Kalantarov, Varga; Kostianko, Anna; Zelik, Sergey Determining functionals and finite-dimensional reduction for dissipative PDEs revisited. (English) Zbl 07633387 J. Differ. Equations 345, 78-103 (2023). MSC: 35B40 35B42 35K58 35K90 37D10 37L25 PDF BibTeX XML Cite \textit{V. Kalantarov} et al., J. Differ. Equations 345, 78--103 (2023; Zbl 07633387) Full Text: DOI arXiv OpenURL
Chen, Shuang; Shen, Jun Smooth inertial manifolds for neutral differential equations with small delays. (English) Zbl 07587118 J. Dyn. Differ. Equations 34, No. 3, 2173-2199 (2022). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 34K19 34K40 PDF BibTeX XML Cite \textit{S. Chen} and \textit{J. Shen}, J. Dyn. Differ. Equations 34, No. 3, 2173--2199 (2022; Zbl 07587118) Full Text: DOI arXiv OpenURL
Le, Anh Minh Inertial manifolds for functional differential equations with infinite delay. (English) Zbl 1487.34135 Asian-Eur. J. Math. 15, No. 3, Article ID 2250045, 14 p. (2022). MSC: 34K19 34K30 35K58 37L25 PDF BibTeX XML Cite \textit{A. M. Le}, Asian-Eur. J. Math. 15, No. 3, Article ID 2250045, 14 p. (2022; Zbl 1487.34135) Full Text: DOI OpenURL
Sekatskaya, A. V. Second-kind equilibrium states of the Kuramoto-Sivashinsky equation with homogeneous Neumann boundary conditions. (English. Russian original) Zbl 1498.37122 J. Math. Sci., New York 262, No. 6, 844-854 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 80-90 (2019). MSC: 37L65 37L10 37L15 37L25 PDF BibTeX XML Cite \textit{A. V. Sekatskaya}, J. Math. Sci., New York 262, No. 6, 844--854 (2022; Zbl 1498.37122); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 80--90 (2019) Full Text: DOI OpenURL
Kulikov, A. N. Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence. (English. Russian original) Zbl 1498.37114 J. Math. Sci., New York 262, No. 6, 809-816 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 45-52 (2019). MSC: 37L10 37L25 37L15 PDF BibTeX XML Cite \textit{A. N. Kulikov}, J. Math. Sci., New York 262, No. 6, 809--816 (2022; Zbl 1498.37114); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 45--52 (2019) Full Text: DOI OpenURL
Le, Thi Oanh Square-mean inertial manifolds for stochastic differential equations. (English) Zbl 1492.60175 Random Oper. Stoch. Equ. 30, No. 2, 149-159 (2022). MSC: 60H10 60H05 PDF BibTeX XML Cite \textit{T. O. Le}, Random Oper. Stoch. Equ. 30, No. 2, 149--159 (2022; Zbl 1492.60175) Full Text: DOI OpenURL
Hummel, Felix; Kuehn, Christian Slow manifolds for infinite-dimensional evolution equations. (English) Zbl 1487.35035 Comment. Math. Helv. 97, No. 1, 61-132 (2022). MSC: 35B25 37D10 37L25 35A24 PDF BibTeX XML Cite \textit{F. Hummel} and \textit{C. Kuehn}, Comment. Math. Helv. 97, No. 1, 61--132 (2022; Zbl 1487.35035) Full Text: DOI arXiv OpenURL
Cao, Yu; Jolly, Michael S.; Titi, Edriss S. A determining form for the 2D Rayleigh-Bénard problem. (English) Zbl 1483.35160 Pure Appl. Funct. Anal. 7, No. 1, 99-132 (2022). MSC: 35Q35 37L25 PDF BibTeX XML Cite \textit{Y. Cao} et al., Pure Appl. Funct. Anal. 7, No. 1, 99--132 (2022; Zbl 1483.35160) Full Text: arXiv Link OpenURL
Li, Zonghao; Zeng, Caibin; Huang, Jianhua Mean-square invariant manifolds for ill-posed stochastic evolution equations driven by nonlinear noise. (English) Zbl 1490.37095 J. Differ. Equations 313, 382-419 (2022). MSC: 37L55 37L30 37L25 35R25 60H15 PDF BibTeX XML Cite \textit{Z. Li} et al., J. Differ. Equations 313, 382--419 (2022; Zbl 1490.37095) Full Text: DOI arXiv OpenURL
