Lemoine, Jérôme; Münch, Arnaud Resolution of the implicit Euler scheme for the Navier-Stokes equation through a least-squares method. (English) Zbl 07317383 Numer. Math. 147, No. 2, 349-391 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 65M06 65N30 65K10 49M15 76D05 PDF BibTeX XML Cite \textit{J. Lemoine} and \textit{A. Münch}, Numer. Math. 147, No. 2, 349--391 (2021; Zbl 07317383) Full Text: DOI
Zhou, Yanjie; Zhang, Yanan; Liang, Ye; Luo, Zhendong A reduced-order extrapolated model based on splitting implicit finite difference scheme and proper orthogonal decomposition for the fourth-order nonlinear Rosenau equation. (English) Zbl 07311186 Appl. Numer. Math. 162, 192-200 (2021). MSC: 35Q53 35G20 65M06 65M12 65M99 65B05 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Appl. Numer. Math. 162, 192--200 (2021; Zbl 07311186) Full Text: DOI
Jagtap, Ameya D. On spatio-temporal dynamics of sine-Gordon soliton in nonlinear non-homogeneous media using fully implicit spectral element scheme. (English) Zbl 1455.65133 Appl. Anal. 100, No. 1, 37-60 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65M70 35C08 65M12 58J45 35L70 35L20 35Q51 PDF BibTeX XML Cite \textit{A. D. Jagtap}, Appl. Anal. 100, No. 1, 37--60 (2021; Zbl 1455.65133) Full Text: DOI
Qiu, Hailong Error analysis of Euler semi-implicit scheme for the nonstationary magneto-hydrodynamics problem with temperature dependent parameters. (English) Zbl 1456.65121 J. Sci. Comput. 85, No. 2, Paper No. 47, 25 p. (2020). MSC: 65M60 65M06 65N30 65M12 65M15 76M10 78M20 76W05 35Q35 PDF BibTeX XML Cite \textit{H. Qiu}, J. Sci. Comput. 85, No. 2, Paper No. 47, 25 p. (2020; Zbl 1456.65121) Full Text: DOI
Liu, Hao; Leung, Shingyu A simple semi-implicit scheme for partial differential equations with obstacle constraints. (English) Zbl 07296134 Numer. Math., Theory Methods Appl. 13, No. 3, 620-643 (2020). MSC: 65N06 65N12 PDF BibTeX XML Cite \textit{H. Liu} and \textit{S. Leung}, Numer. Math., Theory Methods Appl. 13, No. 3, 620--643 (2020; Zbl 07296134) Full Text: DOI
Lan, Haifeng; Xiao, Feiyan; Zhang, Gengen; Zhu, Rui Error analysis of compact implicit-explicit BDF method for nonlinear partial integral differential equations. (Chinese. English summary) Zbl 07295267 J. Guangxi Norm. Univ., Nat. Sci. 38, No. 4, 82-91 (2020). MSC: 65M15 65M06 PDF BibTeX XML Cite \textit{H. Lan} et al., J. Guangxi Norm. Univ., Nat. Sci. 38, No. 4, 82--91 (2020; Zbl 07295267) Full Text: DOI
Sapa, Lucjan; Bożek, Bogusław; Tkacz-Śmiech, Katarzyna; Zajusz, Marek; Danielewski, Marek Interdiffusion in many dimensions: mathematical models, numerical simulations and experiment. (English) Zbl 07289151 Math. Mech. Solids 25, No. 12, 2178-2198 (2020). MSC: 74 PDF BibTeX XML Cite \textit{L. Sapa} et al., Math. Mech. Solids 25, No. 12, 2178--2198 (2020; Zbl 07289151) Full Text: DOI
Moroz, L. I.; Maslovskaya, A. G. Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme. (Russian. English summary) Zbl 1456.60008 Mat. Model. 32, No. 10, 62-76 (2020). MSC: 60-08 60K50 65C20 PDF BibTeX XML Cite \textit{L. I. Moroz} and \textit{A. G. Maslovskaya}, Mat. Model. 32, No. 10, 62--76 (2020; Zbl 1456.60008) Full Text: DOI MNR
Vabishchevich, Petr N. Incomplete iterative implicit schemes. (English) Zbl 1454.65065 Comput. Methods Appl. Math. 20, No. 4, 727-737 (2020). MSC: 65M06 65F10 65M12 65M22 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Methods Appl. Math. 20, No. 4, 727--737 (2020; Zbl 1454.65065) Full Text: DOI
Huang, Pengzhan Convergence of a full discrete finite element method for the Korteweg-de Vries equation. (English) Zbl 1452.65234 Port. Math. (N.S.) 77, No. 1, 31-43 (2020). MSC: 65M60 65M06 65N30 65M15 35Q53 PDF BibTeX XML Cite \textit{P. Huang}, Port. Math. (N.S.) 77, No. 1, 31--43 (2020; Zbl 1452.65234) Full Text: DOI
Liu, Xin A well-balanced asymptotic preserving scheme for the two-dimensional shallow water equations over irregular bottom topography. (English) Zbl 1451.76077 SIAM J. Sci. Comput. 42, No. 5, B1136-B1172 (2020). MSC: 76M12 76M20 76B15 65M08 65M06 PDF BibTeX XML Cite \textit{X. Liu}, SIAM J. Sci. Comput. 42, No. 5, B1136--B1172 (2020; Zbl 1451.76077) Full Text: DOI
Medjo, T. Tachim; Tone, C.; Tone, F. Long-time stability of the implicit Euler scheme for a three dimensional globally modified two-phase flow model. (English) Zbl 1455.35175 Asymptotic Anal. 118, No. 3, 161-208 (2020). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 35Q30 35Q35 76D05 35B41 65M12 65M06 65M22 PDF BibTeX XML Cite \textit{T. T. Medjo} et al., Asymptotic Anal. 118, No. 3, 161--208 (2020; Zbl 1455.35175) Full Text: DOI
Zhou, Jun; Xu, Da Alternating direction implicit difference scheme for the multi-term time-fractional integro-differential equation with a weakly singular kernel. (English) Zbl 1443.65153 Comput. Math. Appl. 79, No. 2, 244-255 (2020). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{D. Xu}, Comput. Math. Appl. 79, No. 2, 244--255 (2020; Zbl 1443.65153) Full Text: DOI
