Andersson, Lars; Kapitanski, Lev Cauchy problem for incompressible neo-Hookean materials. (English) Zbl 07663351 Arch. Ration. Mech. Anal. 247, No. 2, Paper No. 21, 76 p. (2023). MSC: 35Q31 35Q74 76B03 74B20 74J05 35B65 35B30 35A01 35A02 PDF BibTeX XML Cite \textit{L. Andersson} and \textit{L. Kapitanski}, Arch. Ration. Mech. Anal. 247, No. 2, Paper No. 21, 76 p. (2023; Zbl 07663351) Full Text: DOI arXiv OpenURL
Beekie, Rajendra; Novack, Matthew Non-conservative solutions of the Euler-\(\alpha\) equations. (English) Zbl 07649354 J. Math. Fluid Mech. 25, No. 1, Paper No. 22, 38 p. (2023). MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{R. Beekie} and \textit{M. Novack}, J. Math. Fluid Mech. 25, No. 1, Paper No. 22, 38 p. (2023; Zbl 07649354) Full Text: DOI arXiv OpenURL
Cobb, Dimitri; Fanelli, Francesco Elsässer formulation of the ideal MHD and improved lifespan in two space dimensions. (English. French summary) Zbl 07635066 J. Math. Pures Appl. (9) 169, 189-236 (2023). MSC: 35Q35 76W05 76B03 35B65 35D30 35A02 PDF BibTeX XML Cite \textit{D. Cobb} and \textit{F. Fanelli}, J. Math. Pures Appl. (9) 169, 189--236 (2023; Zbl 07635066) Full Text: DOI arXiv OpenURL
Nguyen, Thanh-Nhan; Tran, Minh-Phuong; Tran, N.-T.-Nhu Regularity estimates for stationary Stokes problem in some generalized function spaces. (English) Zbl 07633007 Z. Angew. Math. Phys. 74, No. 1, Paper No. 13, 24 p. (2023). MSC: 35B45 35D30 35Q35 76D03 42B25 46E30 PDF BibTeX XML Cite \textit{T.-N. Nguyen} et al., Z. Angew. Math. Phys. 74, No. 1, Paper No. 13, 24 p. (2023; Zbl 07633007) Full Text: DOI OpenURL
Preston, Stephen C. Conjugate point criteria on the area-preserving diffeomorphism group. (English) Zbl 1503.58008 J. Geom. Phys. 183, Article ID 104680, 31 p. (2023). MSC: 58D05 35Q31 58B20 76E30 PDF BibTeX XML Cite \textit{S. C. Preston}, J. Geom. Phys. 183, Article ID 104680, 31 p. (2023; Zbl 1503.58008) Full Text: DOI arXiv OpenURL
Singh, Mayank; Arora, Rajan Converging strong shock wave from a cylindrical piston in a van der Waals magnetogasdynamics with dust particles. (English) Zbl 07609367 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106870, 17 p. (2023). MSC: 76W05 76L05 76T15 76M45 76M55 PDF BibTeX XML Cite \textit{M. Singh} and \textit{R. Arora}, Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106870, 17 p. (2023; Zbl 07609367) Full Text: DOI OpenURL
Norkin, M. V. Dynamics of separation points after instantaneous stopping of a circular cylinder in a perturbed fluid. (English. Russian original) Zbl 07664935 J. Appl. Mech. Tech. Phys. 63, No. 4, 614-621 (2022); translation from Prikl. Mekh. Tekh. Fiz. 63, No. 4, 73-81 (2022). MSC: 76B10 76M45 PDF BibTeX XML Cite \textit{M. V. Norkin}, J. Appl. Mech. Tech. Phys. 63, No. 4, 614--621 (2022; Zbl 07664935); translation from Prikl. Mekh. Tekh. Fiz. 63, No. 4, 73--81 (2022) Full Text: DOI OpenURL
Maklakov, D. V.; Pichugov, V. A. Symmetric fluid outflow from a vessel bounded by two parallel walls through a filter (modification of Joukowsky’s problem). (English) Zbl 07659207 Lobachevskii J. Math. 43, No. 10, 2961-2969 (2022). MSC: 76B10 76M40 PDF BibTeX XML Cite \textit{D. V. Maklakov} and \textit{V. A. Pichugov}, Lobachevskii J. Math. 43, No. 10, 2961--2969 (2022; Zbl 07659207) Full Text: DOI OpenURL
Sin, Cholmin; Ri, Sin-Il Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions. (English) Zbl 07655827 Math. Bohem. 147, No. 4, 567-585 (2022). MSC: 35D30 35A23 46E30 46E35 76D03 76A05 PDF BibTeX XML Cite \textit{C. Sin} and \textit{S.-I. Ri}, Math. Bohem. 147, No. 4, 567--585 (2022; Zbl 07655827) Full Text: DOI OpenURL
Faraco, Daniel; Lindberg, Sauli; Székelyhidi, László Rigorous results on conserved and dissipated quantities in ideal MHD turbulence. (English) Zbl 07636908 Geophys. Astrophys. Fluid Dyn. 116, No. 4, 237-260 (2022). MSC: 35Q35 76W05 76F99 35D30 35A01 PDF BibTeX XML Cite \textit{D. Faraco} et al., Geophys. Astrophys. Fluid Dyn. 116, No. 4, 237--260 (2022; Zbl 07636908) Full Text: DOI OpenURL
Kopachevsky, N. D.; Syomkina, E. V. On small motions of hydraulic systems containing viscoelastic fluid. (English. Russian original) Zbl 07621841 J. Math. Sci., New York 267, No. 6, 716-759 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 172, 48-90 (2019). MSC: 76D05 35Q30 39A14 39B42 PDF BibTeX XML Cite \textit{N. D. Kopachevsky} and \textit{E. V. Syomkina}, J. Math. Sci., New York 267, No. 6, 716--759 (2022; Zbl 07621841); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 172, 48--90 (2019) Full Text: DOI OpenURL
Silva, R. N.; Felix, J. L. P.; Balthazar, Jose Manoel; Tusset, A. M.; Ribeiro, M. A.; Lenz, W. B.; Cunha, A. On a vehicular suspension for a non-ideal and nonlinear orchard tower sprayer through an inverted pendulum using reologic magneto (MR). (English) Zbl 07608818 Balthazar, Jose Manoel (ed.), Nonlinear vibrations excited by limited power sources. Cham: Springer. Mech. Mach. Sci. 116, 151-173 (2022). MSC: 70Hxx PDF BibTeX XML Cite \textit{R. N. Silva} et al., Mech. Mach. Sci. 116, 151--173 (2022; Zbl 07608818) Full Text: DOI OpenURL
