Fernández-Dalgo, Pedro Gabriel; Jarrín, Oscar Discretely self-similar solutions for 3D MHD equations and global weak solutions in weighted \(L^2\) spaces. (English) Zbl 07312805 J. Math. Fluid Mech. 23, No. 1, Paper No. 22, 30 p. (2021). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{P. G. Fernández-Dalgo} and \textit{O. Jarrín}, J. Math. Fluid Mech. 23, No. 1, Paper No. 22, 30 p. (2021; Zbl 07312805) Full Text: DOI
Chae, Dongho Relative decay conditions on Liouville type theorem for the steady Navier-Stokes system. (English) Zbl 07312804 J. Math. Fluid Mech. 23, No. 1, Paper No. 21, 6 p. (2021). MSC: 35Q30 76D05 76D03 PDF BibTeX XML Cite \textit{D. Chae}, J. Math. Fluid Mech. 23, No. 1, Paper No. 21, 6 p. (2021; Zbl 07312804) Full Text: DOI
Dreyfuss, Pierre; Houamed, Haroune Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation. (English) Zbl 07312802 J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{P. Dreyfuss} and \textit{H. Houamed}, J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021; Zbl 07312802) Full Text: DOI
Aggul, Mustafa; Kaya, Songül Defect-deferred correction method based on a subgrid artificial viscosity model for fluid-fluid interaction. (English) Zbl 07310769 Appl. Numer. Math. 160, 178-191 (2021). MSC: 76M10 76T06 76D27 76D05 65M12 PDF BibTeX XML Cite \textit{M. Aggul} and \textit{S. Kaya}, Appl. Numer. Math. 160, 178--191 (2021; Zbl 07310769) Full Text: DOI
Zheng, Bo; Y. Q. Shang, Yueqiang A parallel stabilized finite element variational multiscale method based on fully overlapping domain decomposition for the incompressible Navier-Stokes equations. (English) Zbl 07310749 Appl. Numer. Math. 159, 138-158 (2021). MSC: 65 76 PDF BibTeX XML Cite \textit{B. Zheng} and \textit{Y. Y. Q. Shang}, Appl. Numer. Math. 159, 138--158 (2021; Zbl 07310749) Full Text: DOI
Sun, Xiang; Pan, Xiaomin; Choi, Jung-Il Non-intrusive framework of reduced-order modeling based on proper orthogonal decomposition and polynomial chaos expansion. (English) Zbl 07309640 J. Comput. Appl. Math. 390, Article ID 113372, 23 p. (2021). MSC: 76M35 76D05 76R50 80A19 PDF BibTeX XML Cite \textit{X. Sun} et al., J. Comput. Appl. Math. 390, Article ID 113372, 23 p. (2021; Zbl 07309640) Full Text: DOI
Li, Jian; Li, Rui; Zhao, Xin; Chen, Zhangxin A second-order fractional time-stepping method for a coupled Stokes/Darcy system. (English) Zbl 07309632 J. Comput. Appl. Math. 390, Article ID 113329, 15 p. (2021). MSC: 35J20 65N08 76D05 PDF BibTeX XML Cite \textit{J. Li} et al., J. Comput. Appl. Math. 390, Article ID 113329, 15 p. (2021; Zbl 07309632) Full Text: DOI
Mîndrilă, Claudiu; Schwarzacher, Sebastian Existence of steady very weak solutions to Navier-Stokes equations with non-Newtonian stress tensors. (English) Zbl 07308681 J. Differ. Equations 279, 10-45 (2021). MSC: 35Q35 35Q30 35J60 35J70 35J75 76D03 76D05 76D07 PDF BibTeX XML Cite \textit{C. Mîndrilă} and \textit{S. Schwarzacher}, J. Differ. Equations 279, 10--45 (2021; Zbl 07308681) Full Text: DOI
Peng, Yue-Jun Relaxed Euler systems and convergence to Navier-Stokes equations. (English) Zbl 07307586 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 369-401 (2021). MSC: 35L45 35L60 35L65 35Q30 35Q31 PDF BibTeX XML Cite \textit{Y.-J. Peng}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 369--401 (2021; Zbl 07307586) Full Text: DOI
Köhne, Matthias; Saal, Jürgen; Westermann, Laura Optimal Sobolev regularity for the Stokes equations on a 2D wedge domain. (English) Zbl 07307513 Math. Ann. 379, No. 1-2, 377-413 (2021). MSC: 35Q30 76D03 35K67 76D05 35K65 PDF BibTeX XML Cite \textit{M. Köhne} et al., Math. Ann. 379, No. 1--2, 377--413 (2021; Zbl 07307513) Full Text: DOI
Du, Rui; Wang, Yibo Lattice BGK model for time-fractional incompressible Navier-Stokes equations. (English) Zbl 07307178 Appl. Math. Lett. 114, Article ID 106911, 9 p. (2021). MSC: 65M75 76M28 76D05 76P05 35R11 35Q20 35Q35 PDF BibTeX XML Cite \textit{R. Du} and \textit{Y. Wang}, Appl. Math. Lett. 114, Article ID 106911, 9 p. (2021; Zbl 07307178) Full Text: DOI
N’Guessan, Marc-Arthur; Massot, Marc; Séries, Laurent; Tenaud, Christian High order time integration and mesh adaptation with error control for incompressible Navier-Stokes and scalar transport resolution on dual grids. (English) Zbl 07305192 J. Comput. Appl. Math. 387, Article ID 112542, 16 p. (2021). Reviewer: Victor Michel-Dansac (Strasbourg) MSC: 65M08 65M50 65L06 76D05 76D17 80A25 80A32 PDF BibTeX XML Cite \textit{M.-A. N'Guessan} et al., J. Comput. Appl. Math. 387, Article ID 112542, 16 p. (2021; Zbl 07305192) Full Text: DOI
An, Rong; Zhang, Chao; Li, Yuan Temporal convergence analysis of an energy preserving projection method for a coupled magnetohydrodynamics equations. (English) Zbl 07305152 J. Comput. Appl. Math. 386, Article ID 113236, 21 p. (2021). MSC: 65M60 65M22 65N30 65M12 65M15 76W05 76D05 35Q61 35Q35 PDF BibTeX XML Cite \textit{R. An} et al., J. Comput. Appl. Math. 386, Article ID 113236, 21 p. (2021; Zbl 07305152) Full Text: DOI