Bonizzoni, Francesca; Braukhoff, Marcel; Jüngel, Ansgar; Perugia, Ilaria A structure-preserving discontinuous Galerkin scheme for the Fisher-KPP equation. (English) Zbl 1452.65225 Numer. Math. 146, No. 1, 119-157 (2020). MSC: 65M60 65M06 65M12 35K20 35K57 35B09 35D35 92D25 35Q92 PDF BibTeX XML Cite \textit{F. Bonizzoni} et al., Numer. Math. 146, No. 1, 119--157 (2020; Zbl 1452.65225) Full Text: DOI
Armstrong, Seth; Han, Jianlong An unconditionally stable numerical scheme for a competition system involving diffusion terms. (English) Zbl 07244842 Int. J. Numer. Anal. Model. 17, No. 2, 212-235 (2020). MSC: 65 PDF BibTeX XML Cite \textit{S. Armstrong} and \textit{J. Han}, Int. J. Numer. Anal. Model. 17, No. 2, 212--235 (2020; Zbl 07244842) Full Text: Link
Itzá Balam, Reymundo; Uh Zapata, Miguel A new eighth-order implicit finite difference method to solve the three-dimensional Helmholtz equation. (English) Zbl 1447.65113 Comput. Math. Appl. 80, No. 5, 1176-1200 (2020). MSC: 65N06 65N12 35J05 78A40 PDF BibTeX XML Cite \textit{R. Itzá Balam} and \textit{M. Uh Zapata}, Comput. Math. Appl. 80, No. 5, 1176--1200 (2020; Zbl 1447.65113) Full Text: DOI
Carrillo, José A.; Hopf, Katharina; Wolfram, Marie-Therese Numerical study of Bose-Einstein condensation in the Kaniadakis-Quarati model for bosons. (English) Zbl 1441.35235 Kinet. Relat. Models 13, No. 3, 507-529 (2020). MSC: 35Q84 35Q40 35K20 35B44 65M06 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Kinet. Relat. Models 13, No. 3, 507--529 (2020; Zbl 1441.35235) Full Text: DOI
Qiao, Leijie; Xu, Da; Yan, Yubin High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. (English) Zbl 1446.65131 Math. Methods Appl. Sci. 43, No. 8, 5162-5178 (2020). MSC: 65M70 65M06 65M12 65M15 65D07 35R11 26A33 45E10 35R09 45K05 PDF BibTeX XML Cite \textit{L. Qiao} et al., Math. Methods Appl. Sci. 43, No. 8, 5162--5178 (2020; Zbl 1446.65131) Full Text: DOI
Zhou, Yongtao; Zhang, Chengjian; Brugnano, Luigi An implicit difference scheme with the KPS preconditioner for two-dimensional time-space fractional convection-diffusion equations. (English) Zbl 1446.65145 Comput. Math. Appl. 80, No. 1, 31-42 (2020). MSC: 65N06 65M06 65M12 65F10 65F08 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Comput. Math. Appl. 80, No. 1, 31--42 (2020; Zbl 1446.65145) Full Text: DOI
Bragin, M. D.; Rogov, B. V. High-order bicompact schemes for numerical modelling of multispecies multi-reaction gas flows. (Russian. English summary) Zbl 1446.76138 Mat. Model. 32, No. 6, 21-36 (2020). MSC: 76M20 76V05 76T30 76L05 PDF BibTeX XML Cite \textit{M. D. Bragin} and \textit{B. V. Rogov}, Mat. Model. 32, No. 6, 21--36 (2020; Zbl 1446.76138) Full Text: DOI MNR
Huang, Yun-Chi; Lei, Siu-Long Fast solvers for finite difference scheme of two-dimensional time-space fractional differential equations. (English) Zbl 1442.65162 Numer. Algorithms 84, No. 1, 37-62 (2020). MSC: 65M06 65M22 35R11 65Y20 65F05 PDF BibTeX XML Cite \textit{Y.-C. Huang} and \textit{S.-L. Lei}, Numer. Algorithms 84, No. 1, 37--62 (2020; Zbl 1442.65162) Full Text: DOI
Wang, Lin; Yu, Haijun An energy stable linear diffusive Crank-Nicolson scheme for the Cahn-Hilliard gradient flow. (English) Zbl 1437.65113 J. Comput. Appl. Math. 377, Article ID 112880, 25 p. (2020). MSC: 65M06 65M12 65M15 35Q35 PDF BibTeX XML Cite \textit{L. Wang} and \textit{H. Yu}, J. Comput. Appl. Math. 377, Article ID 112880, 25 p. (2020; Zbl 1437.65113) Full Text: DOI
Jiang, Chaolong; Gong, Yuezheng; Cai, Wenjun; Wang, Yushun A linearly implicit structure-preserving scheme for the Camassa-Holm equation based on multiple scalar auxiliary variables approach. (English) Zbl 1436.65104 J. Sci. Comput. 83, No. 1, Paper No. 20, 20 p. (2020). MSC: 65M06 65M70 35Q53 PDF BibTeX XML Cite \textit{C. Jiang} et al., J. Sci. Comput. 83, No. 1, Paper No. 20, 20 p. (2020; Zbl 1436.65104) Full Text: DOI
Su, Wei; Wang, Peng; Zhang, Yonghao; Wu, Lei Implicit discontinuous Galerkin method for the Boltzmann equation. (English) Zbl 1434.65191 J. Sci. Comput. 82, No. 2, Paper No. 39, 35 p. (2020). MSC: 65M60 65M70 65M06 76P05 76L05 76K05 76M10 76M22 76M20 PDF BibTeX XML Cite \textit{W. Su} et al., J. Sci. Comput. 82, No. 2, Paper No. 39, 35 p. (2020; Zbl 1434.65191) Full Text: DOI
Macías-Díaz, Jorge E.; Hendy, Ahmed S. On the stability and convergence of an implicit logarithmic scheme for diffusion equations with nonlinear reaction. (English) Zbl 1440.65094 J. Math. Chem. 58, No. 3, 735-749 (2020). MSC: 65M06 65M12 65Q10 35B09 35K57 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} and \textit{A. S. Hendy}, J. Math. Chem. 58, No. 3, 735--749 (2020; Zbl 1440.65094) Full Text: DOI