Romanov, Aleksandr V. Final dynamics of systems of nonlinear parabolic equations on the circle. (English) Zbl 07533492 AIMS Math. 6, No. 12, 13407-13422 (2021). MSC: 35B41 35K57 35K40 35K90 35K91 PDF BibTeX XML Cite \textit{A. V. Romanov}, AIMS Math. 6, No. 12, 13407--13422 (2021; Zbl 07533492) Full Text: DOI arXiv OpenURL
Xuan, Pham Truong The simplified Bardina equation on two-dimensional closed manifolds. (English) Zbl 1481.35315 Dyn. Partial Differ. Equ. 18, No. 4, 293-326 (2021). MSC: 35Q30 76D03 76D05 76F20 58A14 58D17 58D25 58D30 35B41 35A01 PDF BibTeX XML Cite \textit{P. T. Xuan}, Dyn. Partial Differ. Equ. 18, No. 4, 293--326 (2021; Zbl 1481.35315) Full Text: DOI arXiv OpenURL
Shi, Lin; Li, Dingshi; Lu, Kening Limiting behavior of unstable manifolds for SPDEs in varying phase spaces. (English) Zbl 1484.37091 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6311-6337 (2021). MSC: 37L55 37L15 37L25 35R60 60H15 PDF BibTeX XML Cite \textit{L. Shi} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6311--6337 (2021; Zbl 1484.37091) Full Text: DOI OpenURL
Honda, Hirotada Reservoir computing with an inertial form. (English) Zbl 1481.37097 SIAM J. Appl. Dyn. Syst. 20, No. 3, 1320-1347 (2021). MSC: 37M21 37C75 68T05 PDF BibTeX XML Cite \textit{H. Honda}, SIAM J. Appl. Dyn. Syst. 20, No. 3, 1320--1347 (2021; Zbl 1481.37097) Full Text: DOI OpenURL
Yang, Xiangdong Invariant manifolds for nonautonomous stochastic evolution equation. (English) Zbl 1484.60071 Osaka J. Math. 58, No. 3, 711-729 (2021). Reviewer: Latifa Debbi (M’Sila) MSC: 60H15 37D10 37L25 37L55 60J65 PDF BibTeX XML Cite \textit{X. Yang}, Osaka J. Math. 58, No. 3, 711--729 (2021; Zbl 1484.60071) Full Text: Link OpenURL
Anikushin, Mikhaĭl Mikhaĭlovich Almost automorphic dynamics in almost periodic cocycles with one-dimensional inertial manifold. (Russian. English summary) Zbl 1476.37031 Differ. Uravn. Protsessy Upr. 2021, No. 2, 13-48 (2021). MSC: 37C10 37C27 43A60 PDF BibTeX XML Cite \textit{M. M. Anikushin}, Differ. Uravn. Protsessy Upr. 2021, No. 2, 13--48 (2021; Zbl 1476.37031) Full Text: Link OpenURL
Lee, Jihoon; Nguyen, Ngocthach Gromov-Hausdorff stability of inertial manifolds under perturbations of the domain and equation. (English) Zbl 1460.37071 J. Math. Anal. Appl. 494, No. 2, Article ID 124623, 24 p. (2021). MSC: 37L25 37L15 37B25 PDF BibTeX XML Cite \textit{J. Lee} and \textit{N. Nguyen}, J. Math. Anal. Appl. 494, No. 2, Article ID 124623, 24 p. (2021; Zbl 1460.37071) Full Text: DOI arXiv OpenURL
Lin, Guoguang; Chen, Yuhang Inertial manifold family of high-order nonlinear Kirchhoff-type equation. (English) Zbl 1484.35076 Adv. Differ. Equ. Control Process. 23, No. 2, 187-204 (2020). MSC: 35B42 35L35 35L76 35R09 PDF BibTeX XML Cite \textit{G. Lin} and \textit{Y. Chen}, Adv. Differ. Equ. Control Process. 23, No. 2, 187--204 (2020; Zbl 1484.35076) Full Text: DOI OpenURL
Sun, Xiuxiu An inertial manifold for a non-self adjoint system. (English) Zbl 1469.35052 Honam Math. J. 42, No. 4, 821-828 (2020). MSC: 35B42 35B40 35K90 37L25 47J35 PDF BibTeX XML Cite \textit{X. Sun}, Honam Math. J. 42, No. 4, 821--828 (2020; Zbl 1469.35052) Full Text: DOI OpenURL
Cakir, Hayriye Guckir; Promislow, Keith Gradient invariance of slow energy descent: spectral renormalization and energy landscape techniques. (English) Zbl 1452.35031 Nonlinearity 33, No. 12, 6890-6914 (2020). MSC: 35B40 35K90 35L90 37L25 PDF BibTeX XML Cite \textit{H. G. Cakir} and \textit{K. Promislow}, Nonlinearity 33, No. 12, 6890--6914 (2020; Zbl 1452.35031) Full Text: DOI arXiv OpenURL