Lu, Yong; Pokorný, Milan Homogenization of stationary Navier-Stokes-Fourier system in domains with tiny holes. (English) Zbl 07303715 J. Differ. Equations 278, 463-492 (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35Q35 76N10 76D05 35Q30 PDF BibTeX XML Cite \textit{Y. Lu} and \textit{M. Pokorný}, J. Differ. Equations 278, 463--492 (2021; Zbl 07303715) Full Text: DOI
Biswas, Animikh; Hudson, Joshua; Tian, Jing Persistence time of solutions of the three-dimensional Navier-Stokes equations in Sobolev-Gevrey classes. (English) Zbl 07303698 J. Differ. Equations 277, 191-233 (2021). MSC: 35Q30 76D05 34G20 47N20 35K55 35D30 35A01 PDF BibTeX XML Cite \textit{A. Biswas} et al., J. Differ. Equations 277, 191--233 (2021; Zbl 07303698) Full Text: DOI
Wang, Yanjin; Xin, Zhouping Vanishing viscosity and surface tension limits of incompressible viscous surface waves. (English) Zbl 07302464 SIAM J. Math. Anal. 53, No. 1, 574-648 (2021). MSC: 35Q30 35R35 76D03 35B40 76E17 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Z. Xin}, SIAM J. Math. Anal. 53, No. 1, 574--648 (2021; Zbl 07302464) Full Text: DOI
Čanić, Sunčica Moving boundary problems. (English) Zbl 07301375 Bull. Am. Math. Soc., New Ser. 58, No. 1, 79-106 (2021). MSC: 74F10 76D05 76D03 76D27 PDF BibTeX XML Cite \textit{S. Čanić}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 79--106 (2021; Zbl 07301375) Full Text: DOI
Boldrini, José Luiz; Bravo-Olivares, Jonathan; Notte-Cuello, Eduardo; Rojas-Medar, Marko A. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. (English) Zbl 07300782 Electron Res. Arch. 29, No. 1, 1783-1801 (2021). MSC: 35Q30 35Q35 76E25 76D03 PDF BibTeX XML Cite \textit{J. L. Boldrini} et al., Electron Res. Arch. 29, No. 1, 1783--1801 (2021; Zbl 07300782) Full Text: DOI
Ri, Myong-Hwan Global well-posedness for inhomogeneous Navier-Stokes equations in endpoint critical Besov spaces. (English) Zbl 07299352 J. Math. Fluid Mech. 23, No. 1, Paper No. 16, 28 p. (2021). MSC: 35Q30 35B35 76D03 76D07 76E99 PDF BibTeX XML Cite \textit{M.-H. Ri}, J. Math. Fluid Mech. 23, No. 1, Paper No. 16, 28 p. (2021; Zbl 07299352) Full Text: DOI
Ohyama, Hiroki Global well-posedness for the Navier-Stokes equations with the Coriolis force in function spaces characterized by semigroups. (English) Zbl 07299351 J. Math. Fluid Mech. 23, No. 1, Paper No. 15, 10 p. (2021). MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{H. Ohyama}, J. Math. Fluid Mech. 23, No. 1, Paper No. 15, 10 p. (2021; Zbl 07299351) Full Text: DOI
Fujii, Mikihiro Long time existence and asymptotic behavior of solutions for the 2D quasi-geostrophic equation with large dispersive forcing. (English) Zbl 07299348 J. Math. Fluid Mech. 23, No. 1, Paper No. 12, 19 p. (2021). MSC: 76U60 76B03 35Q30 PDF BibTeX XML Cite \textit{M. Fujii}, J. Math. Fluid Mech. 23, No. 1, Paper No. 12, 19 p. (2021; Zbl 07299348) Full Text: DOI
Miura, Tatsu-Hiko Navier-Stokes equations in a curved thin domain. II: Global existence of a strong solution. (English) Zbl 07299343 J. Math. Fluid Mech. 23, No. 1, Paper No. 7, 60 p. (2021). MSC: 35Q30 76D03 76D05 76A20 PDF BibTeX XML Cite \textit{T.-H. Miura}, J. Math. Fluid Mech. 23, No. 1, Paper No. 7, 60 p. (2021; Zbl 07299343) Full Text: DOI
Xiao, Zhicheng; Yu, Peixiang; Ouyang, Hua; Zhang, Jiajing A parallel high-order compact scheme for the pure streamfunction formulation of the 3D unsteady incompressible Navier-Stokes equation. (English) Zbl 07299035 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105631, 21 p. (2021). MSC: 76M20 76D05 65M12 65Y05 PDF BibTeX XML Cite \textit{Z. Xiao} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105631, 21 p. (2021; Zbl 07299035) Full Text: DOI
Zhang, Qiuyu; Li, Jian; Huang, Pengzhan Recovery type a posteriori error estimates for the conduction convection problem. (English) Zbl 07298629 Numer. Algorithms 86, No. 1, 425-441 (2021). MSC: 65N30 65N15 65N50 80A19 76D05 35Q35 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Numer. Algorithms 86, No. 1, 425--441 (2021; Zbl 07298629) Full Text: DOI
Dong, Hongjie; Phan, Tuoc Mixed-norm \(L_p\)-estimates for non-stationary Stokes systems with singular VMO coefficients and applications. (English) Zbl 07297753 J. Differ. Equations 276, 342-367 (2021). MSC: 76D03 76D05 76D07 35K67 35K40 PDF BibTeX XML Cite \textit{H. Dong} and \textit{T. Phan}, J. Differ. Equations 276, 342--367 (2021; Zbl 07297753) Full Text: DOI