Yan, Jingye; Zhang, Hong; Liu, Ziyuan; Song, Songhe Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation. (English) Zbl 1433.65246 Appl. Math. Comput. 367, Article ID 124745, 14 p. (2020). MSC: 65M70 65M06 35R11 35Q53 PDF BibTeX XML Cite \textit{J. Yan} et al., Appl. Math. Comput. 367, Article ID 124745, 14 p. (2020; Zbl 1433.65246) Full Text: DOI
Gao, Huadong; Ju, Lili; Duddu, Ravindra; Li, Hongwei An efficient second-order linear scheme for the phase field model of corrosive dissolution. (English) Zbl 1428.65006 J. Comput. Appl. Math. 367, Article ID 112472, 16 p. (2020). MSC: 65M06 65N06 35K40 PDF BibTeX XML Cite \textit{H. Gao} et al., J. Comput. Appl. Math. 367, Article ID 112472, 16 p. (2020; Zbl 1428.65006) Full Text: DOI
Koleva, Miglena N.; Vulkov, Lubin G. Numerical analysis of one dimensional motion of magma without mass forces. (English) Zbl 07126156 J. Comput. Appl. Math. 366, Article ID 112338, 19 p. (2020). MSC: 65 74 PDF BibTeX XML Cite \textit{M. N. Koleva} and \textit{L. G. Vulkov}, J. Comput. Appl. Math. 366, Article ID 112338, 19 p. (2020; Zbl 07126156) Full Text: DOI
Liu, Xin; Chertock, Alina; Kurganov, Alexander An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces. (English) Zbl 1452.65192 J. Comput. Phys. 391, 259-279 (2019). MSC: 65M08 86A05 86A10 65Z05 65M06 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Comput. Phys. 391, 259--279 (2019; Zbl 1452.65192) Full Text: DOI
Belabid, Jabrane; Allali, Karam; Belhaq, Mohamed Convection in a horizontal porous annulus with quasi-periodic gravitational modulation. (English) Zbl 1451.76048 Belhaq, Mohamed (ed.), Topics in nonlinear mechanics and physics. Selected papers from CSNDD 2018, the 4th international conference on structural nonlinear dynamics and diagnosis, Tangier, Morocco, June 25–27, 2018. Singapore: Springer. Springer Proc. Phys. 228, 277-294 (2019). MSC: 76E06 76S05 76R10 76M20 80A19 PDF BibTeX XML Cite \textit{J. Belabid} et al., Springer Proc. Phys. 228, 277--294 (2019; Zbl 1451.76048) Full Text: DOI
Yang, Xiaozhong; Shao, Jing; Sun, Shuzhen A class of efficient difference methods for the double-term time fractional sub-diffusion equation. (Chinese. English summary) Zbl 07266314 Acta Math. Appl. Sin. 42, No. 4, 492-505 (2019). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{X. Yang} et al., Acta Math. Appl. Sin. 42, No. 4, 492--505 (2019; Zbl 07266314)
Abbaszadeh, Mostafa; Dehghan, Mehdi; Zhou, Yong Alternating direction implicit-spectral element method (ADI-SEM) for solving multi-dimensional generalized modified anomalous sub-diffusion equation. (English) Zbl 1442.65288 Comput. Math. Appl. 78, No. 5, 1772-1792 (2019). MSC: 65M70 65M12 65M60 35R11 PDF BibTeX XML Cite \textit{M. Abbaszadeh} et al., Comput. Math. Appl. 78, No. 5, 1772--1792 (2019; Zbl 1442.65288) Full Text: DOI
Chen, Jinghua; Chen, Xuejuan; Zhang, Hongmei Numerical simulation of two-dimensional tempered fractional diffusion equation. (Chinese. English summary) Zbl 1449.65174 J. Xiamen Univ., Nat. Sci. 58, No. 6, 882-888 (2019). MSC: 65M06 65M12 35R11 26A33 65B05 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Xiamen Univ., Nat. Sci. 58, No. 6, 882--888 (2019; Zbl 1449.65174) Full Text: DOI
Smith, F.; Tsynkov, S.; Turkel, E. Compact high order accurate schemes for the three dimensional wave equation. (English) Zbl 1434.65135 J. Sci. Comput. 81, No. 3, 1181-1209 (2019). MSC: 65M06 65M12 65M22 65T50 65N55 35J05 PDF BibTeX XML Cite \textit{F. Smith} et al., J. Sci. Comput. 81, No. 3, 1181--1209 (2019; Zbl 1434.65135) Full Text: DOI
Zhu, Chenyi; Wang, Tingchun High-order compact alternating direction implicit scheme for complex Ginzburg-Landau equations in two dimensions. (Chinese. English summary) Zbl 1449.65216 J. Nanjing Univ. Aeronaut. Astronaut. 51, No. 3, 341-349 (2019). MSC: 65M06 35Q56 65F05 PDF BibTeX XML Cite \textit{C. Zhu} and \textit{T. Wang}, J. Nanjing Univ. Aeronaut. Astronaut. 51, No. 3, 341--349 (2019; Zbl 1449.65216) Full Text: DOI
Alsayed, Hawraa; Fakih, Hussein; Miranville, Alain; Wehbe, Ali Finite difference scheme for 2D parabolic problem modelling electrostatic micro-electromechanical systems. (English) Zbl 1427.78025 Electron. Res. Announc. Math. Sci. 26, 54-71 (2019). MSC: 78M20 78A30 65N06 65N12 35K55 PDF BibTeX XML Cite \textit{H. Alsayed} et al., Electron. Res. Announc. Math. Sci. 26, 54--71 (2019; Zbl 1427.78025) Full Text: DOI
Ouédraogo, P. O. Fabrice; Sawadogo, W. Olivier; So, Ousséni Numerical resolution of Richards equation by the RBF-MQ method. (English) Zbl 1438.65187 An. Univ. Craiova, Ser. Mat. Inf. 46, No. 1, 109-124 (2019). MSC: 65M06 65M70 76S05 35Q35 76M20 65H10 PDF BibTeX XML Cite \textit{P. O. F. Ouédraogo} et al., An. Univ. Craiova, Ser. Mat. Inf. 46, No. 1, 109--124 (2019; Zbl 1438.65187)
