Dykhta, Vladimir; Sorokin, Stepan Feedback minimum principle for optimal control problems in discrete-time systems and its applications. (English) Zbl 1439.49065 Khachay, Michael (ed.) et al., Mathematical optimization theory and operations research. 18th international conference, MOTOR 2019, Ekaterinburg, Russia, July 8–12, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11548, 449-460 (2019). MSC: 49N35 PDF BibTeX XML Cite \textit{V. Dykhta} and \textit{S. Sorokin}, Lect. Notes Comput. Sci. 11548, 449--460 (2019; Zbl 1439.49065) Full Text: DOI
Batalin, Roman Mikhaĭlovich; Terletskiĭ, Viktor Anatol’evich Optimal control in epidemic models of transmissive diseases with SEI-SEIR systems. (Russian. English summary) Zbl 1352.92140 Izv. Irkutsk. Gos. Univ., Ser. Mat. 14, 18-30 (2015). MSC: 92D30 49N90 PDF BibTeX XML Cite \textit{R. M. Batalin} and \textit{V. A. Terletskiĭ}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 14, 18--30 (2015; Zbl 1352.92140) Full Text: Link
Arguchintsev, A. V. Solution of the problem of optimal control of initial-boundary value conditions of a hyperbolic system on the basis of exact increment formulas. (English. Russian original) Zbl 1060.49018 Russ. Math. 46, No. 12, 21-27 (2002); translation from Izv. Vyssh. Uchebn. Zaved. Mat. 2002, No. 12, 23-29 (2002). Reviewer: Uldis Raitums (Riga) MSC: 49K20 35L50 49M05 PDF BibTeX XML Cite \textit{A. V. Arguchintsev}, Russ. Math. 46, No. 12, 21--27 (2002; Zbl 1060.49018); translation from Izv. Vyssh. Uchebn. Zaved. Mat. 2002, No. 12, 23--29 (2002)
Wang, Ling; Li, Jianguo; Srochko, V. A. Quasigradient methods for solving optimal control problems. (English) Zbl 1001.49030 Control Theory Appl. 16, No. 3, 390-395 (1999). MSC: 49M15 90C52 65L60 PDF BibTeX XML Cite \textit{L. Wang} et al., Control Theory Appl. 16, No. 3, 390--395 (1999; Zbl 1001.49030)