Pugachev, V. S.; Sinitsyn, I. N. Lectures on functional analysis and applications (to appear). 2nd edition. (English) Zbl 07029832 Hackensack, NJ: World Scientific (ISBN 978-981-3203-17-4/hbk; 978-981-3203-18-1/pbk). 800 p. (2023). MSC: 46-01 47-01 PDF BibTeX XML Cite \textit{V. S. Pugachev} and \textit{I. N. Sinitsyn}, Lectures on functional analysis and applications (to appear). 2nd edition. Hackensack, NJ: World Scientific (2023; Zbl 07029832) Full Text: DOI OpenURL
De Vito, Ernesto; Fornasier, Massimo; Naumova, Valeriya A machine learning approach to optimal Tikhonov regularization. I: affine manifolds. (English) Zbl 07528665 Anal. Appl., Singap. 20, No. 2, 353-400 (2022). MSC: 62J07 62G08 47A52 PDF BibTeX XML Cite \textit{E. De Vito} et al., Anal. Appl., Singap. 20, No. 2, 353--400 (2022; Zbl 07528665) Full Text: DOI OpenURL
Jadamba, Baasansuren; Khan, Akhtar A.; Raciti, Fabio; Sama, Miguel A variational inequality based stochastic approximation for estimating the flexural rigidity in random fourth-order models. (English) Zbl 07526830 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106406, 11 p. (2022). MSC: 35R30 49N45 65J20 65J22 65M30 PDF BibTeX XML Cite \textit{B. Jadamba} et al., Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106406, 11 p. (2022; Zbl 07526830) Full Text: DOI OpenURL
Jauhiainen, Jyrki; Seppänen, Aku; Valkonen, Tuomo Mumford-Shah regularization in electrical impedance tomography with complete electrode model. (English) Zbl 07525935 Inverse Probl. 38, No. 6, Article ID 065004, 35 p. (2022). MSC: 35R30 35J25 78A46 PDF BibTeX XML Cite \textit{J. Jauhiainen} et al., Inverse Probl. 38, No. 6, Article ID 065004, 35 p. (2022; Zbl 07525935) Full Text: DOI OpenURL
Yang, Shuping; Xiong, Xiangtuan; Pan, Ping; Sun, Yue Stationary iterated weighted Tikhonov regularization method for identifying an unknown source term of time-fractional radial heat equation. (English) Zbl 07525426 Numer. Algorithms 90, No. 2, 881-903 (2022). MSC: 65M32 65M30 65J20 65M12 65M15 35B45 35B65 35K05 35R30 35R25 26A33 35R11 35Q79 PDF BibTeX XML Cite \textit{S. Yang} et al., Numer. Algorithms 90, No. 2, 881--903 (2022; Zbl 07525426) Full Text: DOI OpenURL
Hai, Dinh Nguyen Duy Hölder-logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator. (English) Zbl 07524322 Commun. Pure Appl. Anal. 21, No. 5, 1715-1734 (2022). MSC: 35K58 35S16 35R25 47J06 60H50 PDF BibTeX XML Cite \textit{D. N. D. Hai}, Commun. Pure Appl. Anal. 21, No. 5, 1715--1734 (2022; Zbl 07524322) Full Text: DOI OpenURL
Genç, Murat A new double-regularized regression using Liu and lasso regularization. (English) Zbl 07523997 Comput. Stat. 37, No. 1, 159-227 (2022). MSC: 65C60 PDF BibTeX XML Cite \textit{M. Genç}, Comput. Stat. 37, No. 1, 159--227 (2022; Zbl 07523997) Full Text: DOI OpenURL
Laurén, Fredrik; Nordström, Jan Energy stable wall modeling for the Navier-Stokes equations. (English) Zbl 07523809 J. Comput. Phys. 457, Article ID 111046, 18 p. (2022). MSC: 65Mxx 35Qxx 76Mxx PDF BibTeX XML Cite \textit{F. Laurén} and \textit{J. Nordström}, J. Comput. Phys. 457, Article ID 111046, 18 p. (2022; Zbl 07523809) Full Text: DOI OpenURL
Iwabuchi, Tsukasa; Ogawa, Takayoshi Ill-posedness for the compressible Navier-Stokes equations under barotropic condition in limiting Besov spaces. (English) Zbl 07522801 J. Math. Soc. Japan 74, No. 2, 353-394 (2022). MSC: 35Q30 76N10 47J06 35R25 PDF BibTeX XML Cite \textit{T. Iwabuchi} and \textit{T. Ogawa}, J. Math. Soc. Japan 74, No. 2, 353--394 (2022; Zbl 07522801) Full Text: DOI OpenURL
de Leeuw, Bart M.; Dubinkina, Svetlana Shadowing-based data assimilation method for partially observed models. (English) Zbl 07518339 SIAM J. Appl. Dyn. Syst. 21, No. 2, 879-902 (2022). MSC: 62M20 37C50 65J20 PDF BibTeX XML Cite \textit{B. M. de Leeuw} and \textit{S. Dubinkina}, SIAM J. Appl. Dyn. Syst. 21, No. 2, 879--902 (2022; Zbl 07518339) Full Text: DOI OpenURL
Dang, Trong Duc; Bui, Duy Thanh; Luu, Thang Xuan A non-homogeneous Cauchy problem for an elliptic equation with non-constant coefficient. (English) Zbl 07518235 Appl. Anal. 101, No. 6, 2342-2371 (2022). MSC: 35J61 45D05 65J20 65R30 PDF BibTeX XML Cite \textit{T. D. Dang} et al., Appl. Anal. 101, No. 6, 2342--2371 (2022; Zbl 07518235) Full Text: DOI OpenURL
Mondal, Subhankar; Nair, M. Thamban Identification of matrix diffusion coefficient in a parabolic PDE. (English) Zbl 07516751 Comput. Methods Appl. Math. 22, No. 2, 413-441 (2022). MSC: 35R30 35K20 35R25 47A52 65N21 65N30 PDF BibTeX XML Cite \textit{S. Mondal} and \textit{M. T. Nair}, Comput. Methods Appl. Math. 22, No. 2, 413--441 (2022; Zbl 07516751) Full Text: DOI OpenURL
Fairag, Faisal; Chen, Ke; Brito-Loeza, Carlos; Ahmad, Shahbaz A two-level method for image denoising and image deblurring models using mean curvature regularization. (English) Zbl 07513106 Int. J. Comput. Math. 99, No. 4, 693-713 (2022). MSC: 47A52 35R30 65F22 PDF BibTeX XML Cite \textit{F. Fairag} et al., Int. J. Comput. Math. 99, No. 4, 693--713 (2022; Zbl 07513106) Full Text: DOI OpenURL