Xiao, Aiguo; Wang, Chenxi; Wang, Junjie Conservative linearly-implicit difference scheme for a class of modified Zakharov systems with high-order space fractional quantum correction. (English) Zbl 07106403 Appl. Numer. Math. 146, 379-399 (2019). MSC: 65M06 35R11 35Q53 PDF BibTeX XML Cite \textit{A. Xiao} et al., Appl. Numer. Math. 146, 379--399 (2019; Zbl 07106403) Full Text: DOI
Wang, Lin; Yu, Haijun Energy-stable second-order linear schemes for the Allen-Cahn phase-field equation. (English) Zbl 1426.65140 Commun. Math. Sci. 17, No. 3, 609-635 (2019). MSC: 65M12 65M15 65P40 65M60 65M06 65L12 35P15 PDF BibTeX XML Cite \textit{L. Wang} and \textit{H. Yu}, Commun. Math. Sci. 17, No. 3, 609--635 (2019; Zbl 1426.65140) Full Text: DOI arXiv
Cherfils, Laurence; Miranville, Alain; Peng, Shuiran; Xu, Chuanju Analysis of discretized parabolic problems modeling electrostatic micro-electromechanical systems. (English) Zbl 1419.35091 Discrete Contin. Dyn. Syst., Ser. S 12, No. 6, 1601-1621 (2019). MSC: 35K55 35J60 65N06 65N12 74F15 78A25 PDF BibTeX XML Cite \textit{L. Cherfils} et al., Discrete Contin. Dyn. Syst., Ser. S 12, No. 6, 1601--1621 (2019; Zbl 1419.35091) Full Text: DOI
Zhukov, K. A.; Kornev, A. A.; Lozhnikov, M. A.; Popov, A. V. Acceleration of transition to stationary mode for solutions to a system of viscous gas dynamics. (English. Russian original) Zbl 1428.35416 Mosc. Univ. Math. Bull. 74, No. 2, 55-61 (2019); translation from Vestn. Mosk. Univ., Ser. I 74, No. 2, 14-21 (2019). MSC: 35Q35 76N15 35B35 65M06 35P05 PDF BibTeX XML Cite \textit{K. A. Zhukov} et al., Mosc. Univ. Math. Bull. 74, No. 2, 55--61 (2019; Zbl 1428.35416); translation from Vestn. Mosk. Univ., Ser. I 74, No. 2, 14--21 (2019) Full Text: DOI
Li, Meng; Huang, Chengming An efficient difference scheme for the coupled nonlinear fractional Ginzburg-Landau equations with the fractional Laplacian. (English) Zbl 1419.65024 Numer. Methods Partial Differ. Equations 35, No. 1, 394-421 (2019). MSC: 65M06 65M12 35Q56 35R11 PDF BibTeX XML Cite \textit{M. Li} and \textit{C. Huang}, Numer. Methods Partial Differ. Equations 35, No. 1, 394--421 (2019; Zbl 1419.65024) Full Text: DOI
Chen, Yingzi; Xiao, Aiguo; Wang, Wansheng An IMEX-BDF2 compact scheme for pricing options under regime-switching jump-diffusion models. (English) Zbl 1417.65150 Math. Methods Appl. Sci. 42, No. 8, 2646-2663 (2019). MSC: 65M06 91G60 60J75 91G20 65M12 65M50 PDF BibTeX XML Cite \textit{Y. Chen} et al., Math. Methods Appl. Sci. 42, No. 8, 2646--2663 (2019; Zbl 1417.65150) Full Text: DOI
Bradji, Abdallah A second order time accurate SUSHI method for the time-fractional diffusion equation. (English) Zbl 1416.65255 Nikolov, Geno (ed.) et al., Numerical methods and applications. 9th international conference, NMA 2018, Borovets, Bulgaria, August 20–24, 2018. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11189, 197-206 (2019). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{A. Bradji}, Lect. Notes Comput. Sci. 11189, 197--206 (2019; Zbl 1416.65255) Full Text: DOI
Li, Xing; Xu, Li; Wang, Hao; Yang, Zhong-Hai; Li, Bin A new implicit hybridizable discontinuous Galerkin time-domain method for solving the 3-D electromagnetic problems. (English) Zbl 1421.78025 Appl. Math. Lett. 93, 124-130 (2019). Reviewer: Jichun Li (Las Vegas) MSC: 78M10 78M20 78A25 65M06 65M60 65F10 65F08 65M50 65M55 PDF BibTeX XML Cite \textit{X. Li} et al., Appl. Math. Lett. 93, 124--130 (2019; Zbl 1421.78025) Full Text: DOI
Wang, Haijin; Zheng, Jingjing; Yu, Fan; Guo, Hui; Zhang, Qiang Local discontinuous Galerkin method with implicit-explicit time marching for incompressible miscible displacement problem in porous media. (English) Zbl 1412.65120 J. Sci. Comput. 78, No. 1, 1-28 (2019). MSC: 65M12 65M15 65M60 76S05 35Q35 65M06 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Sci. Comput. 78, No. 1, 1--28 (2019; Zbl 1412.65120) Full Text: DOI
Cen, Zhongdi; Chen, Wenting A HODIE finite difference scheme for pricing American options. (English) Zbl 07031853 Adv. Difference Equ. 2019, Paper No. 67, 17 p. (2019). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{Z. Cen} and \textit{W. Chen}, Adv. Difference Equ. 2019, Paper No. 67, 17 p. (2019; Zbl 07031853) Full Text: DOI
Wang, Haijin; Liu, Yunxian; Zhang, Qiang; Shu, Chi-Wang Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. (English) Zbl 1405.65129 Math. Comput. 88, No. 315, 91-121 (2019). Reviewer: Dana Černá (Liberec) MSC: 65M60 65M12 65M15 76D07 65M06 35Q35 76D05 PDF BibTeX XML Cite \textit{H. Wang} et al., Math. Comput. 88, No. 315, 91--121 (2019; Zbl 1405.65129) Full Text: DOI
Dehghan, Mehdi; Narimani, Niusha An element-free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue. (English) Zbl 07167922 Appl. Math. Modelling 59, 500-513 (2018). MSC: 65 78 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{N. Narimani}, Appl. Math. Modelling 59, 500--513 (2018; Zbl 07167922) Full Text: DOI