Solonnikov, V. A. \(L_2\)-theory for two viscous fluids of different types: compressible and incompressible. (English) Zbl 07296450 St. Petersbg. Math. J. 32, No. 1, 91-137 (2021) and Algebra Anal. 32, No. 1, 121-186 (2020). MSC: 76E17 76N10 76D05 76D45 35Q30 PDF BibTeX XML Cite \textit{V. A. Solonnikov}, St. Petersbg. Math. J. 32, No. 1, 91--137 (2021; Zbl 07296450) Full Text: DOI
Liang, Siyu; Zhang, Ping; Zhu, Rongchan Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity. (English) Zbl 07291346 J. Differ. Equations 275, 473-508 (2021). MSC: 35Q30 76D05 35A01 35A02 35D35 35R60 PDF BibTeX XML Cite \textit{S. Liang} et al., J. Differ. Equations 275, 473--508 (2021; Zbl 07291346) Full Text: DOI
Houamed, Haroune About some possible blow-up conditions for the 3-D Navier-Stokes equations. (English) Zbl 07291333 J. Differ. Equations 275, 116-138 (2021). MSC: 35Q30 76D03 76D05 35B44 42B25 PDF BibTeX XML Cite \textit{H. Houamed}, J. Differ. Equations 275, 116--138 (2021; Zbl 07291333) Full Text: DOI
Deugoué, G.; Ndongmo Ngana, A.; Tachim Medjo, T. Strong solutions for the stochastic Cahn-Hilliard-Navier-Stokes system. (English) Zbl 07291331 J. Differ. Equations 275, 27-76 (2021). MSC: 35R60 35Q30 60H15 76M35 86A05 PDF BibTeX XML Cite \textit{G. Deugoué} et al., J. Differ. Equations 275, 27--76 (2021; Zbl 07291331) Full Text: DOI
Zhang, Guoping; Cai, Mingchao Normal mode analysis of 3D incompressible viscous fluid flow models. (English) Zbl 07291036 Appl. Anal. 100, No. 1, 116-134 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65M12 76D05 76D07 97N40 39A12 35Q30 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{M. Cai}, Appl. Anal. 100, No. 1, 116--134 (2021; Zbl 07291036) Full Text: DOI
Wu, Jiahong; Zhu, Yi Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium. (English) Zbl 07289442 Adv. Math. 377, Article ID 107466, 27 p. (2021). MSC: 35Q35 76W05 76D05 76E25 76D03 35A01 35A02 35B35 35B65 PDF BibTeX XML Cite \textit{J. Wu} and \textit{Y. Zhu}, Adv. Math. 377, Article ID 107466, 27 p. (2021; Zbl 07289442) Full Text: DOI
Guo, Zhenhua; Li, Qingyan Global existence and large time behaviors of the solutions to the full incompressible Navier-Stokes equations with temperature-dependent coefficients. (English) Zbl 07289119 J. Differ. Equations 274, 876-923 (2021). MSC: 35Q35 35B65 35B40 76N10 76N06 76A05 35A01 35D35 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{Q. Li}, J. Differ. Equations 274, 876--923 (2021; Zbl 07289119) Full Text: DOI
Ogawa, Takayoshi; Shimizu, Senjo Global well-posedness for the incompressible Navier-Stokes equations in the critical Besov space under the Lagrangian coordinates. (English) Zbl 07289113 J. Differ. Equations 274, 613-651 (2021). MSC: 35Q30 76D05 42B25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Ogawa} and \textit{S. Shimizu}, J. Differ. Equations 274, 613--651 (2021; Zbl 07289113) Full Text: DOI
Wu, Shuang; Zhang, Jie; Xiao, Qi; Ni, Ming-Jiu Comparison of two interfacial flow solvers: specific case of a single droplet impacting onto a deep pool. (English) Zbl 07288737 Comput. Math. Appl. 81, 664-678 (2021). MSC: 76M99 76D27 76D05 76T10 PDF BibTeX XML Cite \textit{S. Wu} et al., Comput. Math. Appl. 81, 664--678 (2021; Zbl 07288737) Full Text: DOI
Li, Ming-Jian Interaction between free surface flow and moving bodies with a dynamic mesh and interface geometric reconstruction approach. (English) Zbl 07288736 Comput. Math. Appl. 81, 649-663 (2021). MSC: 76M99 76T30 76D05 76D27 PDF BibTeX XML Cite \textit{M.-J. Li}, Comput. Math. Appl. 81, 649--663 (2021; Zbl 07288736) Full Text: DOI
Costa, Pedro; Phillips, Everett; Brandt, Luca; Fatica, Massimiliano GPU acceleration of CaNS for massively-parallel direct numerical simulations of canonical fluid flows. (English) Zbl 07288726 Comput. Math. Appl. 81, 502-511 (2021). MSC: 76M20 76D05 65Y05 PDF BibTeX XML Cite \textit{P. Costa} et al., Comput. Math. Appl. 81, 502--511 (2021; Zbl 07288726) Full Text: DOI
Tice, Ian; Wu, Lei Dynamics and stability of sessile drops with contact points. (English) Zbl 07285700 J. Differ. Equations 272, 648-731 (2021). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 35Q30 76D45 76D05 76E17 76T10 35R35 35B45 35B40 35A01 PDF BibTeX XML Cite \textit{I. Tice} and \textit{L. Wu}, J. Differ. Equations 272, 648--731 (2021; Zbl 07285700) Full Text: DOI
Shen, Lin; Wang, Shu; Yang, Rong Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model. (English) Zbl 07285696 J. Differ. Equations 272, 473-543 (2021). MSC: 35Q30 74F10 76D03 76D05 76W05 35D35 PDF BibTeX XML Cite \textit{L. Shen} et al., J. Differ. Equations 272, 473--543 (2021; Zbl 07285696) Full Text: DOI
Skalak, Zdenek An optimal regularity criterion for the Navier-Stokes equations proved by a blow-up argument. (English) Zbl 07284905 Nonlinear Anal., Real World Appl. 58, Article ID 103207, 7 p. (2021). MSC: 35Q30 76D05 35B65 35B44 35D30 PDF BibTeX XML Cite \textit{Z. Skalak}, Nonlinear Anal., Real World Appl. 58, Article ID 103207, 7 p. (2021; Zbl 07284905) Full Text: DOI