Khater, Mostafa M. A.; Alfalqi, S. H.; Alzaidi, J. F.; Salama, Samir A.; Wang, Fuzhang Plenty of wave solutions to the ill-posed Boussinesq dynamic wave equation under shallow water beneath gravity. (English) Zbl 07512883 AIMS Math. 7, No. 1, 54-81 (2022). MSC: 35C08 35R25 35Q35 76B25 49M05 PDF BibTeX XML Cite \textit{M. M. A. Khater} et al., AIMS Math. 7, No. 1, 54--81 (2022; Zbl 07512883) Full Text: DOI OpenURL
Parhi, Rahul; Nowak, Robert D. What kinds of functions do deep neural networks learn? Insights from variational spline theory. (English) Zbl 07511677 SIAM J. Math. Data Sci. 4, No. 2, 464-489 (2022). MSC: 68T05 82C32 94A12 46E27 47A52 PDF BibTeX XML Cite \textit{R. Parhi} and \textit{R. D. Nowak}, SIAM J. Math. Data Sci. 4, No. 2, 464--489 (2022; Zbl 07511677) Full Text: DOI OpenURL
Reichel, Lothar; Ugwu, Ugochukwu O. The tensor Golub-Kahan-Tikhonov method applied to the solution of ill-posed problems with a t-product structure. (English) Zbl 07511593 Numer. Linear Algebra Appl. 29, No. 1, e2412, 34 p. (2022). MSC: 65F22 PDF BibTeX XML Cite \textit{L. Reichel} and \textit{U. O. Ugwu}, Numer. Linear Algebra Appl. 29, No. 1, e2412, 34 p. (2022; Zbl 07511593) Full Text: DOI OpenURL
Gerth, Daniel; Ramlau, Ronny Estimating solution smoothness and data noise with Tikhonov regularization. (English) Zbl 07510814 Numer. Funct. Anal. Optim. 43, No. 1, 88-115 (2022). MSC: 65J20 47A52 PDF BibTeX XML Cite \textit{D. Gerth} and \textit{R. Ramlau}, Numer. Funct. Anal. Optim. 43, No. 1, 88--115 (2022; Zbl 07510814) Full Text: DOI OpenURL
Yang, Hongqi; Zhang, Rong A modified minimal error method for solving nonlinear integral equations via multiscale Galerkin methods. (English) Zbl 07510810 Numer. Funct. Anal. Optim. 43, No. 1, 1-15 (2022). MSC: 65J20 65D25 47A52 47J06 PDF BibTeX XML Cite \textit{H. Yang} and \textit{R. Zhang}, Numer. Funct. Anal. Optim. 43, No. 1, 1--15 (2022; Zbl 07510810) Full Text: DOI OpenURL
Huang, Jiangfeng; Deng, Zhiliang; Xu, Liwei Bayesian approach for inverse interior scattering problems with limited aperture. (English) Zbl 07510769 Appl. Anal. 101, No. 4, 1491-1504 (2022). MSC: 65M32 65M30 65M06 65C05 76Q05 62F15 35R30 35R25 PDF BibTeX XML Cite \textit{J. Huang} et al., Appl. Anal. 101, No. 4, 1491--1504 (2022; Zbl 07510769) Full Text: DOI OpenURL
Nam, Danh Hua Quoc; Long, Le Dinh; O’Regan, Donal; Ngoc, Tran Bao; Tuan, Nguyen Huy Identification of the right-hand side in a bi-parabolic equation with final data. (English) Zbl 07510752 Appl. Anal. 101, No. 4, 1157-1175 (2022). MSC: 35R30 35L35 35R25 PDF BibTeX XML Cite \textit{D. H. Q. Nam} et al., Appl. Anal. 101, No. 4, 1157--1175 (2022; Zbl 07510752) Full Text: DOI OpenURL
Rabelo, J. C.; Leitão, A. Addendum: On stochastic Kaczmarz type methods for solving large scale systems of ill-posed equations. (English) Zbl 07510533 Inverse Probl. 38, No. 5, Article ID 059401, 3 p. (2022). MSC: 65J20 65J10 PDF BibTeX XML Cite \textit{J. C. Rabelo} and \textit{A. Leitão}, Inverse Probl. 38, No. 5, Article ID 059401, 3 p. (2022; Zbl 07510533) Full Text: DOI OpenURL
Hubmer, Simon; Ramlau, Ronny; Weissinger, Lukas On regularization via frame decompositions with applications in tomography. (English) Zbl 07510531 Inverse Probl. 38, No. 5, Article ID 055003, 28 p. (2022). MSC: 65-XX 49-XX PDF BibTeX XML Cite \textit{S. Hubmer} et al., Inverse Probl. 38, No. 5, Article ID 055003, 28 p. (2022; Zbl 07510531) Full Text: DOI OpenURL
Wang, Chunmei Low regularity primal-dual weak Galerkin finite element methods for ill-posed elliptic Cauchy problems. (English) Zbl 07509156 Int. J. Numer. Anal. Model. 19, No. 1, 33-51 (2022). MSC: 65N30 65N12 35J15 35D35 PDF BibTeX XML Cite \textit{C. Wang}, Int. J. Numer. Anal. Model. 19, No. 1, 33--51 (2022; Zbl 07509156) Full Text: Link OpenURL
Huntul, M. J.; Abbas, Muhammad; Iqbal, Muhammad Kashif An inverse problem for investigating the time-dependent coefficient in a higher-order equation. (English) Zbl 07507673 Comput. Appl. Math. 41, No. 3, Paper No. 120, 21 p. (2022). MSC: 65M32 65M22 65M30 35K70 PDF BibTeX XML Cite \textit{M. J. Huntul} et al., Comput. Appl. Math. 41, No. 3, Paper No. 120, 21 p. (2022; Zbl 07507673) Full Text: DOI OpenURL
Chen, Zhiming; Zhang, Wenlong; Zou, Jun Stochastic convergence of regularized solutions and their finite element approximations to inverse source problems. (English) Zbl 07506907 SIAM J. Numer. Anal. 60, No. 2, 751-780 (2022). MSC: 65-XX 35R30 65J20 65M60 65N21 65N30 PDF BibTeX XML Cite \textit{Z. Chen} et al., SIAM J. Numer. Anal. 60, No. 2, 751--780 (2022; Zbl 07506907) Full Text: DOI OpenURL
Bi, Shujun; Tao, Ting; Pan, Shaohua KL property of exponent \(1/2\) of \(\ell_{2,0}\)-norm and DC regularized factorizations for low-rank matrix recovery. (English) Zbl 07506665 Pac. J. Optim. 18, No. 1, 1-26 (2022). MSC: 15A83 47A52 90C26 PDF BibTeX XML Cite \textit{S. Bi} et al., Pac. J. Optim. 18, No. 1, 1--26 (2022; Zbl 07506665) Full Text: Link OpenURL
