zbMATH — the first resource for mathematics

Correcting lateral heat conduction effect in image-based heat flux measurements as an inverse problem. (English) Zbl 1209.80034
Summary: The image deconvolution method is developed, which is coupled with the one-dimensional (1D) analytical inverse method to calculate more accurate heat flux fields by correcting the lateral heat conduction effect in image-based surface temperature measurements. The theoretical foundation is a convolution-type integral equation with a Gaussian filter (kernel) that relates a heat flux field obtained by using the 1D inverse method on a surface to the true heat flux field. The accuracy of this method is evaluated and the standard deviation in the Gaussian filter is determined for different materials through simulations. This method is used to calculate heat flux fields in temperature-sensitive-paint measurements on a \(7^{\circ }\)-half-angle circular cone at Mach 6 in a short-duration hypersonic wind tunnel. In addition, a simple method is proposed to solve a projection problem associated with image deconvolution for a highly curved developable surface.
80A23 Inverse problems in thermodynamics and heat transfer
80A20 Heat and mass transfer, heat flow (MSC2010)
80-05 Experimental work for problems pertaining to classical thermodynamics
Full Text: DOI
[1] Liu, T.; Campbell, B.; Sullivan, J.: Heat transfer measurement on a waverider at Mach 10 using fluorescent paint, J. thermophys. Heat transfer 9, No. 4, 605-611 (1995)
[2] Hubner, J. P.; Carroll, B. F.; Schanze, K. S.: Heat-transfer measurements in hypersonic flow using luminescent coating techniques, J. thermophys. Heat transfer 16, No. 4, 516-522 (2002)
[3] J.D. Norris, M. Hamner, J.F. Lafferty, N.T. Smith, M.J. Lewis, Adapting temperature-sensitive paint technology for use in AEDC Hypervelocity Wind Tunnel 9, in: AIAA 2004-2191, Portland, Oregon, 2004.
[4] I. Kurits, M. Lewis, M. Hamner, J.D. Norris, Development of a global heat transfer measurement system at AEDC Hypervelocity Wind Tunnel 9, in: ICIASF, Pacific Grove, CA, 2007.
[5] S. Matsumura, S.A. Berry, S.P. Schneider, Flow visualization measurement techniques for high-speed transition research in the Boeing/AFOSR Mach-6 Quiet Tunnel, in: AIAA Paper 2003-4583, July 2003.
[6] Matsumura, S.; Schneider, S. P.; Berry, S. A.: Streamwise vortex instability and transition on the hyper-2000 scramjet forebody, J. spacecraft rockets 42, No. 1, 78-88 (2005)
[7] S.P. Schneider, S. Rufer, C. Skoch, E. Swanson, Hypersonic transition research in the Boeing/AFOSR Mach-6 Quiet Tunnel, in: AIAA Paper 2003-3450, June 2003.
[8] Liu, T.; Sullivan, J.: Pressure and temperature sensitive paints, (2004)
[9] Allison, S. W.; Gillies, G. T.: Remote thermometry with thermographic phosphors: instrumentation and applications, Rev. sci. Instrum. 68, No. 7, 2615-2650 (1997)
[10] G.M. Buck, Automated thermal mapping techniques using chromatic image analysis, NASA TM 101554, 1989.
[11] G.M. Buck, Surface temperature/heat transfer measurement using a quantitative phosphor thermography system, in: AIAA Paper 91-0064, 1991.
[12] N.R. Merski, Reduction and analysis of phosphor thermography data with the IHEAT software package, in: AIAA Paper 98-0712, 1998.
[13] Merski, N. R.: Global aeroheating wind-tunnel measurements using improved two-color phosphor thermography method, J. spacecraft rockets 36, No. 2, 160-170 (1999)
[14] Noel, B. W.; Borella, H. M.; Franks, L. A.; Marshall, B. R.; Allison, S. W.; Cates, M. R.; Stange, W. A.: Proposed laser-induced fluorescence method for remote thermometry in turbine engines, J. propulsion power 2, No. 6, 565-568 (1986)
[15] B.W. Noel, S.W. Allison, D.L. Beshears, M.R. Cates, H.M. Borella, Evaluation and testing thermographic phosphors for turbine-engine temperature measurements, in: AIAA Paper 87-1761, 1987.
[16] Tobin, K. W.; Allison, S. W.; Cates, M. R.; Capps, G. J.; Beshears, D. L.; Cyr, M.; Noel, B. W.: High-temperature phosphor thermometry of rotating turbine blades, Aiaa j. 28, No. 8, 1485-1490 (1990)
[17] T.V. Jones, S.A. Hippensteele, High-resolution heat-transfer coefficient maps applicable to compound-curve surface using liquid crystals in a transient wind tunnel, in: NASA TM 89855, 1988.
[18] S.A. Hippensteele, L.M. Russell, High resolution liquid-crystal heat-transfer measurements on the end wall of a turbine passage with variations in Reynolds number, in: NASA TM 100827, 1988.