Hajipour, Mojtaba; Jajarmi, Amin; Malek, Alaeddin; Baleanu, Dumitru Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. (English) Zbl 1429.65183 Appl. Math. Comput. 325, 146-158 (2018). MSC: 65M06 35B09 35B35 35K57 65M12 PDF BibTeX XML Cite \textit{M. Hajipour} et al., Appl. Math. Comput. 325, 146--158 (2018; Zbl 1429.65183) Full Text: DOI
Zhao, Yadi; Wu, Lifei; Yang, Xiaozhong; Sun, Shuzhen A kind of efficient difference method for the time fractional sub-diffusion equation. (Chinese. English summary) Zbl 1438.65203 Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 6, 1122-1134 (2018). MSC: 65M06 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 6, 1122--1134 (2018; Zbl 1438.65203)
Li, Changpin; Yi, Qian Finite difference method for two-dimensional nonlinear time-fractional subdiffusion equation. (English) Zbl 1428.65010 Fract. Calc. Appl. Anal. 21, No. 4, 1046-1072 (2018). MSC: 65M06 26A33 35R11 65M12 15A18 65F15 PDF BibTeX XML Cite \textit{C. Li} and \textit{Q. Yi}, Fract. Calc. Appl. Anal. 21, No. 4, 1046--1072 (2018; Zbl 1428.65010) Full Text: DOI
Zhang, Haixiang; Yang, Xuehua; Xu, Da Alternating direction implicit OSC scheme for the two-dimensional fractional evolution equation with a weakly singular kernel. (English) Zbl 1438.65261 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1689-1711 (2018). MSC: 65M70 65M12 35R11 26A33 65M06 65D07 65M15 74D05 PDF BibTeX XML Cite \textit{H. Zhang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1689--1711 (2018; Zbl 1438.65261) Full Text: DOI
Gordin, Vladimir A.; Tsymbalov, Evgenii A. Compact difference scheme for parabolic and Schrödinger-type equations with variable coefficients. (English) Zbl 1416.65265 J. Comput. Phys. 375, 1451-1468 (2018). MSC: 65M06 35K10 PDF BibTeX XML Cite \textit{V. A. Gordin} and \textit{E. A. Tsymbalov}, J. Comput. Phys. 375, 1451--1468 (2018; Zbl 1416.65265) Full Text: DOI
Ma, Liangliang; Tan, Qianrong; Liu, Dongbing Fully implicit finite difference scheme for the nonlinear variable-order space-time fractional advection-diffusion equation. (Chinese. English summary) Zbl 1424.65138 J. Sichuan Norm. Univ., Nat. Sci. 41, No. 5, 627-634 (2018). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{L. Ma} et al., J. Sichuan Norm. Univ., Nat. Sci. 41, No. 5, 627--634 (2018; Zbl 1424.65138) Full Text: DOI
Min, Baofeng; Zhang, Xueying Interpolation method for the time fractional diffusion equation. (Chinese. English summary) Zbl 1424.65139 J. Shaanxi Norm. Univ., Nat. Sci. Ed. 46, No. 3, 55-59 (2018). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{B. Min} and \textit{X. Zhang}, J. Shaanxi Norm. Univ., Nat. Sci. Ed. 46, No. 3, 55--59 (2018; Zbl 1424.65139) Full Text: DOI
Wang, Lin; Yu, Haijun Convergence analysis of an unconditionally energy stable linear Crank-Nicolson scheme for the Cahn-Hilliard equation. (English) Zbl 1424.65143 J. Math. Study 51, No. 1, 89-114 (2018). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{L. Wang} and \textit{H. Yu}, J. Math. Study 51, No. 1, 89--114 (2018; Zbl 1424.65143) Full Text: DOI
Yan, Ruifang; Yang, Xiaozhong; Sun, Shuzhen Parallel computing method of pure alternative segment explicit-implicit difference scheme for nonlinear Leland equation. (English) Zbl 1424.65144 Ann. Appl. Math. 34, No. 3, 302-318 (2018). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{R. Yan} et al., Ann. Appl. Math. 34, No. 3, 302--318 (2018; Zbl 1424.65144)
Wei, Zhihan; Li, Chuan; Zhao, Shan A spatially second order alternating direction implicit (ADI) method for solving three dimensional parabolic interface problems. (English) Zbl 1409.65059 Comput. Math. Appl. 75, No. 6, 2173-2192 (2018). MSC: 65M06 35K20 PDF BibTeX XML Cite \textit{Z. Wei} et al., Comput. Math. Appl. 75, No. 6, 2173--2192 (2018; Zbl 1409.65059) Full Text: DOI
Kumar, Devendra An implicit scheme for singularly perturbed parabolic problem with retarded terms arising in computational neuroscience. (English) Zbl 1407.65111 Numer. Methods Partial Differ. Equations 34, No. 6, 1933-1952 (2018). MSC: 65M06 65L12 35Q92 92C20 35K10 35B25 PDF BibTeX XML Cite \textit{D. Kumar}, Numer. Methods Partial Differ. Equations 34, No. 6, 1933--1952 (2018; Zbl 1407.65111) Full Text: DOI
Shah, Abdullah; Sabir, Muhammad; Qasim, Muhammad; Bastian, Peter Efficient numerical scheme for solving the Allen-Cahn equation. (English) Zbl 1407.65130 Numer. Methods Partial Differ. Equations 34, No. 5, 1820-1833 (2018). MSC: 65M06 65M60 65M50 35Q74 PDF BibTeX XML Cite \textit{A. Shah} et al., Numer. Methods Partial Differ. Equations 34, No. 5, 1820--1833 (2018; Zbl 1407.65130) Full Text: DOI