Rana, Khush Bakhat; Mavrič, Boštjan; Zahoor, Rizwan; Šarler, Božidar A meshless solution of the compressible viscous flow in axisymmetric tubes with varying cross-sections. (English) Zbl 07604161 Eng. Anal. Bound. Elem. 143, 340-352 (2022). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{K. B. Rana} et al., Eng. Anal. Bound. Elem. 143, 340--352 (2022; Zbl 07604161) Full Text: DOI OpenURL
Dzanic, T.; Trojak, W.; Witherden, F. D. Utilizing time-reversibility for shock capturing in nonlinear hyperbolic conservation laws. (English) Zbl 07602528 Comput. Fluids 247, Article ID 105652, 13 p. (2022). MSC: 76-XX PDF BibTeX XML Cite \textit{T. Dzanic} et al., Comput. Fluids 247, Article ID 105652, 13 p. (2022; Zbl 07602528) Full Text: DOI arXiv OpenURL
Hillairet, Matthieu; Lacave, Christophe; Wu, Di A homogenized limit for the 2-dimensional Euler equations in a perforated domain. (English) Zbl 1500.35022 Anal. PDE 15, No. 5, 1131-1167 (2022). MSC: 35B27 35J25 35C20 35Q31 76B03 PDF BibTeX XML Cite \textit{M. Hillairet} et al., Anal. PDE 15, No. 5, 1131--1167 (2022; Zbl 1500.35022) Full Text: DOI arXiv OpenURL
Kirushina, M. A.; Elizarova, T. G.; Epikhin, A. S. Simulation of vortex interaction with a shock wave for testing numerical algorithms. (Russian. English summary) Zbl 1498.76060 Mat. Model. 34, No. 9, 54-70 (2022). MSC: 76M20 76N15 76L05 76J20 PDF BibTeX XML Cite \textit{M. A. Kirushina} et al., Mat. Model. 34, No. 9, 54--70 (2022; Zbl 1498.76060) Full Text: DOI MNR OpenURL
Dobrokhotov, S. Yu.; Ilyasov, Kh. Kh.; Tolstova, O. L. Linear waves generated on the liquid surface by time- and space-localized sources in the elastic foundation bottom. (English. Russian original) Zbl 1497.76011 Fluid Dyn. 57, No. 3, 304-317 (2022); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2022, No. 3, 88-101 (2022). MSC: 76B15 74F10 86A05 PDF BibTeX XML Cite \textit{S. Yu. Dobrokhotov} et al., Fluid Dyn. 57, No. 3, 304--317 (2022; Zbl 1497.76011); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2022, No. 3, 88--101 (2022) Full Text: DOI OpenURL
Pang, Yicheng; Ge, Jianjun; Liu, Zuozhi; Hu, Min The exact Riemann solutions to an isentropic non-ideal dusty gas flow under a magnetic field. (English) Zbl 07582988 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 5, 701-717 (2022). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{Y. Pang} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 5, 701--717 (2022; Zbl 07582988) Full Text: DOI OpenURL
Wang, Jeremy C. H.; Hickey, Jean-Pierre A class of structurally complete approximate Riemann solvers for trans- and supercritical flows with large gradients. (English) Zbl 07578921 J. Comput. Phys. 468, Article ID 111521, 23 p. (2022). MSC: 65Mxx 35Lxx 76Mxx PDF BibTeX XML Cite \textit{J. C. H. Wang} and \textit{J.-P. Hickey}, J. Comput. Phys. 468, Article ID 111521, 23 p. (2022; Zbl 07578921) Full Text: DOI OpenURL
Trakhinin, Yuri; Wang, Tao Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension. (English) Zbl 07570344 Math. Ann. 383, No. 1-2, 761-808 (2022). MSC: 35Q35 76B45 76W05 76N10 35B65 35A01 35A02 35L65 35R35 PDF BibTeX XML Cite \textit{Y. Trakhinin} and \textit{T. Wang}, Math. Ann. 383, No. 1--2, 761--808 (2022; Zbl 07570344) Full Text: DOI arXiv OpenURL
Kononov, Yu. M. Stability of the equilibrium state of a rigid body with multilayer ideal liquid separated by elastic plates. (English. Ukrainian original) Zbl 1493.74044 Ukr. Math. J. 73, No. 10, 1551-1565 (2022); translation from Ukr. Mat. Zh. 73, No. 10, 1342-1354 (2021). MSC: 74H55 74H45 74F10 74K20 76B70 70E99 PDF BibTeX XML Cite \textit{Yu. M. Kononov}, Ukr. Math. J. 73, No. 10, 1551--1565 (2022; Zbl 1493.74044); translation from Ukr. Mat. Zh. 73, No. 10, 1342--1354 (2021) Full Text: DOI OpenURL
Zakora, D. A. Operator approach to the problem on small motions of an ideal relaxing fluid. (English. Russian original) Zbl 1493.47124 J. Math. Sci., New York 263, No. 6, 773-804 (2022); translation from Sovrem. Mat., Fundam. Napravl. 64, No. 3, 459-489 (2018). MSC: 47N50 47A56 76U05 PDF BibTeX XML Cite \textit{D. A. Zakora}, J. Math. Sci., New York 263, No. 6, 773--804 (2022; Zbl 1493.47124); translation from Sovrem. Mat., Fundam. Napravl. 64, No. 3, 459--489 (2018) Full Text: DOI OpenURL
Secchi, Paolo; Yuan, Yuan Weakly nonlinear surface waves on the plasma-vacuum interface. (English. French summary) Zbl 1493.76122 J. Math. Pures Appl. (9) 163, 132-203 (2022). MSC: 76W05 76E25 35Q35 35Q60 78A40 PDF BibTeX XML Cite \textit{P. Secchi} and \textit{Y. Yuan}, J. Math. Pures Appl. (9) 163, 132--203 (2022; Zbl 1493.76122) Full Text: DOI arXiv OpenURL
Fedorov, V. E.; Panov, A. V.; Fedorov, E. V. Study by methods of group analysis of the system of equations for dynamics of non-isothermal mixture of two gases. (English) Zbl 1495.76092 Lobachevskii J. Math. 43, No. 1, 207-218 (2022). MSC: 76N15 76M60 PDF BibTeX XML Cite \textit{V. E. Fedorov} et al., Lobachevskii J. Math. 43, No. 1, 207--218 (2022; Zbl 1495.76092) Full Text: DOI OpenURL
Meng, Yanghan; Wang, Zhan Hydroelastic lumps in shallow water. (English) Zbl 1495.76022 Physica D 434, Article ID 133200, 14 p. (2022). MSC: 76B25 76M99 74F10 35Q51 PDF BibTeX XML Cite \textit{Y. Meng} and \textit{Z. Wang}, Physica D 434, Article ID 133200, 14 p. (2022; Zbl 1495.76022) Full Text: DOI arXiv OpenURL