Thuy Thi Thu Le; Nguyen, Loc Hoang A convergent numerical method to recover the initial condition of nonlinear parabolic equations from lateral Cauchy data. (English) Zbl 07503659 J. Inverse Ill-Posed Probl. 30, No. 2, 265-286 (2022). MSC: 65M32 65M30 65K10 65M12 35K55 35J60 42A38 35R30 PDF BibTeX XML Cite \textit{Thuy Thi Thu Le} and \textit{L. H. Nguyen}, J. Inverse Ill-Posed Probl. 30, No. 2, 265--286 (2022; Zbl 07503659) Full Text: DOI OpenURL
Imanuvilov, Oleg Y.; Kian, Yavar; Yamamoto, Masahiro Inverse parabolic problems of determining functions with one spatial-component independence by Carleman estimate. (English) Zbl 07503654 J. Inverse Ill-Posed Probl. 30, No. 2, 191-203 (2022). MSC: 35R30 35R25 35K20 PDF BibTeX XML Cite \textit{O. Y. Imanuvilov} et al., J. Inverse Ill-Posed Probl. 30, No. 2, 191--203 (2022; Zbl 07503654) Full Text: DOI OpenURL
Frischauf, Leon; Melching, Melanie; Scherzer, Otmar Diffusion tensor regularization with metric double integrals. (English) Zbl 07503653 J. Inverse Ill-Posed Probl. 30, No. 2, 163-190 (2022). MSC: 47A52 65J20 PDF BibTeX XML Cite \textit{L. Frischauf} et al., J. Inverse Ill-Posed Probl. 30, No. 2, 163--190 (2022; Zbl 07503653) Full Text: DOI OpenURL
Duc, Nguyen Van; Muoi, Pham Quy; Anh, Nguyen Thi Van Stability results for backward heat equations with time-dependent coefficient in the Banach space \(L_p (\mathbb{R})\). (English) Zbl 07501610 Appl. Numer. Math. 175, 40-55 (2022). MSC: 35B45 35K10 35R25 PDF BibTeX XML Cite \textit{N. Van Duc} et al., Appl. Numer. Math. 175, 40--55 (2022; Zbl 07501610) Full Text: DOI OpenURL
Burman, Erik; Nechita, Mihai; Oksanen, Lauri A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: Convection-dominated regime. (English) Zbl 07501299 Numer. Math. 150, No. 3, 769-801 (2022). MSC: 35J15 65N12 65N20 65N21 65N30 PDF BibTeX XML Cite \textit{E. Burman} et al., Numer. Math. 150, No. 3, 769--801 (2022; Zbl 07501299) Full Text: DOI OpenURL
Ding, Ming-Hui; Liu, Hongyu; Zheng, Guang-Hui Shape reconstructions by using plasmon resonances. (English) Zbl 07500590 ESAIM, Math. Model. Numer. Anal. 56, No. 2, 705-726 (2022). MSC: 65N21 65N20 35R30 35R25 78M30 78A46 62P10 62F15 65J20 35C20 PDF BibTeX XML Cite \textit{M.-H. Ding} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 2, 705--726 (2022; Zbl 07500590) Full Text: DOI OpenURL
Melikyan, A.; Weber, G. Quantum integrability of massive anisotropic SU(N) fermionic models. (English) Zbl 07500047 Phys. Lett., B 827, Article ID 136934, 8 p. (2022). MSC: 81Q80 81R12 81V74 74E10 14E15 65J20 81U20 05C69 PDF BibTeX XML Cite \textit{A. Melikyan} and \textit{G. Weber}, Phys. Lett., B 827, Article ID 136934, 8 p. (2022; Zbl 07500047) Full Text: DOI OpenURL
Ben Belgacem, Faker; Girault, Vivette; Jelassi, Faten Full discretization of Cauchy’s problem by Lavrentiev-finite element method. (English) Zbl 07498293 SIAM J. Numer. Anal. 60, No. 2, 558-584 (2022). MSC: 65-XX 35R25 65F22 65N30 PDF BibTeX XML Cite \textit{F. Ben Belgacem} et al., SIAM J. Numer. Anal. 60, No. 2, 558--584 (2022; Zbl 07498293) Full Text: DOI OpenURL
Khieu, Tran Thi; Khanh, Tra Quoc Fractional filter method for recovering the historical distribution for diffusion equations with coupling operator of local and nonlocal type. (English) Zbl 07496464 Numer. Algorithms 89, No. 4, 1743-1767 (2022). MSC: 65M32 65M30 65M06 65N21 65N20 65T50 60J70 35R30 35R25 47J06 26A33 35R11 PDF BibTeX XML Cite \textit{T. T. Khieu} and \textit{T. Q. Khanh}, Numer. Algorithms 89, No. 4, 1743--1767 (2022; Zbl 07496464) Full Text: DOI OpenURL
Mathé, P.; Nair, M. T.; Hofmann, B. Regularization of linear ill-posed problems involving multiplication operators. (English) Zbl 07495666 Appl. Anal. 101, No. 2, 714-732 (2022). MSC: 47A52 62G08 65J22 PDF BibTeX XML Cite \textit{P. Mathé} et al., Appl. Anal. 101, No. 2, 714--732 (2022; Zbl 07495666) Full Text: DOI OpenURL
Porzio, Maria Michaela; Smarrazzo, Flavia Existence and uniqueness for a class of nonlinear elliptic equations with measure data. (English) Zbl 07495346 Ann. Mat. Pura Appl. (4) 201, No. 2, 499-528 (2022). MSC: 35R06 35D30 35J25 35J62 35J70 35R25 28A33 28A50 PDF BibTeX XML Cite \textit{M. M. Porzio} and \textit{F. Smarrazzo}, Ann. Mat. Pura Appl. (4) 201, No. 2, 499--528 (2022; Zbl 07495346) Full Text: DOI OpenURL
Habring, Andreas; Holler, Martin A generative variational model for inverse problems in imaging. (English) Zbl 07493847 SIAM J. Math. Data Sci. 4, No. 1, 306-335 (2022). MSC: 49N45 65J20 68T07 94A08 PDF BibTeX XML Cite \textit{A. Habring} and \textit{M. Holler}, SIAM J. Math. Data Sci. 4, No. 1, 306--335 (2022; Zbl 07493847) Full Text: DOI arXiv OpenURL
Helin, Tapio; Kretschmann, Remo Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems. (English) Zbl 07493700 Numer. Math. 150, No. 2, 521-549 (2022). MSC: 47J06 62E17 62E20 62F15 65D30 65D32 65J20 65J22 PDF BibTeX XML Cite \textit{T. Helin} and \textit{R. Kretschmann}, Numer. Math. 150, No. 2, 521--549 (2022; Zbl 07493700) Full Text: DOI arXiv OpenURL