Guo, Yingwen; He, Yinnian On the Euler implicit/explicit iterative scheme for the stationary Oldroyd fluid. (English) Zbl 1407.76096 Numer. Methods Partial Differ. Equations 34, No. 3, 906-937 (2018). MSC: 76M20 76M10 65N06 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{Y. He}, Numer. Methods Partial Differ. Equations 34, No. 3, 906--937 (2018; Zbl 1407.76096) Full Text: DOI
Macías-Díaz, J. E. A dynamically consistent method to solve nonlinear multidimensional advection-reaction equations with fractional diffusion. (English) Zbl 1406.65076 J. Comput. Phys. 366, 71-88 (2018). MSC: 65M12 65M06 76M20 35R11 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, J. Comput. Phys. 366, 71--88 (2018; Zbl 1406.65076) Full Text: DOI
Blouza, A.; El Alaoui, L. Numerical modeling of the quorum sensing in a bacterial biofilm. (English. French summary) Zbl 1408.35196 ESAIM, Proc. Surv. 62, 17-29 (2018). MSC: 35Q92 92C50 92C55 92C45 65M06 65N30 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{A. Blouza} and \textit{L. El Alaoui}, ESAIM, Proc. Surv. 62, 17--29 (2018; Zbl 1408.35196) Full Text: DOI
Modanlı, Mahmut Two numerical methods for fractional partial differential equation with nonlocal boundary value problem. (English) Zbl 1448.65114 Adv. Difference Equ. 2018, Paper No. 333, 19 p. (2018). MSC: 65M06 35R11 65M12 65R20 26A33 PDF BibTeX XML Cite \textit{M. Modanlı}, Adv. Difference Equ. 2018, Paper No. 333, 19 p. (2018; Zbl 1448.65114) Full Text: DOI
Macías-Díaz, Jorge E. A numerically efficient dissipation-preserving implicit method for a nonlinear multidimensional fractional wave equation. (English) Zbl 1407.65119 J. Sci. Comput. 77, No. 1, 1-26 (2018). MSC: 65M06 65M12 65Q10 34K37 35R11 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, J. Sci. Comput. 77, No. 1, 1--26 (2018; Zbl 1407.65119) Full Text: DOI
Zhang, Congguang; Qiu, Ling Research on the solution for a space-time fractional diffusion model of porous media. (Chinese. English summary) Zbl 1413.65335 Numer. Math., Nanjing 40, No. 1, 1-11 (2018). MSC: 65M06 65M12 26A33 35R11 76S05 65M15 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{L. Qiu}, Numer. Math., Nanjing 40, No. 1, 1--11 (2018; Zbl 1413.65335)
Yang, Shuiping; Liu, Hongliang An implicit-explicit scheme of finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term. (Chinese. English summary) Zbl 1413.65290 Nat. Sci. J. Xiangtan Univ. 40, No. 1, 27-30 (2018). MSC: 65L12 65L20 65L05 34K37 PDF BibTeX XML Cite \textit{S. Yang} and \textit{H. Liu}, Nat. Sci. J. Xiangtan Univ. 40, No. 1, 27--30 (2018; Zbl 1413.65290) Full Text: DOI
Wu, X.; van der Zee, K. G.; Simsek, G.; van Brummelen, E. H. A posteriori error estimation and adaptivity for nonlinear parabolic equations using IMEX-Galerkin discretization of primal and dual equations. (English) Zbl 1402.65100 SIAM J. Sci. Comput. 40, No. 5, A3371-A3399 (2018). MSC: 65M15 65M20 65M50 65M60 65M06 35K55 PDF BibTeX XML Cite \textit{X. Wu} et al., SIAM J. Sci. Comput. 40, No. 5, A3371--A3399 (2018; Zbl 1402.65100) Full Text: DOI
Wang, Pengde; Huang, Chengming An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg-Landau equation. (English) Zbl 1412.65095 BIT 58, No. 3, 783-805 (2018). Reviewer: Vit Dolejsi (Praha) MSC: 65M06 65M12 65M15 35Q56 35R11 PDF BibTeX XML Cite \textit{P. Wang} and \textit{C. Huang}, BIT 58, No. 3, 783--805 (2018; Zbl 1412.65095) Full Text: DOI
Tachim Medjo, T.; Tone, F. Approximation of the long-term dynamics of the dynamical system generated by a 3D NS-\(\alpha\) systems with phase transition. (English) Zbl 1398.35151 Int. J. Numer. Anal. Model. 15, No. 3, 307-339 (2018). MSC: 35Q30 35Q35 76D05 35B41 65M06 PDF BibTeX XML Cite \textit{T. Tachim Medjo} and \textit{F. Tone}, Int. J. Numer. Anal. Model. 15, No. 3, 307--339 (2018; Zbl 1398.35151) Full Text: Link
Chen, Huangxin; Sun, Shuyu; Zhang, Tao Energy stability analysis of some fully discrete numerical schemes for incompressible Navier-Stokes equations on staggered grids. (English) Zbl 1398.65263 J. Sci. Comput. 75, No. 1, 427-456 (2018). MSC: 65N06 65N12 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Sci. Comput. 75, No. 1, 427--456 (2018; Zbl 1398.65263) Full Text: DOI
Jin, Shi; Lu, Hanqing; Pareschi, Lorenzo Efficient stochastic asymptotic-preserving implicit-explicit methods for transport equations with diffusive scalings and random inputs. (English) Zbl 1391.35307 SIAM J. Sci. Comput. 40, No. 2, A671-A696 (2018). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q20 65M60 80A20 35B40 65L06 60H15 65N06 65M75 PDF BibTeX XML Cite \textit{S. Jin} et al., SIAM J. Sci. Comput. 40, No. 2, A671--A696 (2018; Zbl 1391.35307) Full Text: DOI
Britt, S.; Tsynkov, S.; Turkel, E. Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials. (English) Zbl 1380.65146 J. Comput. Phys. 354, 26-42 (2018). MSC: 65M06 35L05 PDF BibTeX XML Cite \textit{S. Britt} et al., J. Comput. Phys. 354, 26--42 (2018; Zbl 1380.65146) Full Text: DOI