Feng, Zefu; Zhang, Mei Boundedness and large time behavior of solutions to a prey-taxis system accounting in liquid surrounding. (English) Zbl 07284894 Nonlinear Anal., Real World Appl. 57, Article ID 103197, 24 p. (2021). MSC: 35Q35 76D05 76Z99 92D25 35A01 35B40 PDF BibTeX XML Cite \textit{Z. Feng} and \textit{M. Zhang}, Nonlinear Anal., Real World Appl. 57, Article ID 103197, 24 p. (2021; Zbl 07284894) Full Text: DOI
Choi, Young-Pil; Lee, Jaeseung; Yun, Seok-Bae Strong solutions to the inhomogeneous Navier-Stokes-BGK system. (English) Zbl 07284893 Nonlinear Anal., Real World Appl. 57, Article ID 103196, 33 p. (2021). MSC: 35Q30 35Q20 35D35 35B65 35A01 76P05 76D05 PDF BibTeX XML Cite \textit{Y.-P. Choi} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103196, 33 p. (2021; Zbl 07284893) Full Text: DOI
Fernández-Dalgo, Pedro Gabriel; Jarrín, Oscar Weak-strong uniqueness in weighted \(L^2\) spaces and weak suitable solutions in local Morrey spaces for the MHD equations. (English) Zbl 07283602 J. Differ. Equations 271, 864-915 (2021). MSC: 35Q30 76D05 76W05 35D30 35A01 PDF BibTeX XML Cite \textit{P. G. Fernández-Dalgo} and \textit{O. Jarrín}, J. Differ. Equations 271, 864--915 (2021; Zbl 07283602) Full Text: DOI
Matsui, Tatsuya; Nakasato, Ryosuke; Ogawa, Takayoshi Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier-Sobolev space. (English) Zbl 07283588 J. Differ. Equations 271, 414-446 (2021). MSC: 35Q35 35Q60 76W05 76D05 35K05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Matsui} et al., J. Differ. Equations 271, 414--446 (2021; Zbl 07283588) Full Text: DOI
Korobkov, Mikhail V.; Pileckas, Konstantin; Russo, Remigio Leray’s plane steady state solutions are nontrivial. (English) Zbl 07282553 Adv. Math. 376, Article ID 107451, 21 p. (2021). MSC: 35Q30 76D05 76D07 35B40 PDF BibTeX XML Cite \textit{M. V. Korobkov} et al., Adv. Math. 376, Article ID 107451, 21 p. (2021; Zbl 07282553) Full Text: DOI
Wang, Shu; Wang, Yongxin; Liu, Jitao Regularity criteria to the incompressible axisymmetric Boussinesq equations. (English) Zbl 07281323 Appl. Math. Lett. 112, Article ID 106800, 7 p. (2021). MSC: 35Q35 76D05 35B65 35B45 35B07 35D30 PDF BibTeX XML Cite \textit{S. Wang} et al., Appl. Math. Lett. 112, Article ID 106800, 7 p. (2021; Zbl 07281323) Full Text: DOI
Lou, Zhenzhen; Yang, Qixiang; He, Jianxun; He, Kaili Uniform analytic solutions for fractional Navier-Stokes equations. (English) Zbl 07281315 Appl. Math. Lett. 112, Article ID 106784, 7 p. (2021). MSC: 35Q30 76D05 35A01 35R11 PDF BibTeX XML Cite \textit{Z. Lou} et al., Appl. Math. Lett. 112, Article ID 106784, 7 p. (2021; Zbl 07281315) Full Text: DOI
Cao, Luling; He, Yinnian; Li, Jian; Yang, Di Decoupled modified characteristic FEMs for fully evolutionary Navier-Stokes-Darcy model with the Beavers-Joseph interface condition. (English) Zbl 1452.65227 J. Comput. Appl. Math. 383, Article ID 113128, 19 p. (2021). MSC: 65M60 65M25 65M15 65M12 76S05 76D05 35Q30 PDF BibTeX XML Cite \textit{L. Cao} et al., J. Comput. Appl. Math. 383, Article ID 113128, 19 p. (2021; Zbl 1452.65227) Full Text: DOI
Tsvetkov, D. O. On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid. (English. Russian original) Zbl 07309117 Russ. Math. 64, No. 8, 50-63 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 8, 59-73 (2020). MSC: 76D50 76D03 76D05 74F10 35Q30 PDF BibTeX XML Cite \textit{D. O. Tsvetkov}, Russ. Math. 64, No. 8, 50--63 (2020; Zbl 07309117); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 8, 59--73 (2020) Full Text: DOI
Muratova, G. V.; Martynova, T. S.; Andreeva, E. M.; Bavin, V. V.; Wang, Z.-Q. Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations. (English) Zbl 07308403 Sib. Èlektron. Mat. Izv. 17, 2190-2203 (2020). MSC: 65M55 65N55 65F08 35Q30 PDF BibTeX XML Cite \textit{G. V. Muratova} et al., Sib. Èlektron. Mat. Izv. 17, 2190--2203 (2020; Zbl 07308403) Full Text: DOI
Jang, Deok-Kyu; Kim, Taek-Cheol; Pyo, Jae-Hong The stability of Gauge-Uzawa method to solve nanofluid. (English) Zbl 07307926 J. Korean Soc. Ind. Appl. Math. 24, No. 2, 121-141 (2020). MSC: 65M12 65M60 76D05 35Q35 PDF BibTeX XML Cite \textit{D.-K. Jang} et al., J. Korean Soc. Ind. Appl. Math. 24, No. 2, 121--141 (2020; Zbl 07307926) Full Text: DOI
Biswas, Tania; Dharmatti, Sheetal; Mohan, Manil T. Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations. (English) Zbl 07307901 Analysis, München 40, No. 3, 127-150 (2020). MSC: 49J20 49K20 35Q30 35Q35 76D03 PDF BibTeX XML Cite \textit{T. Biswas} et al., Analysis, München 40, No. 3, 127--150 (2020; Zbl 07307901) Full Text: DOI
Zhao, Na Global regularity of the Navier-Stokes equations on 3D periodic thin domain with large data. (English) Zbl 07307887 Pac. J. Math. 309, No. 1, 223-256 (2020). MSC: 35Q30 76D05 76N10 PDF BibTeX XML Cite \textit{N. Zhao}, Pac. J. Math. 309, No. 1, 223--256 (2020; Zbl 07307887) Full Text: DOI