Artemyeva, L. A.; Dryazhenkov, A. A.; Potapov, M. M. Stable solution of a quadratic minimization problem with a nonuniformly perturbed operator by applying a regularized gradient method. (English. Russian original) Zbl 07491032 Comput. Math. Math. Phys. 62, No. 1, 10-19 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 12-22 (2022). MSC: 65J20 PDF BibTeX XML Cite \textit{L. A. Artemyeva} et al., Comput. Math. Math. Phys. 62, No. 1, 10--19 (2022; Zbl 07491032); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 12--22 (2022) Full Text: DOI OpenURL
Zare, Hossein; Hajarian, Masoud An efficient Gauss-Newton algorithm for solving regularized total least squares problems. (English) Zbl 07490865 Numer. Algorithms 89, No. 3, 1049-1073 (2022). MSC: 65F10 65F22 49M37 PDF BibTeX XML Cite \textit{H. Zare} and \textit{M. Hajarian}, Numer. Algorithms 89, No. 3, 1049--1073 (2022; Zbl 07490865) Full Text: DOI OpenURL
Hanke, Michael; März, Roswitha Towards a reliable implementation of least-squares collocation for higher index differential-algebraic equations. II: The discrete least-squares problem. (English) Zbl 07490861 Numer. Algorithms 89, No. 3, 965-986 (2022). MSC: 65L80 65L08 65F20 34A99 PDF BibTeX XML Cite \textit{M. Hanke} and \textit{R. März}, Numer. Algorithms 89, No. 3, 965--986 (2022; Zbl 07490861) Full Text: DOI OpenURL
Hanke, Michael; März, Roswitha Towards a reliable implementation of least-squares collocation for higher index differential-algebraic equations. I: Basics and ansatz function choices. (English) Zbl 07490860 Numer. Algorithms 89, No. 3, 931-963 (2022). MSC: 65L80 65L08 65F20 34A99 PDF BibTeX XML Cite \textit{M. Hanke} and \textit{R. März}, Numer. Algorithms 89, No. 3, 931--963 (2022; Zbl 07490860) Full Text: DOI OpenURL
Ouaissa, Hamid; Chakib, Abdelkrim; Nachaoui, Abdeljalil; Nachaoui, Mourad On numerical approaches for solving an inverse Cauchy Stokes problem. (English) Zbl 07490293 Appl. Math. Optim. 85, No. 1, 1-37 (2022). MSC: 65N21 65N20 65N30 65J20 PDF BibTeX XML Cite \textit{H. Ouaissa} et al., Appl. Math. Optim. 85, No. 1, 1--37 (2022; Zbl 07490293) Full Text: DOI arXiv OpenURL
Yang, Fan; Wu, Hang-Hang; Li, Xiao-Xiao Three regularization methods for identifying the initial value of time fractional advection-dispersion equation. (English) Zbl 07490228 Comput. Appl. Math. 41, No. 1, Paper No. 60, 38 p. (2022). MSC: 35R25 47A52 35R30 PDF BibTeX XML Cite \textit{F. Yang} et al., Comput. Appl. Math. 41, No. 1, Paper No. 60, 38 p. (2022; Zbl 07490228) Full Text: DOI OpenURL
Zhong, Min; Wang, Wei; Tong, Shanshan An asymptotical regularization with convex constraints for inverse problems. (English) Zbl 07489717 Inverse Probl. 38, No. 4, Article ID 045007, 30 p. (2022). MSC: 65M32 65M30 65K10 65M06 65L06 PDF BibTeX XML Cite \textit{M. Zhong} et al., Inverse Probl. 38, No. 4, Article ID 045007, 30 p. (2022; Zbl 07489717) Full Text: DOI OpenURL
Zeaiter, Amal; Videcoq, Etienne; Fénot, Matthieu Real-time identification of PMSM losses through a novel past-time averaging method. (English) Zbl 07489716 Inverse Probl. 38, No. 4, Article ID 045006, 19 p. (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 80A23 80A19 35K05 35N25 35R30 35R25 65M06 65J20 35R07 65L09 PDF BibTeX XML Cite \textit{A. Zeaiter} et al., Inverse Probl. 38, No. 4, Article ID 045006, 19 p. (2022; Zbl 07489716) Full Text: DOI OpenURL
Le, Thuy T.; Klibanov, Michael V.; Nguyen, Loc H.; Sullivan, Anders; Nguyen, Lam Carleman contraction mapping for a 1D inverse scattering problem with experimental time-dependent data. (English) Zbl 07489712 Inverse Probl. 38, No. 4, Article ID 045002, 31 p. (2022). MSC: 35R30 35R25 35L05 PDF BibTeX XML Cite \textit{T. T. Le} et al., Inverse Probl. 38, No. 4, Article ID 045002, 31 p. (2022; Zbl 07489712) Full Text: DOI arXiv OpenURL
Shen, Qin-Qin; Cao, Yang; Zeng, Bo; Shi, Quan Stable computation of least squares problems of the OGM(\(1,N\)) model and short-term traffic flow prediction. (English) Zbl 1481.65061 East Asian J. Appl. Math. 12, No. 2, 264-284 (2022). MSC: 65F22 65F10 62M10 62M20 76A30 PDF BibTeX XML Cite \textit{Q.-Q. Shen} et al., East Asian J. Appl. Math. 12, No. 2, 264--284 (2022; Zbl 1481.65061) Full Text: DOI OpenURL
Xu, Yuan; Zhao, Di; Zhang, Qiang Local error estimates for Runge-Kutta discontinuous Galerkin methods with upwind-biased numerical fluxes for a linear hyperbolic equation in one-dimension with discontinuous initial data. (English) Zbl 07488721 J. Sci. Comput. 91, No. 1, Paper No. 11, 30 p. (2022). MSC: 65M12 65M15 65M30 PDF BibTeX XML Cite \textit{Y. Xu} et al., J. Sci. Comput. 91, No. 1, Paper No. 11, 30 p. (2022; Zbl 07488721) Full Text: DOI OpenURL