Lai, Suhua; Wu, Jiahong; Zhang, Jianwen Stabilizing effect of magnetic field on the 2D ideal magnetohydrodynamic flow with mixed partial damping. (English) Zbl 07523707 Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 126, 31 p. (2022). MSC: 35Q35 35Q31 76W05 35A01 35B35 35B65 76B03 76E25 PDF BibTeX XML Cite \textit{S. Lai} et al., Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 126, 31 p. (2022; Zbl 07523707) Full Text: DOI OpenURL
Hao, Chengchun; Luo, Tao Some results on free boundary problems of incompressible ideal magnetohydrodynamics equations. (English) Zbl 1490.35319 Electron Res. Arch. 30, No. 2, 404-424 (2022). MSC: 35Q35 76W05 76B03 35R25 35R35 35A01 35A02 PDF BibTeX XML Cite \textit{C. Hao} and \textit{T. Luo}, Electron Res. Arch. 30, No. 2, 404--424 (2022; Zbl 1490.35319) Full Text: DOI OpenURL
Artemova, Elizaveta M.; Vetchanin, Evgeny V. The motion of an unbalanced circular disk in the field of a point source. (English) Zbl 1486.76010 Regul. Chaotic Dyn. 27, No. 1, 24-42 (2022). MSC: 76B10 70E40 37N10 PDF BibTeX XML Cite \textit{E. M. Artemova} and \textit{E. V. Vetchanin}, Regul. Chaotic Dyn. 27, No. 1, 24--42 (2022; Zbl 1486.76010) Full Text: DOI arXiv OpenURL
Marotta, Sebastian M.; Geeter, Chris; Huynh, Richard One-dimensional unsteady flow from a cylindrical draining tank. (English) Zbl 1491.76010 Bol. Soc. Mat. Mex., III. Ser. 28, No. 1, Paper No. 20, 20 p. (2022). MSC: 76B10 76-01 PDF BibTeX XML Cite \textit{S. M. Marotta} et al., Bol. Soc. Mat. Mex., III. Ser. 28, No. 1, Paper No. 20, 20 p. (2022; Zbl 1491.76010) Full Text: DOI OpenURL
Vorotnikov, Dmitry Partial differential equations with quadratic nonlinearities viewed as matrix-valued optimal ballistic transport problems. (English) Zbl 07488602 Arch. Ration. Mech. Anal. 243, No. 3, 1653-1698 (2022). MSC: 35Q31 35Q53 76W05 76B03 76A10 35B65 35D30 35A15 49Q22 49Q20 58B20 PDF BibTeX XML Cite \textit{D. Vorotnikov}, Arch. Ration. Mech. Anal. 243, No. 3, 1653--1698 (2022; Zbl 07488602) Full Text: DOI arXiv OpenURL
Kukavica, Igor; Novack, Matthew; Vicol, Vlad Exact boundary controllability for the ideal magneto-hydrodynamic equations. (English) Zbl 07487004 J. Differ. Equations 318, 94-112 (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q31 76W05 76B55 93C20 93B05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Differ. Equations 318, 94--112 (2022; Zbl 07487004) Full Text: DOI arXiv OpenURL
Jiang, Fei; Jiang, Song; Zhao, Youyi On inhibition of the Rayleigh-Taylor instability by a horizontal magnetic field in ideal MHD fluids with velocity damping. (English) Zbl 07471761 J. Differ. Equations 314, 574-652 (2022). MSC: 35Q35 76W05 76E25 76B03 35B65 PDF BibTeX XML Cite \textit{F. Jiang} et al., J. Differ. Equations 314, 574--652 (2022; Zbl 07471761) Full Text: DOI arXiv OpenURL
Liu, Chun; Sulzbach, Jan-Eric The Brinkman-Fourier system with ideal gas equilibrium. (English) Zbl 1502.35120 Discrete Contin. Dyn. Syst. 42, No. 1, 425-462 (2022). MSC: 35Q35 35Q79 76S05 76N10 76N15 80A17 35D30 PDF BibTeX XML Cite \textit{C. Liu} and \textit{J.-E. Sulzbach}, Discrete Contin. Dyn. Syst. 42, No. 1, 425--462 (2022; Zbl 1502.35120) Full Text: DOI arXiv OpenURL
Li, Jinlu; Deng, Wei; Li, Min Non-uniform dependence for higher dimensional Camassa-Holm equations in Besov spaces. (English) Zbl 1502.35146 Nonlinear Anal., Real World Appl. 63, Article ID 103420, 10 p. (2022). MSC: 35Q53 35Q35 35B30 46E30 76B15 PDF BibTeX XML Cite \textit{J. Li} et al., Nonlinear Anal., Real World Appl. 63, Article ID 103420, 10 p. (2022; Zbl 1502.35146) Full Text: DOI arXiv OpenURL
Zhang, Zhipeng Energy conservation for the weak solutions to the ideal inhomogeneous magnetohydrodynamic equations in a bounded domain. (English) Zbl 1502.35136 Nonlinear Anal., Real World Appl. 63, Article ID 103397, 16 p. (2022). MSC: 35Q35 76W05 35B65 35D30 PDF BibTeX XML Cite \textit{Z. Zhang}, Nonlinear Anal., Real World Appl. 63, Article ID 103397, 16 p. (2022; Zbl 1502.35136) Full Text: DOI OpenURL
Chen, Fang; Samtaney, Ravi A numerical method for self-similar solutions of ideal magnetohydrodynamics. (English) Zbl 07516439 J. Comput. Phys. 447, Article ID 110690, 22 p. (2021). MSC: 76Mxx 76Wxx 65Mxx PDF BibTeX XML Cite \textit{F. Chen} and \textit{R. Samtaney}, J. Comput. Phys. 447, Article ID 110690, 22 p. (2021; Zbl 07516439) Full Text: DOI OpenURL
Demoures, François; Gay-Balmaz, François Multisymplectic variational integrators for fluid models with constraints. (English) Zbl 1491.76054 Nielsen, Frank (ed.) et al., Geometric science of information. 5th international conference, GSI 2021, Paris, France, July 21–23, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12829, 283-291 (2021). MSC: 76M99 76M30 76B10 65P10 PDF BibTeX XML Cite \textit{F. Demoures} and \textit{F. Gay-Balmaz}, Lect. Notes Comput. Sci. 12829, 283--291 (2021; Zbl 1491.76054) Full Text: DOI arXiv OpenURL
Nobary, Elham; Hosseini, S. Mohammad A geometric numerical integration of Lie-Poisson system for ideal compressible isentropic fluid. (English) Zbl 1482.76093 Iran. J. Math. Sci. Inform. 16, No. 2, 197-208 (2021). MSC: 76M60 65D30 76N15 PDF BibTeX XML Cite \textit{E. Nobary} and \textit{S. M. Hosseini}, Iran. J. Math. Sci. Inform. 16, No. 2, 197--208 (2021; Zbl 1482.76093) Full Text: Link OpenURL