Coscia, Vincenzo; Russo, Remigio; Tartaglione, Alfonsina On the stationary Navier-Stokes problem in 3D exterior domains. (English) Zbl 07304789 Appl. Anal. 99, No. 9, 1485-1506 (2020). Reviewer: Deepak Kumar Srivastava (Lucknow) MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{V. Coscia} et al., Appl. Anal. 99, No. 9, 1485--1506 (2020; Zbl 07304789) Full Text: DOI
Li, Zhouyu; Liu, Pan; Niu, Pengcheng Remarks on Liouville type theorems for the 3D stationary MHD equations. (English) Zbl 07304225 Bull. Korean Math. Soc. 57, No. 5, 1151-1164 (2020). MSC: 35Q35 35B65 35B53 76W05 76D05 PDF BibTeX XML Cite \textit{Z. Li} et al., Bull. Korean Math. Soc. 57, No. 5, 1151--1164 (2020; Zbl 07304225) Full Text: DOI
Drzisga, Daniel; Rüde, Ulrich; Wohlmuth, Barbara Stencil scaling for vector-valued PDEs on hybrid grids with applications to generalized Newtonian fluids. (English) Zbl 07303416 SIAM J. Sci. Comput. 42, No. 6, B1429-B1461 (2020). MSC: 65N30 65N55 65Y05 65Y20 76D07 76D05 74B10 PDF BibTeX XML Cite \textit{D. Drzisga} et al., SIAM J. Sci. Comput. 42, No. 6, B1429--B1461 (2020; Zbl 07303416) Full Text: DOI
Luo, Li; Cai, Xiao-Chuan; Yan, Zhengzheng; Xu, Lei; Keyes, David E. A multilayer nonlinear elimination preconditioned inexact Newton method for steady-state incompressible flow problems in three dimensions. (English) Zbl 07303415 SIAM J. Sci. Comput. 42, No. 6, B1404-B1428 (2020). MSC: 76M99 76D05 65N12 65N55 65Y05 PDF BibTeX XML Cite \textit{L. Luo} et al., SIAM J. Sci. Comput. 42, No. 6, B1404--B1428 (2020; Zbl 07303415) Full Text: DOI
Hanek, Martin; Šístek, Jakub; Burda, Pavel Multilevel BDDC for incompressible Navier-Stokes equations. (English) Zbl 07303414 SIAM J. Sci. Comput. 42, No. 6, C359-C383 (2020). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N55 65Y05 76D05 65N30 35Q30 65F08 65F10 PDF BibTeX XML Cite \textit{M. Hanek} et al., SIAM J. Sci. Comput. 42, No. 6, C359--C383 (2020; Zbl 07303414) Full Text: DOI
Kwon, Chunsong; Tartakovsky, Daniel M. Modified immersed boundary method for flows over randomly rough surfaces. (English) Zbl 07303167 J. Comput. Phys. 406, Article ID 109195, 16 p. (2020). MSC: 76D05 76M20 35R60 65M06 76D07 PDF BibTeX XML Cite \textit{C. Kwon} and \textit{D. M. Tartakovsky}, J. Comput. Phys. 406, Article ID 109195, 16 p. (2020; Zbl 07303167) Full Text: DOI
Huang, Ziyang; Lin, Guang; Ardekani, Arezoo M. Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows. (English) Zbl 07303164 J. Comput. Phys. 406, Article ID 109192, 44 p. (2020). MSC: 76M20 76T10 76D05 PDF BibTeX XML Cite \textit{Z. Huang} et al., J. Comput. Phys. 406, Article ID 109192, 44 p. (2020; Zbl 07303164) Full Text: DOI
Wen, H. L.; Yu, C. H.; Sheu, Tony W. H. On the development of LS-assisted VOF method for incompressible interfacial flows. (English) Zbl 07303160 J. Comput. Phys. 406, Article ID 109188, 35 p. (2020). MSC: 76T10 76M20 76D05 PDF BibTeX XML Cite \textit{H. L. Wen} et al., J. Comput. Phys. 406, Article ID 109188, 35 p. (2020; Zbl 07303160) Full Text: DOI
Zhu, Guangpu; Kou, Jisheng; Yao, Jun; Li, Aifen; Sun, Shuyu A phase-field moving contact line model with soluble surfactants. (English) Zbl 07303074 J. Comput. Phys. 405, Article ID 109170, 29 p. (2020). MSC: 76M20 76D05 76T06 76D45 65M06 65Z05 65M12 PDF BibTeX XML Cite \textit{G. Zhu} et al., J. Comput. Phys. 405, Article ID 109170, 29 p. (2020; Zbl 07303074) Full Text: DOI
Chi, Cheng; Abdelsamie, Abouelmagd; Thévenin, Dominique A directional ghost-cell immersed boundary method for incompressible flows. (English) Zbl 07302794 J. Comput. Phys. 404, Article ID 109122, 20 p. (2020). MSC: 76M20 76D05 PDF BibTeX XML Cite \textit{C. Chi} et al., J. Comput. Phys. 404, Article ID 109122, 20 p. (2020; Zbl 07302794) Full Text: DOI
Perot, J. Blair; Sanchez-Rocha, Martin; Malan, Paul A fractional-step method for steady-state flow. (English) Zbl 07302756 J. Comput. Phys. 403, Article ID 109057, 19 p. (2020). MSC: 76M12 76D05 76M10 PDF BibTeX XML Cite \textit{J. B. Perot} et al., J. Comput. Phys. 403, Article ID 109057, 19 p. (2020; Zbl 07302756) Full Text: DOI
O’Brien, Adam; Bussmann, Markus A moving immersed boundary method for simulating particle interactions at fluid-fluid interfaces. (English) Zbl 07302408 J. Comput. Phys. 402, Article ID 109089, 17 p. (2020). MSC: 76D05 76D45 76T20 76M12 PDF BibTeX XML Cite \textit{A. O'Brien} and \textit{M. Bussmann}, J. Comput. Phys. 402, Article ID 109089, 17 p. (2020; Zbl 07302408) Full Text: DOI
Morgan, Brandon E.; Black, Wolfgang J. Parametric investigation of the transition to turbulence in Rayleigh-Taylor mixing. (English) Zbl 07302340 Physica D 402, Article ID 132223, 15 p. (2020). MSC: 76F65 76F25 76T06 76D05 PDF BibTeX XML Cite \textit{B. E. Morgan} and \textit{W. J. Black}, Physica D 402, Article ID 132223, 15 p. (2020; Zbl 07302340) Full Text: DOI