[19] Babinsky, H.; Edwards, J. A.: Automatic liquid crystal thermography for transient heat transfer measurements in hypersonic flow, Exp. fluids 23, 227-236 (1996)
[20] Ireland, P. T.; Jones, T. V.: Liquid crystal measurements of heat transfer and surface shear stress, Measur. sci. Technol. 11, 969-986 (2000)
[21] Le Sant, Y.; Marchand, M.; Millan, P.; Fontaine, J.: An overview of infrared thermography techniques used in large wind tunnels, Aerospace sci. Technol. 6, No. 5, 355-366 (2002)
[22] Sargent, S. R.; Hedlund, C. R.; Ligrani, P. M.: An infrared thermography imaging system for convective heat transfer measurements in complex flows, Measur. sci. Technol. 9, 1974-1981 (1998)
[23] D.L Schultz, T.V. Jones, Heat transfer measurements in short-duration hypersonic facilities, in: AGARDograph No. 165, 1973.
[24] Cook, W. J.; Felderman, E. J.: Reduction of data from thin-film heat transfer gages: a concise technique, Aiaa j. 8, No. 7, 1366-1368 (1970)
[25] Walker, D. G.; Scott, E. P.: Evaluation of estimation methods for high unsteady heat fluxes from surface measurements, J. thermophys. Heat transfer 12, No. 4, 543-551 (1998)
[26] Alifanov, O. M.: Inverse heat transfer problems, (1994) · Zbl 0979.80003
[27] Beck, J. V.; Blackwell, B.; Clair, C. R. St.: Inverse heat conduction: ill-posed problem, (1985) · Zbl 0633.73120
[28] R.H. Smith, E.P. Scott, P.H. Ligrani, Experimental validation of an inverse heat conduction problem using thermocouple and infrared data, in: AIAA 2001-0507, Reno, NV, 2001.
[29] F. Kojima, S. Fukuda, K. Asai, K. Nakakita, Identification of time and spatial varying heat flux from surface measurements based on temperature-sensitive paint technology, in: SICE Annual Conference in Sapporo, Hokkaido Institute of Technology, Japan, August 4 – 6, 2004.
[30] Estorf, M.: Image based heating rate calculation from thermographic data considering lateral heat conduction, Int. J. Heat mass transfer 49, 2545-2556 (2005) · Zbl 1189.80037
[31] Liu, T.; Cai, Z.; Lai, J.; Rubal, J.; Sullivan, J.: Analytical method for determining heat flux from temperature-sensitive-paint measurements in hypersonic tunnels, J. thermophys. Heat transfer 24, No. 1, 85-94 (2010)
[32] Z. Cai, T. Liu, B. Wang, J. Rubal, J. Sullivan, Numerical inverse heat transfer analysis for temperature-sensitive-paint measurements in hypersonic tunnels, J. Thermophys. Heat Transfer, in press.
[33] Helstram, C. W.: Image restoration by the method of least squares, J. opt. Soc. am. 57, No. 3, 297-303 (1967)
[34] Banham, M.; Katsaggelos, A.: Digital image restoration, IEEE signal process. Mag. 14, No. 2, 24-41 (1997)
[35] Oliveira, J.; Bioucas-Dias, J.; Figueiredo, M.: Adaptive total variation image deblurring: a majorization – minimization approach, Signal process. 89, No. 9, 1683-1693 (2009) · Zbl 1178.94029
[36] Taler, J.: Theory of transient experimental techniques for surface heat transfer, Int. J. Heat mass transfer 39, No. 17, 3733-3748 (1996)
[37] Taler, J.; Duda, P.: Solving direct and inverse heat conduction problems, (2006) · Zbl 1122.80001
[38] K.M. Casper, B.M. Wheaton, H.B. Johnson, S.P. Schneider, Effects of freestream noise on roughness-induced transition at Mach 6, in: AIAA Paper 2008-4291, Seattle, WA, 2008.
[39] E.O. Swanson, Boundary Layer Transition on Cones at Angle of Attack in a Mach-6 Quiet Tunnel, Ph.D. Thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, 2008.
[40] J.G. Marvin, G.S. Deiwert, Convective heat transfer in planetary gases, NASA Technical Report, TR R-224, NASA, Washington DC, 1965.
[41] White, F. M.: Viscous fluid flow, (1974) · Zbl 0356.76003
[42] J. Sims, Tables for supersonic flow around right circular cones at zero angle of attack, in: NASA SP-3004, 1964.
[43] Anderson, J. D.: Modern compressible flow, (1990)
[44] Lemmon, E. W.; Jacobson, R. T.: Viscosity and thermal conductivity equations for nitrogen, oxygen, argon and air, Int. J. Thermophys. 25, No. 1, 21-69 (2004)
[45] Liu, T.: Geometric and kinematic aspects of image-based measurements of deformable bodies, Aiaa j. 42, No. 9, 1910-1920 (2004)
[46] Pottmann, H.; Wallner, J.: Computational line geometry, (2000) · Zbl 1175.51014
[47] Carslaw, H. S.; Jaeger, J. C.: Operational methods in applied mathematics, (1963) · Zbl 0111.17102
[48] Smith, M. G.: Laplace transform theory, (1966) · Zbl 0137.08801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.