Xie, Ziqing; Yuan, Yongjun; Zhou, Jianxin On solving semilinear singularly perturbed Neumann problems for multiple solutions. (English) Zbl 1483.58002 SIAM J. Sci. Comput. 44, No. 1, A501-A523 (2022). MSC: 58E05 58E07 35J20 65N20 PDF BibTeX XML Cite \textit{Z. Xie} et al., SIAM J. Sci. Comput. 44, No. 1, A501--A523 (2022; Zbl 1483.58002) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Caraballo, Tomás; Van, Phan Thi Khanh; Au, Vo Van On a terminal value problem for parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. (English) Zbl 1483.35336 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106248, 29 p. (2022). MSC: 35R25 35R30 35K51 35K57 35R09 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106248, 29 p. (2022; Zbl 1483.35336) Full Text: DOI OpenURL
Meng, Junying; Wang, Faqiang; Cui, Li; Liu, Jun The lower bound of nonlocal gradient for non-convex and non-smooth image patches based regularization. (English) Zbl 07474166 Inverse Probl. 38, No. 3, Article ID 035010, 28 p. (2022). MSC: 65M32 65M30 65K10 35B65 60H40 90C26 35R60 35R30 PDF BibTeX XML Cite \textit{J. Meng} et al., Inverse Probl. 38, No. 3, Article ID 035010, 28 p. (2022; Zbl 07474166) Full Text: DOI OpenURL
Dahmen, Wolfgang; Stevenson, Rob; Westerdiep, Jan Accuracy controlled data assimilation for parabolic problems. (English) Zbl 1483.35335 Math. Comput. 91, No. 334, 557-595 (2022). MSC: 35R25 35B35 35B45 35K20 65F08 65J20 65M12 65M30 65M60 PDF BibTeX XML Cite \textit{W. Dahmen} et al., Math. Comput. 91, No. 334, 557--595 (2022; Zbl 1483.35335) Full Text: DOI arXiv OpenURL
Caruso, Noè Angelo; Michelangeli, Alessandro; Novati, Paolo On general convergence behaviours of finite-dimensional approximants for abstract linear inverse problems. (English) Zbl 07473147 Asymptotic Anal. 127, No. 1-2, 167-189 (2022). MSC: 35Qxx PDF BibTeX XML Cite \textit{N. A. Caruso} et al., Asymptotic Anal. 127, No. 1--2, 167--189 (2022; Zbl 07473147) Full Text: DOI arXiv OpenURL
Kokurin, Mikhail Y.; Kozlov, Alexander I. Finite-dimensional iteratively regularized processes with an a posteriori stopping for solving irregular nonlinear operator equations. (English) Zbl 07472951 J. Inverse Ill-Posed Probl. 30, No. 1, 127-146 (2022). MSC: 65J20 65J22 47J06 47J25 PDF BibTeX XML Cite \textit{M. Y. Kokurin} and \textit{A. I. Kozlov}, J. Inverse Ill-Posed Probl. 30, No. 1, 127--146 (2022; Zbl 07472951) Full Text: DOI OpenURL
Leonov, Alexander S.; Sharov, Alexander N.; Yagola, Anatoly G. Calculation of the gradient of Tikhonov’s functional in solving coefficient inverse problems for linear partial differential equations. (English) Zbl 07472946 J. Inverse Ill-Posed Probl. 30, No. 1, 23-34 (2022). MSC: 65R20 65R30 65R32 35J25 35J55 35L20 35R25 35R30 PDF BibTeX XML Cite \textit{A. S. Leonov} et al., J. Inverse Ill-Posed Probl. 30, No. 1, 23--34 (2022; Zbl 07472946) Full Text: DOI OpenURL
Petkov, Petko H.; Konstantinov, Mihail M. The numerical Jordan form. (English) Zbl 1482.65059 Linear Algebra Appl. 638, 1-45 (2022). MSC: 65F15 65F22 15A20 15A21 47A55 PDF BibTeX XML Cite \textit{P. H. Petkov} and \textit{M. M. Konstantinov}, Linear Algebra Appl. 638, 1--45 (2022; Zbl 1482.65059) Full Text: DOI OpenURL
Dong, Guozhi; Hintermüller, Michael; Papafitsoros, Kostas Optimization with learning-informed differential equation constraints and its applications. (English) Zbl 1481.49028 ESAIM, Control Optim. Calc. Var. 28, Paper No. 3, 44 p. (2022). MSC: 49M15 65J15 65J20 65K10 90C30 35J61 68T07 PDF BibTeX XML Cite \textit{G. Dong} et al., ESAIM, Control Optim. Calc. Var. 28, Paper No. 3, 44 p. (2022; Zbl 1481.49028) Full Text: DOI arXiv OpenURL
Hubmer, Simon; Ploier, Alexander; Ramlau, Ronny; Fosodeder, Peter; van Frank, Sandrine A mathematical approach towards THz tomography for non-destructive imaging. (English) Zbl 1481.78011 Inverse Probl. Imaging 16, No. 1, 68-88 (2022). MSC: 78A48 44A12 PDF BibTeX XML Cite \textit{S. Hubmer} et al., Inverse Probl. Imaging 16, No. 1, 68--88 (2022; Zbl 1481.78011) Full Text: DOI arXiv OpenURL
Yang, Tianyu; Yang, Yang A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. (English) Zbl 07464239 Inverse Probl. Imaging 16, No. 1, 1-18 (2022). MSC: 65M32 65M30 65K10 65M12 76Q05 35L05 35R30 PDF BibTeX XML Cite \textit{T. Yang} and \textit{Y. Yang}, Inverse Probl. Imaging 16, No. 1, 1--18 (2022; Zbl 07464239) Full Text: DOI arXiv OpenURL
Borges, Carlos; Rachh, Manas Multifrequency inverse obstacle scattering with unknown impedance boundary conditions using recursive linearization. (English) Zbl 1481.65209 Adv. Comput. Math. 48, No. 1, Paper No. 2, 32 p. (2022). MSC: 65N21 65N20 65R32 31A10 45Q05 35J05 35R30 35R25 PDF BibTeX XML Cite \textit{C. Borges} and \textit{M. Rachh}, Adv. Comput. Math. 48, No. 1, Paper No. 2, 32 p. (2022; Zbl 1481.65209) Full Text: DOI arXiv OpenURL
Alberti, Giovanni S.; Santacesaria, Matteo Infinite-dimensional inverse problems with finite measurements. (English) Zbl 1481.35390 Arch. Ration. Mech. Anal. 243, No. 1, 1-31 (2022). MSC: 35R30 35J25 35P25 47J06 78A46 94A20 PDF BibTeX XML Cite \textit{G. S. Alberti} and \textit{M. Santacesaria}, Arch. Ration. Mech. Anal. 243, No. 1, 1--31 (2022; Zbl 1481.35390) Full Text: DOI arXiv OpenURL