Minazetdinov, N. M. A hydrodynamic model of the “jet” phenomenon in electrochemical machining of metals. (English. Russian original) Zbl 1483.76068 Fluid Dyn. 56, No. 7, 1003-1012 (2021); translation from Prikl. Mat. Mekh. 85, No. 5, 664-674 (2021). MSC: 76W05 76B10 PDF BibTeX XML Cite \textit{N. M. Minazetdinov}, Fluid Dyn. 56, No. 7, 1003--1012 (2021; Zbl 1483.76068); translation from Prikl. Mat. Mekh. 85, No. 5, 664--674 (2021) Full Text: DOI OpenURL
Bogoyavlenskij, Oleg; Peng, Yuyang Exact solutions to the Beltrami equation with a non-constant \(\alpha(x)\). (English) Zbl 07472280 Regul. Chaotic Dyn. 26, No. 6, 692-699 (2021). MSC: 35Q35 76W05 76M60 76X05 35B07 PDF BibTeX XML Cite \textit{O. Bogoyavlenskij} and \textit{Y. Peng}, Regul. Chaotic Dyn. 26, No. 6, 692--699 (2021; Zbl 07472280) Full Text: DOI OpenURL
Chaturvedi, Rahul Kumar; Pradeep; Singh, L. P. The formation of shock wave in a two-dimensional supersonic planar and axisymmetric non-ideal gas flow with magnetic field. (English) Zbl 1499.76138 Comput. Appl. Math. 40, No. 8, Paper No. 307, 14 p. (2021). MSC: 76W05 35F20 35L40 76L05 PDF BibTeX XML Cite \textit{R. K. Chaturvedi} et al., Comput. Appl. Math. 40, No. 8, Paper No. 307, 14 p. (2021; Zbl 1499.76138) Full Text: DOI OpenURL
Druet, Pierre-Etienne A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. (English) Zbl 1480.35098 Discrete Contin. Dyn. Syst., Ser. S 14, No. 11, 4035-4067 (2021). MSC: 35D30 35M33 35Q30 35Q35 35Q79 76N10 76R50 PDF BibTeX XML Cite \textit{P.-E. Druet}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 11, 4035--4067 (2021; Zbl 1480.35098) Full Text: DOI arXiv OpenURL
Singh, Sumeeta Similarity solutions for magnetogasdynamic cylindrical shock wave in rotating non-ideal gas using Lie group theoretic method. (English) Zbl 07451212 J. Eng. Math. 131, Paper No. 5, 16 p. (2021). MSC: 76M60 76W05 76L05 PDF BibTeX XML Cite \textit{S. Singh}, J. Eng. Math. 131, Paper No. 5, 16 p. (2021; Zbl 07451212) Full Text: DOI OpenURL
Chen, Zhihao; Deng, Dawen Autonomous solutions of two dimension incompressible ideal fluid equations in angular symmetric domains. (Chinese. English summary) Zbl 1488.35433 J. Hubei Univ., Nat. Sci. 43, No. 4, 403-412 (2021). MSC: 35Q31 35Q35 76B03 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{D. Deng}, J. Hubei Univ., Nat. Sci. 43, No. 4, 403--412 (2021; Zbl 1488.35433) Full Text: DOI OpenURL
Cobb, Dimitri; Fanelli, Francesco Symmetry breaking in ideal magnetohydrodynamics: the role of the velocity. (English) Zbl 1479.35657 J. Elliptic Parabol. Equ. 7, No. 2, 273-295 (2021). MSC: 35Q35 76W05 76B03 35B60 35B44 35B35 35B65 PDF BibTeX XML Cite \textit{D. Cobb} and \textit{F. Fanelli}, J. Elliptic Parabol. Equ. 7, No. 2, 273--295 (2021; Zbl 1479.35657) Full Text: DOI arXiv OpenURL
Vlasov, V. I.; Skorokhodov, S. L. Analytical solution for the cavitating flow over a wedge. II. (English. Russian original) Zbl 1483.76013 Comput. Math. Math. Phys. 61, No. 11, 1834-1854 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 11, 1873-1893 (2021). MSC: 76B10 76B47 76M45 PDF BibTeX XML Cite \textit{V. I. Vlasov} and \textit{S. L. Skorokhodov}, Comput. Math. Math. Phys. 61, No. 11, 1834--1854 (2021; Zbl 1483.76013); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 11, 1873--1893 (2021) Full Text: DOI OpenURL
Shah, Sarswati; Singh, Randheer Propagation of non-planar weak and strong shocks in a non-ideal relaxing gas. (English) Zbl 1486.35297 Ric. Mat. 70, No. 2, 371-393 (2021). Reviewer: Vishnu Dutt Sharma (Ghandinagar) MSC: 35L67 35L45 58J45 35Q35 82B40 74J30 PDF BibTeX XML Cite \textit{S. Shah} and \textit{R. Singh}, Ric. Mat. 70, No. 2, 371--393 (2021; Zbl 1486.35297) Full Text: DOI OpenURL
Gu, Yaguang; Gao, Zhen; Hu, Guanghui; Li, Peng; Wang, Lifeng High order finite difference alternative WENO scheme for multi-component flows. (English) Zbl 1490.76160 J. Sci. Comput. 89, No. 3, Paper No. 52, 24 p. (2021). MSC: 76M20 76T30 76N15 PDF BibTeX XML Cite \textit{Y. Gu} et al., J. Sci. Comput. 89, No. 3, Paper No. 52, 24 p. (2021; Zbl 1490.76160) Full Text: DOI OpenURL
Zhai, Cuili; Zhang, Zhifei; Zhao, Weiren Long-time behavior of Alfvén waves in a flowing plasma: generation of the magnetic island. (English) Zbl 1477.35186 Arch. Ration. Mech. Anal. 242, No. 3, 1317-1394 (2021). MSC: 35Q35 76W05 76X05 76E25 PDF BibTeX XML Cite \textit{C. Zhai} et al., Arch. Ration. Mech. Anal. 242, No. 3, 1317--1394 (2021; Zbl 1477.35186) Full Text: DOI OpenURL
Berberich, Jonas P.; Chandrashekar, Praveen; Klingenberg, Christian High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws. (English) Zbl 07426188 Comput. Fluids 219, Article ID 104858, 13 p. (2021). MSC: 76-XX PDF BibTeX XML Cite \textit{J. P. Berberich} et al., Comput. Fluids 219, Article ID 104858, 13 p. (2021; Zbl 07426188) Full Text: DOI arXiv OpenURL
Zakora, Dmitry Alexandrovich; Forduk, Karina Viktorovna A problem of normal oscillations of a system of bodies partially filled with ideal fluids under the action of an elastic damping device. (English) Zbl 1471.35244 Sib. Èlektron. Mat. Izv. 18, No. 2, 997-1014 (2021). MSC: 35Q35 34L20 PDF BibTeX XML Cite \textit{D. A. Zakora} and \textit{K. V. Forduk}, Sib. Èlektron. Mat. Izv. 18, No. 2, 997--1014 (2021; Zbl 1471.35244) Full Text: DOI OpenURL