Uh Zapata, Miguel; Itzá Balam, Reymundo High-order implicit finite difference schemes for the two-dimensional Poisson equation. (English) Zbl 1411.65145 Appl. Math. Comput. 309, 222-244 (2017). MSC: 65N06 35J25 PDF BibTeX XML Cite \textit{M. Uh Zapata} and \textit{R. Itzá Balam}, Appl. Math. Comput. 309, 222--244 (2017; Zbl 1411.65145) Full Text: DOI
Li, Chuan; Zhao, Shan A matched Peaceman-Rachford ADI method for solving parabolic interface problems. (English) Zbl 1411.65112 Appl. Math. Comput. 299, 28-44 (2017). MSC: 65M06 35K20 65M12 PDF BibTeX XML Cite \textit{C. Li} and \textit{S. Zhao}, Appl. Math. Comput. 299, 28--44 (2017; Zbl 1411.65112) Full Text: DOI
Düring, Bertram; Hendricks, Christian; Miles, James Sparse grid high-order ADI scheme for option pricing in stochastic volatility models. (English) Zbl 1420.91505 Ehrhardt, Matthias (ed.) et al., Novel methods in computational finance. Cham: Springer. Math. Ind. 25, 295-312 (2017). MSC: 91G60 65M06 65M12 91G20 PDF BibTeX XML Cite \textit{B. Düring} et al., Math. Ind. 25, 295--312 (2017; Zbl 1420.91505) Full Text: DOI
Ma, K.; Forsyth, P. A. An unconditionally monotone numerical scheme for the two-factor uncertain volatility model. (English) Zbl 1433.65162 IMA J. Numer. Anal. 37, No. 2, 905-944 (2017). MSC: 65M06 65M12 91B70 91G60 PDF BibTeX XML Cite \textit{K. Ma} and \textit{P. A. Forsyth}, IMA J. Numer. Anal. 37, No. 2, 905--944 (2017; Zbl 1433.65162) Full Text: DOI
Macías-Díaz, J. E.; Villa-Morales, J. A structure-preserving method for the distribution of the first hitting time to a moving boundary for some Gaussian processes. (English) Zbl 1394.60033 Comput. Math. Appl. 74, No. 8, 1799-1812 (2017). MSC: 60G17 60G15 35R60 60H35 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} and \textit{J. Villa-Morales}, Comput. Math. Appl. 74, No. 8, 1799--1812 (2017; Zbl 1394.60033) Full Text: DOI
Yang, Xiaojia; Wei, Jianying; Ge, Yongbin Two-level implicit compact difference scheme for the Burgers equation. (Chinese. English summary) Zbl 1399.65178 Numer. Math., Nanjing 39, No. 4, 340-354 (2017). MSC: 65M06 35Q53 PDF BibTeX XML Cite \textit{X. Yang} et al., Numer. Math., Nanjing 39, No. 4, 340--354 (2017; Zbl 1399.65178)
Itkin, Andrey Modelling stochastic skew of FX options using SLV models with stochastic spot/vol correlation and correlated jumps. (English) Zbl 1398.91671 Appl. Math. Finance 24, No. 5-6, 485-519 (2017). MSC: 91G60 91G20 60J75 35R09 65M06 PDF BibTeX XML Cite \textit{A. Itkin}, Appl. Math. Finance 24, No. 5--6, 485--519 (2017; Zbl 1398.91671) Full Text: DOI
Xia, Hong; Luo, Zhengdong A POD-based-optimized finite difference CN-extrapolated implicit scheme for the 2D viscoelastic wave equation. (English) Zbl 1387.65091 Math. Methods Appl. Sci. 40, No. 18, 6880-6890 (2017). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{H. Xia} and \textit{Z. Luo}, Math. Methods Appl. Sci. 40, No. 18, 6880--6890 (2017; Zbl 1387.65091) Full Text: DOI
Zhang, Yagang; Ma, Tingfu; Wang, Yan; Ge, Yongbin High order compact difference scheme for solving the unsteady convection diffusion reaction equation. (Chinese. English summary) Zbl 1399.65185 Math. Pract. Theory 47, No. 13, 263-270 (2017). MSC: 65M06 65F05 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Math. Pract. Theory 47, No. 13, 263--270 (2017; Zbl 1399.65185)
Antoine, X.; Lorin, E. An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations. (English) Zbl 1383.65122 Numer. Math. 137, No. 4, 923-958 (2017). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 65M55 65M12 65M06 35Q55 35Q41 PDF BibTeX XML Cite \textit{X. Antoine} and \textit{E. Lorin}, Numer. Math. 137, No. 4, 923--958 (2017; Zbl 1383.65122) Full Text: DOI
Hendricks, Christian; Heuer, Christof; Ehrhardt, Matthias; Günther, Michael High-order ADI finite difference schemes for parabolic equations in the combination technique with application in finance. (English) Zbl 1375.65113 J. Comput. Appl. Math. 316, 175-194 (2017). MSC: 65M06 35K20 65M50 91G60 PDF BibTeX XML Cite \textit{C. Hendricks} et al., J. Comput. Appl. Math. 316, 175--194 (2017; Zbl 1375.65113) Full Text: DOI
Adewole, Matthew O. Almost optimal convergence of FEM-FDM for a linear parabolic interface problem. (English) Zbl 1372.65301 ETNA, Electron. Trans. Numer. Anal. 46, 337-358 (2017). MSC: 65N30 65N06 65N15 PDF BibTeX XML Cite \textit{M. O. Adewole}, ETNA, Electron. Trans. Numer. Anal. 46, 337--358 (2017; Zbl 1372.65301) Full Text: EMIS
Liu, Ru; Li, Miao; Piskarev, Sergey The order of convergence of difference schemes for fractional equations. (English) Zbl 1379.65072 Numer. Funct. Anal. Optim. 38, No. 6, 754-769 (2017). Reviewer: José Augusto Ferreira (Coimbra) MSC: 65M12 65M06 65M20 35K90 65M15 35R11 PDF BibTeX XML Cite \textit{R. Liu} et al., Numer. Funct. Anal. Optim. 38, No. 6, 754--769 (2017; Zbl 1379.65072) Full Text: DOI