Huang, Guangxin; Liu, Yuanyuan; Yin, Feng Tikhonov regularization with MTRSVD method for solving large-scale discrete ill-posed problems. (English) Zbl 1480.65093 J. Comput. Appl. Math. 405, Article ID 113969, 10 p. (2022). MSC: 65F22 15A06 PDF BibTeX XML Cite \textit{G. Huang} et al., J. Comput. Appl. Math. 405, Article ID 113969, 10 p. (2022; Zbl 1480.65093) Full Text: DOI OpenURL
Rabelo, J. C.; Saporito, Y. F.; Leitão, A. On stochastic Kaczmarz type methods for solving large scale systems of ill-posed equations. (English) Zbl 1480.65137 Inverse Probl. 38, No. 2, Article ID 025003, 23 p. (2022); addendum ibid 38, No. 5, Article ID 059401, 3 p. (2022). MSC: 65J20 65J10 PDF BibTeX XML Cite \textit{J. C. Rabelo} et al., Inverse Probl. 38, No. 2, Article ID 025003, 23 p. (2022; Zbl 1480.65137) Full Text: DOI OpenURL
Buccini, Alessandro Fast alternating direction multipliers method by generalized Krylov subspaces. (English) Zbl 1481.65058 J. Sci. Comput. 90, No. 1, Paper No. 60, 23 p. (2022). MSC: 65F22 65K10 65F10 PDF BibTeX XML Cite \textit{A. Buccini}, J. Sci. Comput. 90, No. 1, Paper No. 60, 23 p. (2022; Zbl 1481.65058) Full Text: DOI OpenURL
Reichel, Lothar; Ugwu, Ugochukwu O. Tensor Arnoldi-Tikhonov and GMRES-type methods for ill-posed problems with a t-product structure. (English) Zbl 1481.65060 J. Sci. Comput. 90, No. 1, Paper No. 59, 39 p. (2022). MSC: 65F22 65F10 15A69 PDF BibTeX XML Cite \textit{L. Reichel} and \textit{U. O. Ugwu}, J. Sci. Comput. 90, No. 1, Paper No. 59, 39 p. (2022; Zbl 1481.65060) Full Text: DOI arXiv OpenURL
Colibazzi, Francesco; Lazzaro, Damiana; Morigi, Serena; Samoré, Andrea Learning nonlinear electrical impedance tomography. (English) Zbl 07454840 J. Sci. Comput. 90, No. 1, Paper No. 58, 23 p. (2022). MSC: 65M32 65M30 65K10 68T07 78M30 94A05 35B65 35R30 PDF BibTeX XML Cite \textit{F. Colibazzi} et al., J. Sci. Comput. 90, No. 1, Paper No. 58, 23 p. (2022; Zbl 07454840) Full Text: DOI OpenURL
Lampe, Jörg; Voss, Heinrich A survey on variational characterizations for nonlinear eigenvalue problems. (English) Zbl 07436835 ETNA, Electron. Trans. Numer. Anal. 55, 1-75 (2022). MSC: 65-XX 35P30 47A52 47A75 47J10 65F15 PDF BibTeX XML Cite \textit{J. Lampe} and \textit{H. Voss}, ETNA, Electron. Trans. Numer. Anal. 55, 1--75 (2022; Zbl 07436835) Full Text: DOI Link OpenURL
Li, Hailong; Ding, Liang Generalized conditional gradient method for elastic-net regularization. (English) Zbl 1481.65085 J. Comput. Appl. Math. 403, Article ID 113872, 19 p. (2022). MSC: 65J20 PDF BibTeX XML Cite \textit{H. Li} and \textit{L. Ding}, J. Comput. Appl. Math. 403, Article ID 113872, 19 p. (2022; Zbl 1481.65085) Full Text: DOI OpenURL
Unser, Michael; Aziznejad, Shayan Convex optimization in sums of Banach spaces. (English) Zbl 07432345 Appl. Comput. Harmon. Anal. 56, 1-25 (2022). MSC: 46N10 47A52 65J20 68T05 PDF BibTeX XML Cite \textit{M. Unser} and \textit{S. Aziznejad}, Appl. Comput. Harmon. Anal. 56, 1--25 (2022; Zbl 07432345) Full Text: DOI arXiv OpenURL
Gao, Guangyu; Han, Bo; Tong, Shanshan A fast two-point gradient algorithm based on sequential subspace optimization method for nonlinear ill-posed problems. (English) Zbl 07431723 Math. Comput. Simul. 192, 221-245 (2022). MSC: 65-XX 90-XX PDF BibTeX XML Cite \textit{G. Gao} et al., Math. Comput. Simul. 192, 221--245 (2022; Zbl 07431723) Full Text: DOI arXiv OpenURL
Li, Jinlu; Yu, Yanghai; Zhu, Weipeng Ill-posedness for the Camassa-Holm and related equations in Besov spaces. (English) Zbl 1477.35170 J. Differ. Equations 306, 403-417 (2022). MSC: 35Q35 35Q53 76B15 37K10 46E35 35R25 PDF BibTeX XML Cite \textit{J. Li} et al., J. Differ. Equations 306, 403--417 (2022; Zbl 1477.35170) Full Text: DOI arXiv OpenURL
Nie, Yao; Yuan, Jia Ill-posedness issue for a multidimensional hyperbolic-parabolic model of chemotaxis in critical Besov spaces \(\dot{B}_{2 d , 1}^{- \frac{ 3}{ 2}} \times ( \dot{B}_{2 d , 1}^{- \frac{ 1}{ 2}} )^d\). (English) Zbl 07413021 J. Math. Anal. Appl. 505, No. 2, Article ID 125539, 14 p. (2022). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K55 46E30 35R25 PDF BibTeX XML Cite \textit{Y. Nie} and \textit{J. Yuan}, J. Math. Anal. Appl. 505, No. 2, Article ID 125539, 14 p. (2022; Zbl 07413021) Full Text: DOI OpenURL
Wang, Yuchan; Chen, Qun; Liu, Jijun On the cavity detection in a heat conductive medium from time-average boundary temperature measurement. (English) Zbl 1473.35663 J. Comput. Appl. Math. 401, Article ID 113780, 15 p. (2022). MSC: 35R30 35K05 35K20 47A52 41A60 65M32 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Comput. Appl. Math. 401, Article ID 113780, 15 p. (2022; Zbl 1473.35663) Full Text: DOI OpenURL