Wang, Yongfu Weak Serrin-type blowup criterion for three-dimensional nonhomogeneous viscous incompressible heat conducting flows. (English) Zbl 07302333 Physica D 402, Article ID 132203, 8 p. (2020). MSC: 76D05 35A01 35A02 35B44 35D35 PDF BibTeX XML Cite \textit{Y. Wang}, Physica D 402, Article ID 132203, 8 p. (2020; Zbl 07302333) Full Text: DOI
Kim, Philsu; Kim, Dojin; Piao, Xiangfan; Bak, Soyoon A completely explicit scheme of Cauchy problem in BSLM for solving the Navier-Stokes equations. (English) Zbl 07302319 J. Comput. Phys. 401, Article ID 109028, 16 p. (2020). MSC: 76D05 65M22 65N06 PDF BibTeX XML Cite \textit{P. Kim} et al., J. Comput. Phys. 401, Article ID 109028, 16 p. (2020; Zbl 07302319) Full Text: DOI
Xie, Bin; Jin, Peng; Nakayama, Hiroki; Liao, ShiJun; Xiao, Feng A conservative solver for surface-tension-driven multiphase flows on collocated unstructured grids. (English) Zbl 07302316 J. Comput. Phys. 401, Article ID 109025, 33 p. (2020). MSC: 76M12 76T10 76T06 76D05 65M08 PDF BibTeX XML Cite \textit{B. Xie} et al., J. Comput. Phys. 401, Article ID 109025, 33 p. (2020; Zbl 07302316) Full Text: DOI
Liu, Y. Y.; Shu, C.; Zhang, H. W.; Yang, L. M. A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids. (English) Zbl 07302312 J. Comput. Phys. 401, Article ID 109019, 23 p. (2020). MSC: 76M28 76M12 76M20 65M06 65M08 76D05 PDF BibTeX XML Cite \textit{Y. Y. Liu} et al., J. Comput. Phys. 401, Article ID 109019, 23 p. (2020; Zbl 07302312) Full Text: DOI
Fernández-Gutiérrez, David; Zohdi, Tarek I. Delta Voronoi smoothed particle hydrodynamics, \(\delta\)-VSPH. (English) Zbl 07302296 J. Comput. Phys. 401, Article ID 109000, 29 p. (2020). MSC: 76M28 76N06 76D05 65M75 65M50 PDF BibTeX XML Cite \textit{D. Fernández-Gutiérrez} and \textit{T. I. Zohdi}, J. Comput. Phys. 401, Article ID 109000, 29 p. (2020; Zbl 07302296) Full Text: DOI
Wang, Lihua; Qian, Zhihao; Zhou, Yueting; Peng, Yongbo A weighted meshfree collocation method for incompressible flows using radial basis functions. (English) Zbl 07302284 J. Comput. Phys. 401, Article ID 108964, 18 p. (2020). MSC: 65M70 65M12 76D05 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Comput. Phys. 401, Article ID 108964, 18 p. (2020; Zbl 07302284) Full Text: DOI
Kolahdouz, Ebrahim M.; Bhalla, Amneet Pal Singh; Craven, Brent A.; Griffith, Boyce E. An immersed interface method for discrete surfaces. (English) Zbl 07302263 J. Comput. Phys. 400, Article ID 108854, 37 p. (2020). MSC: 76M10 76D05 76Z05 76M20 PDF BibTeX XML Cite \textit{E. M. Kolahdouz} et al., J. Comput. Phys. 400, Article ID 108854, 37 p. (2020; Zbl 07302263) Full Text: DOI
Kobayashi, Teppei The matrix of the Green function and the Green representation formula of the Stokes equations for a half space. (English) Zbl 07301521 Int. J. Math. 31, No. 12, Article ID 2050099, 13 p. (2020). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{T. Kobayashi}, Int. J. Math. 31, No. 12, Article ID 2050099, 13 p. (2020; Zbl 07301521) Full Text: DOI
Hassine, Maatoug; Hrizi, Mourad; Malek, Rakia A non-iterative reconstruction method for an inverse problem modeled by a Stokes-Brinkmann equations. (English) Zbl 07301062 J. Korean Math. Soc. 57, No. 5, 1079-1101 (2020). MSC: 65M32 76D55 76D05 76S05 76M21 49Q10 65K10 PDF BibTeX XML Cite \textit{M. Hassine} et al., J. Korean Math. Soc. 57, No. 5, 1079--1101 (2020; Zbl 07301062) Full Text: DOI
Yang, Xin-Guang; Li, Lu; Yan, Xingjie; Ding, Ling The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. (English) Zbl 07300749 Electron Res. Arch. 28, No. 4, 1395-1418 (2020). MSC: 35Q30 35B40 35B41 76D03 76D05 PDF BibTeX XML Cite \textit{X.-G. Yang} et al., Electron Res. Arch. 28, No. 4, 1395--1418 (2020; Zbl 07300749) Full Text: DOI
Zhao, Wenju; Gunzburger, Max Auxiliary equations approach for the stochastic unsteady Navier-Stokes equations with additive random noise. (English) Zbl 07296108 Numer. Math., Theory Methods Appl. 13, No. 1, 1-26 (2020). MSC: 65M30 35R60 76D05 PDF BibTeX XML Cite \textit{W. Zhao} and \textit{M. Gunzburger}, Numer. Math., Theory Methods Appl. 13, No. 1, 1--26 (2020; Zbl 07296108) Full Text: DOI
Zhao, Ling; Pan, Jiaqing The continuous dependence on nonlinearities of solutions of the incompressible Navier-Stokes equations. (Chinese. English summary) Zbl 07295010 Chin. Ann. Math., Ser. A 41, No. 2, 153-162 (2020). MSC: 35B60 35Q30 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{J. Pan}, Chin. Ann. Math., Ser. A 41, No. 2, 153--162 (2020; Zbl 07295010) Full Text: DOI