Kosolapova, L. A. Dynamics of a gas bubble near a wall under acoustic excitation with the formation of cumulative jet. (English) Zbl 1484.76065 Lobachevskii J. Math. 42, No. 9, 2159-2164 (2021). MSC: 76Q05 76T10 76M15 76B10 PDF BibTeX XML Cite \textit{L. A. Kosolapova}, Lobachevskii J. Math. 42, No. 9, 2159--2164 (2021; Zbl 1484.76065) Full Text: DOI OpenURL
Li, Fucai; Zhang, Shuxing Low Mach number limit of the non-isentropic ideal magnetohydrodynamic equations. (English) Zbl 1480.76157 J. Math. Fluid Mech. 23, No. 3, Paper No. 69, 15 p. (2021). MSC: 76W05 76N10 35Q35 PDF BibTeX XML Cite \textit{F. Li} and \textit{S. Zhang}, J. Math. Fluid Mech. 23, No. 3, Paper No. 69, 15 p. (2021; Zbl 1480.76157) Full Text: DOI OpenURL
Hao, Chengchun; Luo, Tao Well-posedness for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations. (English) Zbl 1476.35197 J. Differ. Equations 299, 542-601 (2021). MSC: 35Q35 35R35 PDF BibTeX XML Cite \textit{C. Hao} and \textit{T. Luo}, J. Differ. Equations 299, 542--601 (2021; Zbl 1476.35197) Full Text: DOI arXiv OpenURL
Singh, Deepika; Arora, Rajan Propagation of shock waves in a non-ideal gas under the action of magnetic field. (English) Zbl 1470.35236 Math. Methods Appl. Sci. 44, No. 2, 1514-1528 (2021). MSC: 35L67 35L45 35L60 35L65 35Q35 PDF BibTeX XML Cite \textit{D. Singh} and \textit{R. Arora}, Math. Methods Appl. Sci. 44, No. 2, 1514--1528 (2021; Zbl 1470.35236) Full Text: DOI OpenURL
Khesin, Boris; Misiołek, Gerard; Modin, Klas Geometric hydrodynamics and infinite-dimensional Newton’s equations. (English) Zbl 1473.35444 Bull. Am. Math. Soc., New Ser. 58, No. 3, 377-442 (2021). MSC: 35Q35 76A02 76-02 58B20 37K65 PDF BibTeX XML Cite \textit{B. Khesin} et al., Bull. Am. Math. Soc., New Ser. 58, No. 3, 377--442 (2021; Zbl 1473.35444) Full Text: DOI arXiv OpenURL
Forduk, K. V.; Zakora, D. A. Problem on small motions of a system of bodies filled with ideal fluids under the action of an elastic damping device. (English) Zbl 1470.35268 Lobachevskii J. Math. 42, No. 5, 889-900 (2021). MSC: 35Q31 76B99 74F10 74A55 PDF BibTeX XML Cite \textit{K. V. Forduk} and \textit{D. A. Zakora}, Lobachevskii J. Math. 42, No. 5, 889--900 (2021; Zbl 1470.35268) Full Text: DOI OpenURL
Singh, H.; Hanna, J. A. Pseudomomentum: origins and consequences. (English) Zbl 1465.74018 Z. Angew. Math. Phys. 72, No. 3, Paper No. 122, 25 p. (2021); correction ibid. 73, No. 5, Paper No. 189, 1 p. (2022). MSC: 74A99 76A99 PDF BibTeX XML Cite \textit{H. Singh} and \textit{J. A. Hanna}, Z. Angew. Math. Phys. 72, No. 3, Paper No. 122, 25 p. (2021; Zbl 1465.74018) Full Text: DOI arXiv OpenURL
Bagno, O. M. On the influence of finite initial deformations on the surface instability of the incompressible elastic layer interacting with the half-space of an ideal fluid. (Ukrainian. English summary) Zbl 1474.74063 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2021, No. 1, 24-32 (2021). MSC: 74J20 PDF BibTeX XML Cite \textit{O. M. Bagno}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2021, No. 1, 24--32 (2021; Zbl 1474.74063) Full Text: DOI OpenURL
Arnold, Vladimir I.; Khesin, Boris A. Topological methods in hydrodynamics. 2nd edition. (English) Zbl 1475.76003 Applied Mathematical Sciences 125. Cham: Springer (ISBN 978-3-030-74277-5/hbk; 978-3-030-74280-5/pbk; 978-3-030-74278-2/ebook). xx, 455 p. (2021). MSC: 76-02 76B47 76W05 58D30 PDF BibTeX XML Cite \textit{V. I. Arnold} and \textit{B. A. Khesin}, Topological methods in hydrodynamics. 2nd edition. Cham: Springer (2021; Zbl 1475.76003) Full Text: DOI OpenURL
Cobb, Dimitri; Fanelli, Francesco Rigorous derivation and well-posedness of a quasi-homogeneous ideal MHD system. (English) Zbl 1464.35216 Nonlinear Anal., Real World Appl. 60, Article ID 103284, 36 p. (2021). MSC: 35Q35 76W05 76U65 35B65 35B25 35A01 35A02 PDF BibTeX XML Cite \textit{D. Cobb} and \textit{F. Fanelli}, Nonlinear Anal., Real World Appl. 60, Article ID 103284, 36 p. (2021; Zbl 1464.35216) Full Text: DOI arXiv OpenURL
Elling, Volker W. Shock polars for ideal and non-ideal gases. (English) Zbl 1494.76054 J. Fluid Mech. 916, Paper No. A51, 23 p. (2021). MSC: 76L05 76N15 PDF BibTeX XML Cite \textit{V. W. Elling}, J. Fluid Mech. 916, Paper No. A51, 23 p. (2021; Zbl 1494.76054) Full Text: DOI OpenURL
Benilov, E. S. Paradoxical predictions of liquid curtains with surface tension. (English) Zbl 1485.76022 J. Fluid Mech. 917, Paper No. A21, 29 p. (2021). MSC: 76B45 76B10 76M45 PDF BibTeX XML Cite \textit{E. S. Benilov}, J. Fluid Mech. 917, Paper No. A21, 29 p. (2021; Zbl 1485.76022) Full Text: DOI arXiv OpenURL
Lutsenko, N. A.; Fetsov, S. S. Numerical simulation of two-dimensional gas flows through granular phase change materials. (English. Russian original) Zbl 1468.80002 Comput. Math. Math. Phys. 61, No. 3, 480-493 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 3, 504-518 (2021). Reviewer: Aleksey Syromyasov (Saransk) MSC: 80A19 80A22 76S05 76N15 80M20 76M20 65M12 PDF BibTeX XML Cite \textit{N. A. Lutsenko} and \textit{S. S. Fetsov}, Comput. Math. Math. Phys. 61, No. 3, 480--493 (2021; Zbl 1468.80002); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 3, 504--518 (2021) Full Text: DOI OpenURL
