czech Republic, May 15–17, 2013. In honor of the 70th birthday of Karel Segeth. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics (ISBN 978-80-85823-61-5). 52-66 (2013). Reviewer: Vratislava Mošová (Olomouc) MSC: 65R20 76B15 45E10 PDF BibTeX XML Cite \textit{L. Farina} and \textit{J. S. Ziebell}, in: Proceedings of the international conference `Applications of mathematics', Prague, Czech Republic, May 15--17, 2013. In honor of the 70th birthday of Karel Segeth. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 52--66 (2013; Zbl 1340.65316) Full Text: Link OpenURL
Aimi, Alessandra; Panizzi, Stefano On the regularization of bilinear forms with hypersingular kernel. (English) Zbl 1327.65273 Appl. Comput. Math. 12, No. 2, 184-210 (2013). MSC: 65R20 65N38 PDF BibTeX XML Cite \textit{A. Aimi} and \textit{S. Panizzi}, Appl. Comput. Math. 12, No. 2, 184--210 (2013; Zbl 1327.65273) Full Text: Link OpenURL
Boikov, I. V.; Baulina, O. A. Approximate solution of integral equations on the Hopfield neural networks. (Russian. English summary) Zbl 1299.65110 Zh. Sredn. Mat. Obshch. 15, No. 1, 41-51 (2013). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 65J15 65R20 45G05 45B05 92B20 47J25 PDF BibTeX XML Cite \textit{I. V. Boikov} and \textit{O. A. Baulina}, Zh. Sredn. Mat. Obshch. 15, No. 1, 41--51 (2013; Zbl 1299.65110) OpenURL
Ang, W. T.; Athanasius, L. Dynamic response of planar cracks in an infinitely long piezoelectric strip. (English) Zbl 1366.74066 Appl. Math. Comput. 219, No. 14, 7711-7724 (2013). MSC: 74R10 74F15 PDF BibTeX XML Cite \textit{W. T. Ang} and \textit{L. Athanasius}, Appl. Math. Comput. 219, No. 14, 7711--7724 (2013; Zbl 1366.74066) Full Text: DOI OpenURL
Andress, James; Ye, Wenjing; Gray, L. J. Volume integration in the hypersingular boundary integral equation. (English) Zbl 1287.65121 Eng. Anal. Bound. Elem. 37, No. 9, 1145-1150 (2013). MSC: 65N38 65D30 45E05 PDF BibTeX XML Cite \textit{J. Andress} et al., Eng. Anal. Bound. Elem. 37, No. 9, 1145--1150 (2013; Zbl 1287.65121) Full Text: DOI OpenURL
Ryzhakov, G. V. On the numerical method for solving a hypersingular integral equation with the computation of the solution gradient. (English. Russian original) Zbl 1285.65093 Differ. Equ. 49, No. 9, 1168-1175 (2013); translation from Differ. Uravn. 49, No. 9, 1202-1209 (2013). Reviewer: Josef Kofroň (Praha) MSC: 65R20 45E10 45A05 PDF BibTeX XML Cite \textit{G. V. Ryzhakov}, Differ. Equ. 49, No. 9, 1168--1175 (2013; Zbl 1285.65093); translation from Differ. Uravn. 49, No. 9, 1202--1209 (2013) Full Text: DOI OpenURL
Setukha, A. V. On the solvability of a complete two-dimensional hypersingular integral equation. (English. Russian original) Zbl 1285.45002 Differ. Equ. 49, No. 9, 1103-1113 (2013); translation from Differ. Uravn. 49, No. 9, 1141-1151 (2013). Reviewer: Ilya Spitkovsky (Williamsburg) MSC: 45E10 45B05 45A05 PDF BibTeX XML Cite \textit{A. V. Setukha}, Differ. Equ. 49, No. 9, 1103--1113 (2013; Zbl 1285.45002); translation from Differ. Uravn. 49, No. 9, 1141--1151 (2013) Full Text: DOI OpenURL
Saleh, M. H.; Mohammed, D. Sh. Numerical solution of singular and non-singular integral equations. (English) Zbl 1279.65145 Cubo 15, No. 2, 89-103 (2013). MSC: 65R20 45E05 45G10 PDF BibTeX XML Cite \textit{M. H. Saleh} and \textit{D. Sh. Mohammed}, Cubo 15, No. 2, 89--103 (2013; Zbl 1279.65145) Full Text: DOI Link OpenURL