Wang, Heyuan Dynamical mechanism and energy evolution of a five-modes system of the Navier-Stokes equations for a two-dimensional incompressible fluid on a torus. (Chinese. English summary) Zbl 07294862 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 315-327 (2020). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{H. Wang}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 315--327 (2020; Zbl 07294862)
Fragalà, Ilaria; Gazzola, Filippo; Sperone, Gianmarco Solenoidal extensions in domains with obstacles: explicit bounds and applications to Navier-Stokes equations. (English) Zbl 07294617 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 196, 23 p. (2020). Reviewer: Prince Romeo Mensah (London) MSC: 35Q35 35C05 76D05 46E35 49K20 76F06 PDF BibTeX XML Cite \textit{I. Fragalà} et al., Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 196, 23 p. (2020; Zbl 07294617) Full Text: DOI
Sizykh, Grigoriĭ Borisovich A method for replicating exact solutions of the Euler equations for incompressible Beltrami flows. (Russian. English summary) Zbl 07294567 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 4, 790-798 (2020). MSC: 76D05 76D99 PDF BibTeX XML Cite \textit{G. B. Sizykh}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 4, 790--798 (2020; Zbl 07294567) Full Text: DOI MNR
Kovalev, Vitaliĭ Petrovich; Prosviryakov, Evgeniĭ Yur’evich A new class of non-helical exact solutions of the Navier-Stokes equations. (English) Zbl 07294564 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 4, 762-768 (2020). MSC: 76D05 76D99 PDF BibTeX XML Cite \textit{V. P. Kovalev} and \textit{E. Y. Prosviryakov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 4, 762--768 (2020; Zbl 07294564) Full Text: DOI MNR
Vorozhtsov, Evgeniĭ Vasil’evich; Shapeev, Vasiliĭ Pavlovich A divergence-free method of collocations and least squares for the computation of incompressible fluid flows and its efficient implementation. (Russian. English summary) Zbl 07294552 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 3, 542-573 (2020). MSC: 76D05 76D17 76G25 76M25 76M30 PDF BibTeX XML Cite \textit{E. V. Vorozhtsov} and \textit{V. P. Shapeev}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 3, 542--573 (2020; Zbl 07294552) Full Text: DOI MNR
Sizykh, Grigoriĭ Borisovich The splitting of Navier-Stokes equations for a class of axisymmetric flows. (Russian. English summary) Zbl 07294532 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 163-173 (2020). MSC: 76D05 76D99 PDF BibTeX XML Cite \textit{G. B. Sizykh}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 163--173 (2020; Zbl 07294532) Full Text: DOI MNR
Larios, Adam; Pei, Yuan Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data. (English) Zbl 1452.35133 Evol. Equ. Control Theory 9, No. 3, 733-751 (2020). MSC: 35Q30 37C50 93C20 76B75 34D06 PDF BibTeX XML Cite \textit{A. Larios} and \textit{Y. Pei}, Evol. Equ. Control Theory 9, No. 3, 733--751 (2020; Zbl 1452.35133) Full Text: DOI
Do, Yen; Farhat, Aseel; Grujic, Zoran; Xu, Liaosha Oscillations and integrability of the vorticity in the 3D NS flows. (English) Zbl 07293620 Indiana Univ. Math. J. 69, No. 5, 1559-1578 (2020). MSC: 35Q30 76D05 76D17 35B45 35B65 35B44 35D30 PDF BibTeX XML Cite \textit{Y. Do} et al., Indiana Univ. Math. J. 69, No. 5, 1559--1578 (2020; Zbl 07293620) Full Text: DOI
Yang, Xin-Guang; Guo, Boling; Guo, Chunxiao; Li, Desheng The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay. (English) Zbl 07292695 Math. Methods Appl. Sci. 43, No. 17, 9637-9653 (2020). MSC: 35Q30 35B40 35B41 76D03 76D05 28A80 PDF BibTeX XML Cite \textit{X.-G. Yang} et al., Math. Methods Appl. Sci. 43, No. 17, 9637--9653 (2020; Zbl 07292695) Full Text: DOI
Maity, Debayan; Raymond, Jean-Pierre; Roy, Arnab Maximal-in-time existence and uniqueness of strong solution of a 3D fluid-structure interaction model. (English) Zbl 07289140 SIAM J. Math. Anal. 52, No. 6, 6338-6378 (2020). Reviewer: Mohamed Majdoub (Dammam) MSC: 35Q35 76D05 35Q30 74F10 74K25 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{D. Maity} et al., SIAM J. Math. Anal. 52, No. 6, 6338--6378 (2020; Zbl 07289140) Full Text: DOI
Zaidi, Hasan Nihal Effect of induced magnetic field on mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. (English) Zbl 1451.76040 Appl. Appl. Math. 15, No. 2, 1172-1192 (2020). MSC: 76D05 76E05 76W05 PDF BibTeX XML Cite \textit{H. N. Zaidi}, Appl. Appl. Math. 15, No. 2, 1172--1192 (2020; Zbl 1451.76040) Full Text: Link
Hamada, Ahmed A.; Ayyad, Mahmoud; Guaily, Amr Variants of the finite element method for the parabolic heat equation: comparative numerical study. (English) Zbl 07287558 Farouk, Mohamed Hesham (ed.) et al., Recent advances in engineering math and physics. Proceedings of the international conference, RAEMP 2019, Cairo, Egypt, December 24–26, 2019. Cham: Springer (ISBN 978-3-030-39846-0/hbk; 978-3-030-39847-7/ebook). 361-372 (2020). MSC: 76M10 76D05 80A19 PDF BibTeX XML Cite \textit{A. A. Hamada} et al., in: Recent advances in engineering math and physics. Proceedings of the international conference, RAEMP 2019, Cairo, Egypt, December 24--26, 2019. Cham: Springer. 361--372 (2020; Zbl 07287558) Full Text: DOI