Troshkin, Oleg V. Mechanics of fluid deformations. Rigid body rotations and plane channel flow stability. (English) Zbl 07344583 Singapore: World Scientific (ISBN 978-981-12-3051-6/hbk; 978-981-12-3053-0/ebook). x, 271 p. (2021). MSC: 76-02 76E05 76E30 76M60 PDF BibTeX XML Cite \textit{O. V. Troshkin}, Mechanics of fluid deformations. Rigid body rotations and plane channel flow stability. Singapore: World Scientific (2021; Zbl 07344583) Full Text: DOI OpenURL
Balsara, Dinshaw S.; Kumar, Rakesh; Chandrashekar, Praveen Globally divergence-free DG scheme for ideal compressible MHD. (English) Zbl 1468.65134 Commun. Appl. Math. Comput. Sci. 16, No. 1, 59-98 (2021). MSC: 65M60 65M12 35L65 35L67 76W05 76N99 76M10 PDF BibTeX XML Cite \textit{D. S. Balsara} et al., Commun. Appl. Math. Comput. Sci. 16, No. 1, 59--98 (2021; Zbl 1468.65134) Full Text: DOI OpenURL
Zavyalova, Kristina N.; Shishmarev, Konstantin A.; Korobkin, Alexander A. The response of a poroelastic ice plate to an external pressure. (English) Zbl 07334146 J. Sib. Fed. Univ., Math. Phys. 14, No. 1, 87-97 (2021). MSC: 76Mxx 74Fxx 74Sxx 86Axx 76Bxx PDF BibTeX XML Cite \textit{K. N. Zavyalova} et al., J. Sib. Fed. Univ., Math. Phys. 14, No. 1, 87--97 (2021; Zbl 07334146) Full Text: DOI MNR OpenURL
Titova, Anastasiia Afanasyevna On the shape of the free-surface problem of an ideal incompressible fluid flow with a singular sink at the top of a triangular ledge at the bottom. (English) Zbl 1458.76009 Sib. Èlektron. Mat. Izv. 18, No. 1, 207-236 (2021). MSC: 76B07 76B03 PDF BibTeX XML Cite \textit{A. A. Titova}, Sib. Èlektron. Mat. Izv. 18, No. 1, 207--236 (2021; Zbl 1458.76009) Full Text: DOI OpenURL
Hochgerner, Simon Feedback control of charged ideal fluids. (English) Zbl 1459.76054 Nonlinearity 34, No. 3, 1316-1351 (2021). MSC: 76E25 76X05 93B52 93C20 37N10 PDF BibTeX XML Cite \textit{S. Hochgerner}, Nonlinearity 34, No. 3, 1316--1351 (2021; Zbl 1459.76054) Full Text: DOI arXiv OpenURL
Cao, Daomin; Wang, Guodong; Zuo, Bijun Existence of steady symmetric vortex patch in a disk. (English) Zbl 1458.76019 J. Math. Fluid Mech. 23, No. 1, Paper No. 20, 13 p. (2021). MSC: 76B47 76M30 76B03 35Q31 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Math. Fluid Mech. 23, No. 1, Paper No. 20, 13 p. (2021; Zbl 1458.76019) Full Text: DOI arXiv OpenURL
Bourahma, M.; Benkirane, A.; Bennouna, J. Entropy solutions for nonlinear parabolic equations with nonstandard growth in non-reflexive Orlicz spaces. (English) Zbl 1456.35113 Mediterr. J. Math. 18, No. 1, Paper No. 20, 23 p. (2021). MSC: 35K59 35K20 35Q68 35Q35 46E30 PDF BibTeX XML Cite \textit{M. Bourahma} et al., Mediterr. J. Math. 18, No. 1, Paper No. 20, 23 p. (2021; Zbl 1456.35113) Full Text: DOI OpenURL
Slobodeanu, Radu Steady Euler flows on the 3-sphere and other Sasakian 3-manifolds. (English) Zbl 1458.35320 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 5, 14 p. (2021). MSC: 35Q31 37C10 53B50 53C25 35B32 76M60 PDF BibTeX XML Cite \textit{R. Slobodeanu}, Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 5, 14 p. (2021; Zbl 1458.35320) Full Text: DOI arXiv OpenURL
Norkin, M. V. The movement of a rectangular cylinder in a liquid at short times after impact with formation of a cavity. (Russian. English summary) Zbl 1503.76012 Sib. Zh. Ind. Mat. 23, No. 2, 106-118 (2020); translation in J. Appl. Ind. Math. 14, No. 2, 385-395 (2020). MSC: 76B10 76B07 76M45 PDF BibTeX XML Cite \textit{M. V. Norkin}, Sib. Zh. Ind. Mat. 23, No. 2, 106--118 (2020; Zbl 1503.76012); translation in J. Appl. Ind. Math. 14, No. 2, 385--395 (2020) Full Text: DOI MNR OpenURL
Kuzmin, Dmitri; Klyushnev, Nikita Limiting and divergence cleaning for continuous finite element discretizations of the MHD equations. (English) Zbl 07504704 J. Comput. Phys. 407, Article ID 109230, 18 p. (2020). MSC: 76-XX 82-XX PDF BibTeX XML Cite \textit{D. Kuzmin} and \textit{N. Klyushnev}, J. Comput. Phys. 407, Article ID 109230, 18 p. (2020; Zbl 07504704) Full Text: DOI Link OpenURL
Sahu, P. K. Propagation of an exponential shock wave in a rotational axisymmetric isothermal or adiabatic flow of a self-gravitating non-ideal gas under the influence of axial or azimuthal magnetic field. (English) Zbl 1489.76034 Chaos Solitons Fractals 135, Article ID 109739, 22 p. (2020). MSC: 76L05 76U05 76M10 82D40 35Q75 76N15 PDF BibTeX XML Cite \textit{P. K. Sahu}, Chaos Solitons Fractals 135, Article ID 109739, 22 p. (2020; Zbl 1489.76034) Full Text: DOI OpenURL
Terze, Zdravko; Pandža, Viktor; Zlatar, Dario Lie group dynamics of multibody system in vortical fluid flow. (English) Zbl 1482.76019 Lacarbonara, Walter (ed.) et al., Nonlinear dynamics of structures, systems and devices. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume I. Cham: Springer. 409-417 (2020). MSC: 76B10 76B47 76M15 70E55 70G65 PDF BibTeX XML Cite \textit{Z. Terze} et al., in: Nonlinear dynamics of structures, systems and devices. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume I. Cham: Springer. 409--417 (2020; Zbl 1482.76019) Full Text: DOI OpenURL