Erath, C.; Funken, S.; Goldenits, P.; Praetorius, D. Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D. (English) Zbl 1278.65168 Appl. Anal. 92, No. 6, 1194-1216 (2013). Reviewer: Ariadna Lucia Pletea (Iaşi) MSC: 65N15 65N38 65N50 35J25 PDF BibTeX XML Cite \textit{C. Erath} et al., Appl. Anal. 92, No. 6, 1194--1216 (2013; Zbl 1278.65168) Full Text: DOI OpenURL
Samko, S. G.; Umarkhadzhiev, S. M. On the regularization of a multidimensional integral equation in Lebesgue spaces with variable exponent. (English) Zbl 1278.45003 Math. Notes 93, No. 4, 583-592 (2013); translation from Mat. Zametki 93, No. 4, 575-585 (2013). Reviewer: Alexander N. Tynda (Penza) MSC: 45E10 PDF BibTeX XML Cite \textit{S. G. Samko} and \textit{S. M. Umarkhadzhiev}, Math. Notes 93, No. 4, 583--592 (2013; Zbl 1278.45003); translation from Mat. Zametki 93, No. 4, 575--585 (2013) Full Text: DOI OpenURL
Lebedeva, S. G.; Setukha, A. V. On the numerical solution of a complete two-dimensional hypersingular integral equation by the method of discrete singularities. (English) Zbl 1275.65094 Differ. Equ. 49, No. 2, 224-234 (2013); translation from Differ. Uravn. 49, No. 2, 223-233 (2013). Reviewer: Alexandru Mihai Bica (Oradea) MSC: 65R20 45E10 45A05 65N38 35J05 PDF BibTeX XML Cite \textit{S. G. Lebedeva} and \textit{A. V. Setukha}, Differ. Equ. 49, No. 2, 224--234 (2013; Zbl 1275.65094); translation from Differ. Uravn. 49, No. 2, 223--233 (2013) Full Text: DOI OpenURL
Sidi, Avram Compact numerical quadrature formulas for hypersingular integrals and integral equations. (English) Zbl 1264.65033 J. Sci. Comput. 54, No. 1, 145-176 (2013). Reviewer: Alexandru Mihai Bica (Oradea) MSC: 65D32 65R20 45E10 41A55 PDF BibTeX XML Cite \textit{A. Sidi}, J. Sci. Comput. 54, No. 1, 145--176 (2013; Zbl 1264.65033) Full Text: DOI OpenURL
Wang, Xue; Ang, Whye-Teong; Fan, Hui Micro-mechanics models for an imperfect interface under anti-plane shear load: hypersingular integral formulations. (English) Zbl 1351.74145 Eng. Anal. Bound. Elem. 36, No. 12, 1856-1864 (2012). MSC: 74S15 74M25 74A60 74A50 PDF BibTeX XML Cite \textit{X. Wang} et al., Eng. Anal. Bound. Elem. 36, No. 12, 1856--1864 (2012; Zbl 1351.74145) Full Text: DOI OpenURL
Tumakov, D. N.; Tukhvatova, A. R. Diffraction of an electromagnetic wave by gaps between plates. (English. Russian original) Zbl 1280.78003 Lobachevskii J. Math. 33, No. 4, 364-373 (2012); translation from Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 153, No. 4, 37-48 (2011). Reviewer: Jong Hyuk Park (Ulsan) MSC: 78A45 78A40 35J05 45E05 41A50 PDF BibTeX XML Cite \textit{D. N. Tumakov} and \textit{A. R. Tukhvatova}, Lobachevskii J. Math. 33, No. 4, 364--373 (2012; Zbl 1280.78003); translation from Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 153, No. 4, 37--48 (2011) Full Text: DOI OpenURL
Ryzhakov, G. V.; Setukha, A. V. Convergence of a numerical scheme of the type of the vortex loop method on a closed surface with an approximation to the surface shape. (English. Russian original) Zbl 1269.65140 Differ. Equ. 48, No. 9, 1308-1317 (2012); translation from Differ. Uravn. 48, No. 9, 1327-1336 (2012). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45E99 35J05 65N38 PDF BibTeX XML Cite \textit{G. V. Ryzhakov} and \textit{A. V. Setukha}, Differ. Equ. 48, No. 9, 1308--1317 (2012; Zbl 1269.65140); translation from Differ. Uravn. 48, No. 9, 1327--1336 (2012) Full Text: DOI OpenURL