Mittal, Gaurav; Giri, Ankik Kumar Convergence rates for iteratively regularized Gauss-Newton method subject to stability constraints. (English) Zbl 07396403 J. Comput. Appl. Math. 400, Article ID 113744, 16 p. (2022). MSC: 47A52 65J15 65J20 PDF BibTeX XML Cite \textit{G. Mittal} and \textit{A. K. Giri}, J. Comput. Appl. Math. 400, Article ID 113744, 16 p. (2022; Zbl 07396403) Full Text: DOI OpenURL
Zhang, Rong; Zhou, Bing Heuristic parameter choice rule for solving linear ill-posed integral equations in finite dimensional space. (English) Zbl 1473.65066 J. Comput. Appl. Math. 400, Article ID 113741, 16 p. (2022). MSC: 65J20 65J10 65J22 65R20 PDF BibTeX XML Cite \textit{R. Zhang} and \textit{B. Zhou}, J. Comput. Appl. Math. 400, Article ID 113741, 16 p. (2022; Zbl 1473.65066) Full Text: DOI OpenURL
Wang, Qifeng; Li, Weiguo; Bao, Wendi; Gao, Xingqi Nonlinear Kaczmarz algorithms and their convergence. (English) Zbl 1473.65060 J. Comput. Appl. Math. 399, Article ID 113720, 13 p. (2022). MSC: 65H10 65J20 PDF BibTeX XML Cite \textit{Q. Wang} et al., J. Comput. Appl. Math. 399, Article ID 113720, 13 p. (2022; Zbl 1473.65060) Full Text: DOI OpenURL
Leitão, A.; Margotti, F.; Svaiter, B. F. Range-relaxed criteria for choosing the Lagrange multipliers in the Levenberg-Marquardt method. (English) Zbl 07528326 IMA J. Numer. Anal. 41, No. 4, 2962-2989 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{A. Leitão} et al., IMA J. Numer. Anal. 41, No. 4, 2962--2989 (2021; Zbl 07528326) Full Text: DOI OpenURL
Ma, Rui; Xiong, Xiangtuan; Amin, Mohammed Elmustafa The method of fundamental solution for a radially symmetric heat conduction problem with variable coefficient. (English) Zbl 07526986 J. Partial Differ. Equations 34, No. 3, 258-267 (2021). MSC: 35K05 65M32 35R30 PDF BibTeX XML Cite \textit{R. Ma} et al., J. Partial Differ. Equations 34, No. 3, 258--267 (2021; Zbl 07526986) Full Text: DOI OpenURL
Mondal, Subhankar; Nair, M. Thamban On regularization of a source identification problem in a parabolic PDE and its finite dimensional analysis. (English) Zbl 07526985 J. Partial Differ. Equations 34, No. 3, 240-257 (2021). MSC: 35R30 65N21 47A52 PDF BibTeX XML Cite \textit{S. Mondal} and \textit{M. T. Nair}, J. Partial Differ. Equations 34, No. 3, 240--257 (2021; Zbl 07526985) Full Text: DOI OpenURL
Karapinar, Erdal; Binh, Ho Duy; Luc, Nguyen Hoang; Can, Nguyen Huu On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. (English) Zbl 07526169 Adv. Difference Equ. 2021, Paper No. 70, 24 p. (2021). MSC: 35K55 35K70 35K92 47A52 47J06 PDF BibTeX XML Cite \textit{E. Karapinar} et al., Adv. Difference Equ. 2021, Paper No. 70, 24 p. (2021; Zbl 07526169) Full Text: DOI OpenURL
Yang, Fan; Wang, Qianchao; Li, Xiaoxiao A fractional Landweber iterative regularization method for stable analytic continuation. (English) Zbl 07514395 AIMS Math. 6, No. 1, 404-419 (2021). MSC: 35R25 47A52 35R30 PDF BibTeX XML Cite \textit{F. Yang} et al., AIMS Math. 6, No. 1, 404--419 (2021; Zbl 07514395) Full Text: DOI OpenURL
Jin, Xiaowei; Cai, Shengze; Li, Hui; Karniadakis, George Em NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations. (English) Zbl 07510065 J. Comput. Phys. 426, Article ID 109951, 26 p. (2021). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{X. Jin} et al., J. Comput. Phys. 426, Article ID 109951, 26 p. (2021; Zbl 07510065) Full Text: DOI OpenURL
Umbricht, Guillermo Federico Identification of the source for full parabolic equations. (English) Zbl 07499165 Math. Model. Anal. 26, No. 3, 339-357 (2021). MSC: 35R30 35R25 35K20 47A52 58J35 65T50 PDF BibTeX XML Cite \textit{G. F. Umbricht}, Math. Model. Anal. 26, No. 3, 339--357 (2021; Zbl 07499165) Full Text: DOI OpenURL
Bertoluzza, Silvia Algebraic representation of dual scalar products and stabilization of saddle point problems. (English) Zbl 07490880 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 32, No. 4, 649-668 (2021). MSC: 65J20 PDF BibTeX XML Cite \textit{S. Bertoluzza}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 32, No. 4, 649--668 (2021; Zbl 07490880) Full Text: DOI arXiv OpenURL
Tang, Yuelong; Hua, Yuchun A posteriori error estimates based on superconvergence of FEM for fractional evolution equations. (English) Zbl 1482.65169 Open Math. 19, 1210-1222 (2021). MSC: 65M30 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{Y. Tang} and \textit{Y. Hua}, Open Math. 19, 1210--1222 (2021; Zbl 1482.65169) Full Text: DOI OpenURL
Lebedeva, A. V.; Ryabov, V. M. On regularization of the solution of integral equations of the first kind using quadrature formulas. (English. Russian original) Zbl 07485532 Vestn. St. Petersbg. Univ., Math. 54, No. 4, 361-365 (2021); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 593-599 (2021). MSC: 65Rxx 65-XX 65Fxx PDF BibTeX XML Cite \textit{A. V. Lebedeva} and \textit{V. M. Ryabov}, Vestn. St. Petersbg. Univ., Math. 54, No. 4, 361--365 (2021; Zbl 07485532); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 593--599 (2021) Full Text: DOI OpenURL