Zhong, Xin Global existence and large time behavior of strong solutions for 3D nonhomogeneous heat conducting Navier-Stokes equations. (English) Zbl 07287304 J. Math. Phys. 61, No. 11, 111503, 18 p. (2020). MSC: 35Q30 76D05 76D10 35B40 35D35 80A19 35A01 PDF BibTeX XML Cite \textit{X. Zhong}, J. Math. Phys. 61, No. 11, 111503, 18 p. (2020; Zbl 07287304) Full Text: DOI
Li, Fuzhi; Xu, Dongmei Local uniformly upper semi-continuity of random attractor for \(g\)-Navier-Stokes equation. (English) Zbl 07287253 J. Math. Phys. 61, No. 10, 101502, 18 p. (2020). MSC: 35Q30 76D05 35R60 35B41 35B40 PDF BibTeX XML Cite \textit{F. Li} and \textit{D. Xu}, J. Math. Phys. 61, No. 10, 101502, 18 p. (2020; Zbl 07287253) Full Text: DOI
Altizio, David; Tice, Ian; Wu, Xinyu; Yasuda, Taisuke The nonlinear stability regime of the viscous Faraday wave problem. (English) Zbl 07286640 Q. Appl. Math. 78, No. 4, 545-587 (2020). MSC: 35Q30 35R35 76E17 35B40 76D45 PDF BibTeX XML Cite \textit{D. Altizio} et al., Q. Appl. Math. 78, No. 4, 545--587 (2020; Zbl 07286640) Full Text: DOI
García-Archilla, Bosco; Novo, Julia Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations. (English) Zbl 07286539 Adv. Comput. Math. 46, No. 4, Paper No. 61, 33 p. (2020). MSC: 65M60 65M06 65N30 65M70 65M20 65L06 65M12 65M15 76D05 35Q30 PDF BibTeX XML Cite \textit{B. García-Archilla} and \textit{J. Novo}, Adv. Comput. Math. 46, No. 4, Paper No. 61, 33 p. (2020; Zbl 07286539) Full Text: DOI
Takhirov, Aziz; Waters, Jiajia Ensemble algorithm for parametrized flow problems with energy stable open boundary conditions. (English) Zbl 1451.65153 Comput. Methods Appl. Math. 20, No. 3, 531-554 (2020). MSC: 65M60 76D05 PDF BibTeX XML Cite \textit{A. Takhirov} and \textit{J. Waters}, Comput. Methods Appl. Math. 20, No. 3, 531--554 (2020; Zbl 1451.65153) Full Text: DOI
Cotter, Colin; Crisan, Dan; Holm, Darryl D.; Pan, Wei; Shevchenko, Igor A particle filter for stochastic advection by Lie transport: a case study for the damped and forced incompressible two-dimensional Euler equation. (English) Zbl 07283166 SIAM/ASA J. Uncertain. Quantif. 8, 1446-1492 (2020). MSC: 62P35 60H15 76D05 35Q31 35Q35 65C35 65C40 PDF BibTeX XML Cite \textit{C. Cotter} et al., SIAM/ASA J. Uncertain. Quantif. 8, 1446--1492 (2020; Zbl 07283166) Full Text: DOI
Coclite, Alessandro; Ranaldo, Sergio; Pascazio, Giuseppe; de Tullio, Marco D. A lattice Boltzmann dynamic-immersed boundary scheme for the transport of deformable inertial capsules in low-Re flows. (English) Zbl 07283138 Comput. Math. Appl. 80, No. 12, 2860-2876 (2020). MSC: 76M28 76D05 74F10 PDF BibTeX XML Cite \textit{A. Coclite} et al., Comput. Math. Appl. 80, No. 12, 2860--2876 (2020; Zbl 07283138) Full Text: DOI
Zhao, Jin; Zhang, Zhimin Seven-velocity three-dimensional vectorial lattice Boltzmann method including various types of approximations to the pressure and two-parameterized second-order boundary treatments. (English) Zbl 07283133 Comput. Math. Appl. 80, No. 12, 2764-2779 (2020). MSC: 65 76 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{Z. Zhang}, Comput. Math. Appl. 80, No. 12, 2764--2779 (2020; Zbl 07283133) Full Text: DOI
Evans, John A.; Kamensky, David; Bazilevs, Yuri Variational multiscale modeling with discretely divergence-free subscales. (English) Zbl 07283120 Comput. Math. Appl. 80, No. 11, 2517-2537 (2020). MSC: 76M10 76D05 76D07 76M30 65M12 PDF BibTeX XML Cite \textit{J. A. Evans} et al., Comput. Math. Appl. 80, No. 11, 2517--2537 (2020; Zbl 07283120) Full Text: DOI
Antonelli, Paolo; Hientzsch, Lars Eric; Marcati, Pierangelo On the low Mach number limit for quantum Navier-Stokes equations. (English) Zbl 07282666 SIAM J. Math. Anal. 52, No. 6, 6105-6139 (2020). MSC: 35Q35 35Q30 35D30 76Y05 76D05 76N06 76Q05 PDF BibTeX XML Cite \textit{P. Antonelli} et al., SIAM J. Math. Anal. 52, No. 6, 6105--6139 (2020; Zbl 07282666) Full Text: DOI
Tarpin, Malo Non-perturbative renormalization group approach to some out-of-equilibrium systems. Diffusive epidemic process and fully developed turbulence. (English) Zbl 07279539 Springer Theses. Cham: Springer; Grenoble: Univ. Grenoble Alpes (Diss.) (ISBN 978-3-030-39870-5/hbk; 978-3-030-39871-2/ebook). xv, 207 p. (2020). MSC: 82-02 82C28 82C27 82C26 92D30 92D25 76D05 76F30 PDF BibTeX XML Cite \textit{M. Tarpin}, Non-perturbative renormalization group approach to some out-of-equilibrium systems. Diffusive epidemic process and fully developed turbulence. Cham: Springer; Grenoble: Univ. Grenoble Alpes (Diss.) (2020; Zbl 07279539) Full Text: DOI