Cheng, Hongyu; de la Llave, Rafael Time dependent center manifold in PDEs. (English) Zbl 1452.35043 Discrete Contin. Dyn. Syst. 40, No. 12, 6709-6745 (2020). MSC: 35B42 35B15 35R25 37L10 35J60 47J06 37L25 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{R. de la Llave}, Discrete Contin. Dyn. Syst. 40, No. 12, 6709--6745 (2020; Zbl 1452.35043) Full Text: DOI OpenURL
Akram, Maryam; Hassanaly, Malik; Raman, Venkat A priori analysis of reduced description of dynamical systems using approximate inertial manifolds. (English) Zbl 1435.76029 J. Comput. Phys. 409, Article ID 109344, 20 p. (2020). MSC: 76F05 76F20 76F55 PDF BibTeX XML Cite \textit{M. Akram} et al., J. Comput. Phys. 409, Article ID 109344, 20 p. (2020; Zbl 1435.76029) Full Text: DOI OpenURL
Cheng, Hongyu; de la Llave, Rafael Stable manifolds to bounded solutions in possibly ill-posed PDEs. (English) Zbl 1448.35564 J. Differ. Equations 268, No. 8, 4830-4899 (2020). MSC: 35R25 37L10 35Q56 34D35 37L25 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{R. de la Llave}, J. Differ. Equations 268, No. 8, 4830--4899 (2020; Zbl 1448.35564) Full Text: DOI OpenURL
Li, Xinhua; Sun, Chunyou Inertial manifolds for the 3D modified-Leray-\( \alpha\) model. (English) Zbl 1433.35239 J. Differ. Equations 268, No. 4, 1532-1569 (2020). MSC: 35Q30 35B33 35B40 35B42 76F20 35A01 76D03 35B41 76D05 PDF BibTeX XML Cite \textit{X. Li} and \textit{C. Sun}, J. Differ. Equations 268, No. 4, 1532--1569 (2020; Zbl 1433.35239) Full Text: DOI OpenURL
Hasan-Zadeh, Atefeh Exact inertial manifolds for dynamical systems. (English) Zbl 07477738 Adv. Differ. Equ. Control Process. 21, No. 1, 117-122 (2019). MSC: 76F20 37L25 76M60 PDF BibTeX XML Cite \textit{A. Hasan-Zadeh}, Adv. Differ. Equ. Control Process. 21, No. 1, 117--122 (2019; Zbl 07477738) Full Text: DOI OpenURL
Yang, Peng; Wang, JinRong; O’Regan, Donal; Fečkan, Michal Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space. (English) Zbl 07264431 Commun. Nonlinear Sci. Numer. Simul. 75, 174-191 (2019). MSC: 34Bxx 58Exx 34Axx PDF BibTeX XML Cite \textit{P. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 75, 174--191 (2019; Zbl 07264431) Full Text: DOI OpenURL
Kondratieva, Liudmila; Romanov, Aleksandr Inertial manifolds and limit cycles of dynamical systems in \({\mathbb{R}}^{n}\). (English) Zbl 1449.34127 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 96, 11 p. (2019). MSC: 34C45 34C07 34C05 34C20 PDF BibTeX XML Cite \textit{L. Kondratieva} and \textit{A. Romanov}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 96, 11 p. (2019; Zbl 1449.34127) Full Text: DOI arXiv OpenURL
Hu, Wenjie Stability and Hopf bifurcation in a class of nonlocal delay differential equation with the zero-flux boundary condition. (English) Zbl 1428.35624 Math. Methods Appl. Sci. 42, No. 12, 4184-4196 (2019). MSC: 35Q92 92D25 35R10 35B32 35B35 35B42 35B10 PDF BibTeX XML Cite \textit{W. Hu}, Math. Methods Appl. Sci. 42, No. 12, 4184--4196 (2019; Zbl 1428.35624) Full Text: DOI OpenURL
Chepyzhov, Vladimir V.; Kostianko, Anna; Zelik, Sergey Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. (English) Zbl 1411.35173 Discrete Contin. Dyn. Syst., Ser. B 24, No. 3, 1115-1142 (2019). Reviewer: Denise Huet (Nancy) MSC: 35K58 35B42 35B40 35B45 35Q56 PDF BibTeX XML Cite \textit{V. V. Chepyzhov} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 3, 1115--1142 (2019; Zbl 1411.35173) Full Text: DOI arXiv OpenURL