Chauhan, Antim; Arora, Rajan; Tomar, Amit Converging shock waves in a Van der Waals gas of variable density. (English) Zbl 1472.76059 Q. J. Mech. Appl. Math. 73, No. 2, 101-118 (2020). MSC: 76L05 76M45 PDF BibTeX XML Cite \textit{A. Chauhan} et al., Q. J. Mech. Appl. Math. 73, No. 2, 101--118 (2020; Zbl 1472.76059) Full Text: DOI OpenURL
Bizyaev, Ivan Alekseevich; Mamaev, Ivan Sergeevich Dynamics of a pair of point vortices and a foil with parametric excitation in an ideal fluid. (Russian. English summary) Zbl 1479.76019 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 30, No. 4, 618-627 (2020). MSC: 76B47 PDF BibTeX XML Cite \textit{I. A. Bizyaev} and \textit{I. S. Mamaev}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 30, No. 4, 618--627 (2020; Zbl 1479.76019) Full Text: DOI MNR OpenURL
Artemova, Elizabeta Markovna; Vetchanin, Evgeniĭ Vladimirovich Control of the motion of a circular cylinder in an ideal fluid using a source. (English) Zbl 1479.76021 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 30, No. 4, 604-617 (2020). MSC: 76B75 70E60 93B52 PDF BibTeX XML Cite \textit{E. M. Artemova} and \textit{E. V. Vetchanin}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 30, No. 4, 604--617 (2020; Zbl 1479.76021) Full Text: DOI MNR OpenURL
Trakhinin, Yuri On violent instability of a plasma-vacuum interface for an incompressible plasma flow and a nonzero displacement current in vacuum. (English) Zbl 1462.35314 Commun. Math. Sci. 18, No. 2, 321-337 (2020). MSC: 35Q35 76W05 76X05 35L45 35M33 76B03 35R35 35R25 PDF BibTeX XML Cite \textit{Y. Trakhinin}, Commun. Math. Sci. 18, No. 2, 321--337 (2020; Zbl 1462.35314) Full Text: DOI arXiv OpenURL
Il’ichev, Andrej T. Dynamics and spectral stability of soliton-like structures in fluid-filled membrane tubes. (English. Russian original) Zbl 1461.76176 Russ. Math. Surv. 75, No. 5, 843-882 (2020); translation from Usp. Mat. Nauk 75, No. 5, 59-100 (2020). MSC: 76E99 76B25 74F10 74K15 PDF BibTeX XML Cite \textit{A. T. Il'ichev}, Russ. Math. Surv. 75, No. 5, 843--882 (2020; Zbl 1461.76176); translation from Usp. Mat. Nauk 75, No. 5, 59--100 (2020) Full Text: DOI OpenURL
Gallay, Thierry Stability of vortices in ideal fluids: the legacy of Kelvin and Rayleigh. (English) Zbl 1462.35268 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS). AIMS Ser. Appl. Math. 10, 42-59 (2020). MSC: 35Q31 35B35 76B47 76E07 35B07 PDF BibTeX XML Cite \textit{T. Gallay}, AIMS Ser. Appl. Math. 10, 42--59 (2020; Zbl 1462.35268) Full Text: arXiv OpenURL
Zou, Shijun; Yu, Xijun; Dai, Zihuan A positivity-preserving Lagrangian discontinuous Galerkin method for ideal magnetohydrodynamics equations in one-dimension. (English) Zbl 1453.76087 J. Comput. Phys. 405, Article ID 109144, 22 p. (2020). MSC: 76M10 76W05 65M60 PDF BibTeX XML Cite \textit{S. Zou} et al., J. Comput. Phys. 405, Article ID 109144, 22 p. (2020; Zbl 1453.76087) Full Text: DOI OpenURL
Norkin, Mikhaĭl Viktorovich Dynamics of separation points during vertical impact of a floating rectangular cylinder. (Russian. English summary) Zbl 1451.76018 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 2, 108-120 (2020). MSC: 76B07 76B10 76B20 PDF BibTeX XML Cite \textit{M. V. Norkin}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 2, 108--120 (2020; Zbl 1451.76018) Full Text: DOI MNR OpenURL
Vlasov, V. I.; Skorokhodov, S. L. Analytical solution for the cavitating flow over a wedge. I. (English. Russian original) Zbl 1457.76041 Comput. Math. Math. Phys. 60, No. 12, 2032-2055 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 12, 2098-2121 (2020). MSC: 76B10 76M40 76M45 PDF BibTeX XML Cite \textit{V. I. Vlasov} and \textit{S. L. Skorokhodov}, Comput. Math. Math. Phys. 60, No. 12, 2032--2055 (2020; Zbl 1457.76041); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 12, 2098--2121 (2020) Full Text: DOI OpenURL
Borisov, A. V.; Kurakin, L. G. On the stability of a system of two identical point vortices and a cylinder. (English. Russian original) Zbl 1459.76055 Proc. Steklov Inst. Math. 310, 25-31 (2020); translation from Tr. Mat. Inst. Steklova 310, 33-39 (2020). MSC: 76E30 76B47 76M40 PDF BibTeX XML Cite \textit{A. V. Borisov} and \textit{L. G. Kurakin}, Proc. Steklov Inst. Math. 310, 25--31 (2020; Zbl 1459.76055); translation from Tr. Mat. Inst. Steklova 310, 33--39 (2020) Full Text: DOI OpenURL
Chaturvedi, Rahul Kumar; Gupta, Pooja; Srivastava, Shobhit Kumar; Singh, L. P. Evolution of \(C^1\)-wave and its collision with the blast wave in one-dimensional non-ideal gas dynamics. (English) Zbl 1463.76040 Comput. Appl. Math. 39, No. 3, Paper No. 247, 13 p. (2020). MSC: 76M60 76N15 76N30 76L05 PDF BibTeX XML Cite \textit{R. K. Chaturvedi} et al., Comput. Appl. Math. 39, No. 3, Paper No. 247, 13 p. (2020; Zbl 1463.76040) Full Text: DOI OpenURL
Morando, Alessandro; Secchi, Paolo; Trakhinin, Yuri; Trebeschi, Paola Stability of an incompressible plasma-vacuum interface with displacement current in vacuum. (English) Zbl 1448.35406 Math. Methods Appl. Sci. 43, No. 12, 7465-7483 (2020). MSC: 35Q35 76E17 35L50 35R35 35B35 42A38 PDF BibTeX XML Cite \textit{A. Morando} et al., Math. Methods Appl. Sci. 43, No. 12, 7465--7483 (2020; Zbl 1448.35406) Full Text: DOI arXiv OpenURL