Stoyan, V. A. Mathematical modeling of quadratically nonlinear spatially distributed systems. II: The case of continuously defined initial-boundary external-dynamic perturbations. (English. Russian original) Zbl 07485089 Cybern. Syst. Anal. 57, No. 6, 906-917 (2021); translation from Kibern. Sist. Anal. 57, No. 6, 72-83 (2021). MSC: 93C20 93C73 93C10 PDF BibTeX XML Cite \textit{V. A. Stoyan}, Cybern. Syst. Anal. 57, No. 6, 906--917 (2021; Zbl 07485089); translation from Kibern. Sist. Anal. 57, No. 6, 72--83 (2021) Full Text: DOI OpenURL
Carasso, Alfred S. Data assimilation in 2D viscous Burgers equation using a stabilized explicit finite difference scheme run backward in time. (English) Zbl 07484766 Inverse Probl. Sci. Eng. 29, No. 13, 3475-3489 (2021). MSC: 35K59 35R25 65M12 65M30 PDF BibTeX XML Cite \textit{A. S. Carasso}, Inverse Probl. Sci. Eng. 29, No. 13, 3475--3489 (2021; Zbl 07484766) Full Text: DOI OpenURL
Su, L. D.; Vasil’ev, V. I.; Jiang, T. S.; Wang, G. Identification of stationary source in the anomalous diffusion equation. (English) Zbl 07484763 Inverse Probl. Sci. Eng. 29, No. 13, 3406-3422 (2021). MSC: 65M30 35R11 PDF BibTeX XML Cite \textit{L. D. Su} et al., Inverse Probl. Sci. Eng. 29, No. 13, 3406--3422 (2021; Zbl 07484763) Full Text: DOI OpenURL
Carasso, Alfred S. Stabilized leapfrog scheme run backward in time, and the explicit \(O( \Delta\) t)\(^2\) stepwise computation of ill-posed time-reversed 2D Navier-Stokes equations. (English) Zbl 07484748 Inverse Probl. Sci. Eng. 29, No. 13, 3062-3085 (2021). MSC: 35Q30 35R25 65M12 65M30 PDF BibTeX XML Cite \textit{A. S. Carasso}, Inverse Probl. Sci. Eng. 29, No. 13, 3062--3085 (2021; Zbl 07484748) Full Text: DOI OpenURL
Romanovski, M. A locally sequential refinement of the growth dynamics identification. (English) Zbl 07484733 Inverse Probl. Sci. Eng. 29, No. 13, 2719-2756 (2021). MSC: 34A34 34A55 47A52 65L09 65J20 65L08 65R30 65N21 PDF BibTeX XML Cite \textit{M. Romanovski}, Inverse Probl. Sci. Eng. 29, No. 13, 2719--2756 (2021; Zbl 07484733) Full Text: DOI OpenURL
Kokurin, M. Yu.; Nedopekin, A. E.; Semenova, A. V. Projected finite dimensional iteratively regularized Gauss-Newton method with a posteriori stopping for the ionospheric radiotomography problem. (English) Zbl 07484720 Inverse Probl. Sci. Eng. 29, No. 13, 2447-2469 (2021). MSC: 47J06 47J25 65J20 65J22 PDF BibTeX XML Cite \textit{M. Yu. Kokurin} et al., Inverse Probl. Sci. Eng. 29, No. 13, 2447--2469 (2021; Zbl 07484720) Full Text: DOI OpenURL
Sumin, Vladimir Iosifovich; Sumin, Mikhail Iosifovich Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems. (Russian. English summary) Zbl 1483.49029 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 2, 265-284 (2021). MSC: 49K20 39B22 49N15 47A52 PDF BibTeX XML Cite \textit{V. I. Sumin} and \textit{M. I. Sumin}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 2, 265--284 (2021; Zbl 1483.49029) Full Text: DOI MNR OpenURL
Sidikova, Anna Ivanovna; Sushkov, Andreĭ Sergeevich Numerical solution of the inverse boundary value heat transfer problem for an inhomogeneous rod. (Russian. English summary) Zbl 07482125 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 2, 253-264 (2021). MSC: 80M22 80A23 65M32 65M30 65M15 35K05 35B65 35Q79 35R30 PDF BibTeX XML Cite \textit{A. I. Sidikova} and \textit{A. S. Sushkov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 2, 253--264 (2021; Zbl 07482125) Full Text: DOI MNR OpenURL
Pozharska, K. V.; Pozharskyi, A. A. Recovery of continuous functions of two variables from their Fourier coefficients known with error. (English) Zbl 07482104 Carpathian Math. Publ. 13, No. 3, 676-686 (2021). MSC: 41A10 46E35 47A52 PDF BibTeX XML Cite \textit{K. V. Pozharska} and \textit{A. A. Pozharskyi}, Carpathian Math. Publ. 13, No. 3, 676--686 (2021; Zbl 07482104) Full Text: DOI OpenURL
Yang, Fan; Sun, Qiao-Xi; Li, Xiao-Xiao Three Landweber iterative methods for solving the initial value problem of time-fractional diffusion-wave equation on spherically symmetric domain. (English) Zbl 07480134 Inverse Probl. Sci. Eng. 29, No. 12, 2306-2356 (2021). MSC: 35R25 47A52 35R30 PDF BibTeX XML Cite \textit{F. Yang} et al., Inverse Probl. Sci. Eng. 29, No. 12, 2306--2356 (2021; Zbl 07480134) Full Text: DOI OpenURL
Abdelhamid, Talaat; Chen, Rongliang; Alam, Md. Mahbub Nonlinear conjugate gradient method for identifying Young’s modulus of the elasticity imaging inverse problem. (English) Zbl 07480128 Inverse Probl. Sci. Eng. 29, No. 12, 2165-2185 (2021). MSC: 65N20 65N30 65N21 PDF BibTeX XML Cite \textit{T. Abdelhamid} et al., Inverse Probl. Sci. Eng. 29, No. 12, 2165--2185 (2021; Zbl 07480128) Full Text: DOI OpenURL
Wen, Jin; Huang, Li-Ming; Liu, Zhuan-Xia A modified quasi-reversibility method for inverse source problem of Poisson equation. (English) Zbl 07480125 Inverse Probl. Sci. Eng. 29, No. 12, 2098-2109 (2021). MSC: 35R30 65N20 PDF BibTeX XML Cite \textit{J. Wen} et al., Inverse Probl. Sci. Eng. 29, No. 12, 2098--2109 (2021; Zbl 07480125) Full Text: DOI OpenURL