Kadalbajoo, Mohan K.; Awasthi, Ashish Parameter free hybrid numerical method for solving modified Burgers’ equations on a nonuniform mesh. (English) Zbl 1372.65232 Asian-Eur. J. Math. 10, No. 2, Article ID 1750029, 11 p. (2017). MSC: 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{M. K. Kadalbajoo} and \textit{A. Awasthi}, Asian-Eur. J. Math. 10, No. 2, Article ID 1750029, 11 p. (2017; Zbl 1372.65232) Full Text: DOI
Liu, Jiankang; Zhang, Xiaojing; Qin, Yuzhe A finite difference scheme for the wave equation with a class of special boundary condition. (Chinese. English summary) Zbl 1374.65139 J. Yunnan Minzu Univ., Nat. Sci. 26, No. 1, 29-37 (2017). MSC: 65M06 65M12 35L05 PDF BibTeX XML Cite \textit{J. Liu} et al., J. Yunnan Minzu Univ., Nat. Sci. 26, No. 1, 29--37 (2017; Zbl 1374.65139)
Li, Meng; Huang, Chengming; Wang, Nan Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation. (English) Zbl 1367.65144 Appl. Numer. Math. 118, 131-149 (2017). MSC: 65M60 35Q56 35R11 65M12 65M06 65M15 PDF BibTeX XML Cite \textit{M. Li} et al., Appl. Numer. Math. 118, 131--149 (2017; Zbl 1367.65144) Full Text: DOI
Khaliq, A. Q. M.; Liang, X.; Furati, K. M. A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations. (English) Zbl 1365.65195 Numer. Algorithms 75, No. 1, 147-172 (2017). MSC: 65M06 35R11 35Q55 65M12 PDF BibTeX XML Cite \textit{A. Q. M. Khaliq} et al., Numer. Algorithms 75, No. 1, 147--172 (2017; Zbl 1365.65195) Full Text: DOI
Temam, Roger; Wang, Xiaoyan Numerical approximation of a variational inequality related to the humid atmosphere. (English) Zbl 1371.35225 SIAM J. Numer. Anal. 55, No. 1, 217-239 (2017). Reviewer: Cheng He (Beijing) MSC: 35Q35 65M06 65M12 76D03 86A10 PDF BibTeX XML Cite \textit{R. Temam} and \textit{X. Wang}, SIAM J. Numer. Anal. 55, No. 1, 217--239 (2017; Zbl 1371.35225) Full Text: DOI
Clavero, C.; Gracia, J. L.; Shishkin, G. I.; Shishkina, L. P. An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers. (English) Zbl 1357.65115 J. Comput. Appl. Math. 318, 634-645 (2017). MSC: 65M06 35K57 35B25 65M50 65M12 PDF BibTeX XML Cite \textit{C. Clavero} et al., J. Comput. Appl. Math. 318, 634--645 (2017; Zbl 1357.65115) Full Text: DOI
Kaliev, Ibragim Adietovich; Mukhambetzhanov, Saltanbek Talapedenovich; Sabitova, Gul’nara Sagyndykovna Numerical modeling of the non-equilibrium sorption process. (Russian. English summary) Zbl 07277765 Ufim. Mat. Zh. 8, No. 2, 39-43 (2016); translation in Ufa Math. J. 8, No. 2, 39-43 (2016). MSC: 35Q35 65M06 76S05 PDF BibTeX XML Cite \textit{I. A. Kaliev} et al., Ufim. Mat. Zh. 8, No. 2, 39--43 (2016; Zbl 07277765); translation in Ufa Math. J. 8, No. 2, 39--43 (2016) Full Text: DOI MNR
Salazar, Wilfredo Numerical homogenization of a second order discrete model for traffic flow. (English) Zbl 1443.65139 Comput. Math. Appl. 71, No. 1, 29-45 (2016). MSC: 65M06 82C22 PDF BibTeX XML Cite \textit{W. Salazar}, Comput. Math. Appl. 71, No. 1, 29--45 (2016; Zbl 1443.65139) Full Text: DOI
Hu, Xiuling; Zhang, Luming An analysis of a second order difference scheme for the fractional subdiffusion system. (English) Zbl 1446.65067 Appl. Math. Modelling 40, No. 2, 1634-1649 (2016). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{X. Hu} and \textit{L. Zhang}, Appl. Math. Modelling 40, No. 2, 1634--1649 (2016; Zbl 1446.65067) Full Text: DOI
Chang, Chih-Wen; Liu, Chein-Shan An implicit Lie-group iterative scheme for solving the nonlinear Klein-Gordon and sine-Gordon equations. (English) Zbl 1446.65125 Appl. Math. Modelling 40, No. 2, 1157-1167 (2016). MSC: 65M70 35Q53 65M06 65M12 PDF BibTeX XML Cite \textit{C.-W. Chang} and \textit{C.-S. Liu}, Appl. Math. Modelling 40, No. 2, 1157--1167 (2016; Zbl 1446.65125) Full Text: DOI
Zou, Ling; Zhao, Haihua; Zhang, Hongbin Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton-Krylov method. (English) Zbl 1390.76886 Comput. Fluids 129, 179-188 (2016). MSC: 76T10 76M20 PDF BibTeX XML Cite \textit{L. Zou} et al., Comput. Fluids 129, 179--188 (2016; Zbl 1390.76886) Full Text: DOI
Qin, Pingyang; Zhang, Xiaodan A numerical method for the fractional wave equation. (Chinese. English summary) Zbl 1399.65166 Numer. Math., Nanjing 38, No. 4, 313-323 (2016). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{P. Qin} and \textit{X. Zhang}, Numer. Math., Nanjing 38, No. 4, 313--323 (2016; Zbl 1399.65166)
Liao, Hong-lin; Zhao, Ying; Teng, Xing-hu A weighted ADI scheme for subdiffusion equations. (English) Zbl 1371.65082 J. Sci. Comput. 69, No. 3, 1144-1164 (2016). MSC: 65M06 35R11 35K20 65M50 65M12 PDF BibTeX XML Cite \textit{H.-l. Liao} et al., J. Sci. Comput. 69, No. 3, 1144--1164 (2016; Zbl 1371.65082) Full Text: DOI