Obaiys, Suzan J.; Eskhuvatov, Z. K.; Long, N. M. A. Nik; Jamaludin, M. A. Galerkin method for the numerical solution of hypersingular integral equations based Chebyshev polynomials. (English) Zbl 1312.65228 Int. J. Math. Anal., Ruse 6, No. 53-56, 2653-2664 (2012). MSC: 65R20 PDF BibTeX XML Cite \textit{S. J. Obaiys} et al., Int. J. Math. Anal., Ruse 6, No. 53--56, 2653--2664 (2012; Zbl 1312.65228) Full Text: Link OpenURL
Li, Xiaolin Adaptive meshless Galerkin boundary node methods for hypersingular integral equations. (English) Zbl 1252.65197 Appl. Math. Modelling 36, No. 10, 4952-4970 (2012). MSC: 65N38 PDF BibTeX XML Cite \textit{X. Li}, Appl. Math. Modelling 36, No. 10, 4952--4970 (2012; Zbl 1252.65197) Full Text: DOI OpenURL
Jerez-Hanckes, Carlos; Nédélec, Jean-Claude Explicit variational forms for the inverses of integral logarithmic operators over an interval. (English) Zbl 1255.45008 SIAM J. Math. Anal. 44, No. 4, 2666-2694 (2012). Reviewer: Kun Soo Chang (Seoul) MSC: 45P05 65N38 31A10 46E35 45E10 PDF BibTeX XML Cite \textit{C. Jerez-Hanckes} and \textit{J.-C. Nédélec}, SIAM J. Math. Anal. 44, No. 4, 2666--2694 (2012; Zbl 1255.45008) Full Text: DOI OpenURL
Chernov, Alexey; Schwab, Christoph Exponential convergence of Gauss–Jacobi quadratures for singular integrals over simplices in arbitrary dimension. (English) Zbl 1252.65209 SIAM J. Numer. Anal. 50, No. 3, 1433-1455 (2012). Reviewer: I. V. Boikov (Penza) MSC: 65R20 45P05 65D32 41A55 41A63 PDF BibTeX XML Cite \textit{A. Chernov} and \textit{C. Schwab}, SIAM J. Numer. Anal. 50, No. 3, 1433--1455 (2012; Zbl 1252.65209) Full Text: DOI Link OpenURL
Chouly, Franz; Heuer, Norbert A Nitsche-based domain decomposition method for hypersingular integral equations. (English) Zbl 1250.65148 Numer. Math. 121, No. 4, 705-729 (2012). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N55 65N38 35J05 PDF BibTeX XML Cite \textit{F. Chouly} and \textit{N. Heuer}, Numer. Math. 121, No. 4, 705--729 (2012; Zbl 1250.65148) Full Text: DOI arXiv Link OpenURL
Marazzina, Daniele; Reichmann, Oleg; Schwab, Christoph \(hp\)-DGFEM for Kolmogorov-Fokker-Planck equations of multivariate Lévy processes. (English) Zbl 1252.65214 Math. Models Methods Appl. Sci. 22, No. 1, 1150005, 37 p. (2012). MSC: 65R20 45K05 60J75 60J60 91B24 91G60 PDF BibTeX XML Cite \textit{D. Marazzina} et al., Math. Models Methods Appl. Sci. 22, No. 1, 1150005, 37 p. (2012; Zbl 1252.65214) Full Text: DOI OpenURL
Pham, Duong; Tran, Thanh A domain decomposition method for solving the hypersingular integral equation on the sphere with spherical splines. (English) Zbl 1238.65133 Numer. Math. 120, No. 1, 117-151 (2012). Reviewer: I. V. Boikov (Penza) MSC: 65R20 45E10 45A05 PDF BibTeX XML Cite \textit{D. Pham} and \textit{T. Tran}, Numer. Math. 120, No. 1, 117--151 (2012; Zbl 1238.65133) Full Text: DOI OpenURL
Ang, W. T.; Athanasius, L. Dynamic interaction of multiple arbitrarily oriented planar cracks in a piezoelectric space: a semi-analytic solution. (English) Zbl 1278.74148 Eur. J. Mech., A, Solids 30, No. 4, 608-618 (2011); corrigendum ibid. 33, 99-100 (2012). MSC: 74R10 74F15 74H10 PDF BibTeX XML Cite \textit{W. T. Ang} and \textit{L. Athanasius}, Eur. J. Mech., A, Solids 30, No. 4, 608--618 (2011; Zbl 1278.74148) Full Text: DOI OpenURL