Karabut, E. A.; Zhuravleva, E. N. Construction of exact solutions of the problem of the motion of a fluid with a free boundary using infinite systems of differential equations. (English. Russian original) Zbl 1456.76017 Theor. Math. Phys. 202, No. 3, 371-380 (2020); translation from Teor. Mat. Fiz. 202, No. 3, 425-436 (2020). MSC: 76B07 76M40 PDF BibTeX XML Cite \textit{E. A. Karabut} and \textit{E. N. Zhuravleva}, Theor. Math. Phys. 202, No. 3, 371--380 (2020; Zbl 1456.76017); translation from Teor. Mat. Fiz. 202, No. 3, 425--436 (2020) Full Text: DOI OpenURL
Zhuravleva, E. N.; Zubarev, N. M.; Zubareva, O. V.; Karabut, E. A. A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary. (English. Russian original) Zbl 1452.76031 Theor. Math. Phys. 202, No. 3, 344-351 (2020); translation from Teor. Mat. Fiz. 202, No. 3, 393-402 (2020). MSC: 76B07 76M40 PDF BibTeX XML Cite \textit{E. N. Zhuravleva} et al., Theor. Math. Phys. 202, No. 3, 344--351 (2020; Zbl 1452.76031); translation from Teor. Mat. Fiz. 202, No. 3, 393--402 (2020) Full Text: DOI OpenURL
Bagno, A. M. On the influence of a layer of the ideal compressible fluid on the surface instability of the incompressible elastic halfspace exposed to finite initial deformations. (Russian. English summary) Zbl 1449.76047 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 1, 24-32 (2020). MSC: 76N30 74F10 74J15 74B15 74H55 PDF BibTeX XML Cite \textit{A. M. Bagno}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 1, 24--32 (2020; Zbl 1449.76047) Full Text: DOI OpenURL
Tsvetkov, D. O. Oscillations of a stratified liquid partially covered with ice (general case). (English. Russian original) Zbl 1443.35204 Math. Notes 107, No. 1, 160-172 (2020); translation from Mat. Zametki 107, No. 1, 130-144 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35R35 74K35 35D35 35Q35 35Q74 74F10 74B15 PDF BibTeX XML Cite \textit{D. O. Tsvetkov}, Math. Notes 107, No. 1, 160--172 (2020; Zbl 1443.35204); translation from Mat. Zametki 107, No. 1, 130--144 (2020) Full Text: DOI OpenURL
Pelletier, Milan; Schmitt, Thomas; Ducruix, Sébastien A multifluid Taylor-Galerkin methodology for the simulation of compressible multicomponent separate two-phase flows from subcritical to supercritical states. (English) Zbl 07211860 Comput. Fluids 206, Article ID 104588, 20 p. (2020). MSC: 76-XX PDF BibTeX XML Cite \textit{M. Pelletier} et al., Comput. Fluids 206, Article ID 104588, 20 p. (2020; Zbl 07211860) Full Text: DOI OpenURL
Gori, G.; Zocca, M.; Guardone, A.; Le Maître, O. P.; Congedo, P. M. Bayesian inference of thermodynamic models from vapor flow experiments. (English) Zbl 07211843 Comput. Fluids 205, Article ID 104550, 16 p. (2020). MSC: 76-XX PDF BibTeX XML Cite \textit{G. Gori} et al., Comput. Fluids 205, Article ID 104550, 16 p. (2020; Zbl 07211843) Full Text: DOI HAL OpenURL
Agarwal, Ravi P.; Gala, Sadek; Ragusa, Maria Alessandra A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space. (English) Zbl 1440.35258 Z. Angew. Math. Phys. 71, No. 3, Paper No. 95, 11 p. (2020). MSC: 35Q35 35B65 76D05 76W05 35D30 46E30 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Z. Angew. Math. Phys. 71, No. 3, Paper No. 95, 11 p. (2020; Zbl 1440.35258) Full Text: DOI arXiv OpenURL
Hao, Chengchun; Luo, Tao Ill-posedness of free boundary problem of the incompressible ideal MHD. (English) Zbl 1439.35396 Commun. Math. Phys. 376, No. 1, 259-286 (2020). MSC: 35Q35 76W05 76U05 76B03 35R25 35R35 PDF BibTeX XML Cite \textit{C. Hao} and \textit{T. Luo}, Commun. Math. Phys. 376, No. 1, 259--286 (2020; Zbl 1439.35396) Full Text: DOI arXiv OpenURL
Zsuppán, Sándor Connections between optimal constants in some norm inequalities for differential forms. (English) Zbl 1453.46024 Z. Anal. Anwend. 39, No. 2, 171-184 (2020). MSC: 46E30 58A10 35A23 46E35 35Q35 PDF BibTeX XML Cite \textit{S. Zsuppán}, Z. Anal. Anwend. 39, No. 2, 171--184 (2020; Zbl 1453.46024) Full Text: DOI arXiv OpenURL
Bulíček, Miroslav; Gwiazda, Piotr; Kalousek, Martin; Świerczewska-Gwiazda, Agnieszka Existence and homogenization of nonlinear elliptic systems in nonreflexive spaces. (English) Zbl 1437.35034 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 194, Article ID 111487, 34 p. (2020). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35J47 46E30 76M50 PDF BibTeX XML Cite \textit{M. Bulíček} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 194, Article ID 111487, 34 p. (2020; Zbl 1437.35034) Full Text: DOI arXiv OpenURL
Kozlov, Vladimir; Rossmann, Jürgen On the nonstationary Stokes system in a cone: asymptotics of solutions at infinity. (English) Zbl 1433.35285 J. Math. Anal. Appl. 486, No. 1, Article ID 123821, 35 p. (2020). MSC: 35Q35 35B40 46E30 PDF BibTeX XML Cite \textit{V. Kozlov} and \textit{J. Rossmann}, J. Math. Anal. Appl. 486, No. 1, Article ID 123821, 35 p. (2020; Zbl 1433.35285) Full Text: DOI arXiv OpenURL
Gori, G.; Zocca, M.; Cammi, G.; Spinelli, A.; Congedo, P. M.; Guardone, A. Accuracy assessment of the non-ideal computational fluid dynamics model for siloxane MDM from the open-source SU2 suite. (English) Zbl 1477.76065 Eur. J. Mech., B, Fluids 79, 109-120 (2020). MSC: 76M99 76J20 76N15 76-05 PDF BibTeX XML Cite \textit{G. Gori} et al., Eur. J. Mech., B, Fluids 79, 109--120 (2020; Zbl 1477.76065) Full Text: DOI HAL OpenURL