Zumbrun, Kevin Invariant manifolds for a class of degenerate evolution equations and structure of kinetic shock layers. (English) Zbl 1405.37087 Klingenberg, Christian (ed.) et al., Theory, numerics and applications of hyperbolic problems II, Aachen, Germany, August 2016. Cham: Springer (ISBN 978-3-319-91547-0/hbk; 978-3-319-91548-7/ebook). Springer Proceedings in Mathematics & Statistics 237, 691-714 (2018). MSC: 37L15 37L10 37L25 35Q20 76P05 PDF BibTeX XML Cite \textit{K. Zumbrun}, Springer Proc. Math. Stat. 237, 691--714 (2018; Zbl 1405.37087) Full Text: DOI arXiv OpenURL
Bisconti, Luca; Catania, Davide On the existence of an inertial manifold for a deconvolution model of the 2D mean Boussinesq equations. (English) Zbl 1397.35196 Math. Methods Appl. Sci. 41, No. 13, 4923-4935 (2018). MSC: 35Q35 35Q30 37L30 76D03 76F20 76F65 76D05 PDF BibTeX XML Cite \textit{L. Bisconti} and \textit{D. Catania}, Math. Methods Appl. Sci. 41, No. 13, 4923--4935 (2018; Zbl 1397.35196) Full Text: DOI arXiv OpenURL
Kogelbauer, Florian; Haller, George Rigorous model reduction for a damped-forced nonlinear beam model: an infinite-dimensional analysis. (English) Zbl 1402.35279 J. Nonlinear Sci. 28, No. 3, 1109-1150 (2018). Reviewer: Adina Chirila (Brasov) MSC: 35Q74 37L10 37L25 74K10 74H45 74B20 35A01 PDF BibTeX XML Cite \textit{F. Kogelbauer} and \textit{G. Haller}, J. Nonlinear Sci. 28, No. 3, 1109--1150 (2018; Zbl 1402.35279) Full Text: DOI arXiv OpenURL
Guo, Boling; Ling, Liming; Ma, Yansheng; Yang, Hui Infinite-dimensional dynamical systems. Volume 2: Attractors and methods. (English) Zbl 1401.37003 Berlin: De Gruyter (ISBN 978-3-11-058699-2/hbk; 978-3-11-061062-8/set; 978-3-11-058726-5/ebook). viii, 405 p. (2018). MSC: 37-02 37Lxx 35Bxx PDF BibTeX XML Cite \textit{B. Guo} et al., Infinite-dimensional dynamical systems. Volume 2: Attractors and methods. Berlin: De Gruyter (2018; Zbl 1401.37003) Full Text: DOI OpenURL
Vakulenko, Sergey Complex attractors and patterns in reaction-diffusion systems. (English) Zbl 1406.35051 J. Dyn. Differ. Equations 30, No. 1, 175-207 (2018). Reviewer: Anna Ghazaryan (Oxford, OH) MSC: 35B36 37L25 35K57 35K55 35B40 35B42 35B30 35B41 35B25 PDF BibTeX XML Cite \textit{S. Vakulenko}, J. Dyn. Differ. Equations 30, No. 1, 175--207 (2018; Zbl 1406.35051) Full Text: DOI OpenURL
Kostianko, Anna Inertial manifolds for the 3D modified-Leray-\(\alpha \) model with periodic boundary conditions. (English) Zbl 1390.35023 J. Dyn. Differ. Equations 30, No. 1, 1-24 (2018). MSC: 35B40 35B42 35Q30 76F20 PDF BibTeX XML Cite \textit{A. Kostianko}, J. Dyn. Differ. Equations 30, No. 1, 1--24 (2018; Zbl 1390.35023) Full Text: DOI arXiv OpenURL
Spiliotis, Konstantinos; Russo, Lucia; Giannino, Francesco; Cuomo, Salvatore; Siettos, Constantinos; Toraldo, Gerardo Nonlinear Galerkin methods for a system of PDEs with Turing instabilities. (English) Zbl 1448.65247 Calcolo 55, No. 1, Paper No. 9, 23 p. (2018). MSC: 65N30 65M06 65L05 37L65 35B40 35B36 35B38 35B32 92C80 92C15 PDF BibTeX XML Cite \textit{K. Spiliotis} et al., Calcolo 55, No. 1, Paper No. 9, 23 p. (2018; Zbl 1448.65247) Full Text: DOI OpenURL
Lu, Fei; Lin, Kevin K.; Chorin, Alexandre J. Data-based stochastic model reduction for the Kuramoto-Sivashinsky equation. (English) Zbl 1376.35100 Physica D 340, 46-57 (2017). MSC: 35R30 35B30 62F99 PDF BibTeX XML Cite \textit{F. Lu} et al., Physica D 340, 46--57 (2017; Zbl 1376.35100) Full Text: DOI arXiv OpenURL
Ambrosio, Benjamin Hopf bifurcation in an oscillatory-excitable reaction-diffusion model with spatial heterogeneity. (English) Zbl 1367.35028 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 5, Article ID 1750065, 13 p. (2017). MSC: 35B32 35B42 35K57 35B25 35B10 35Q92 PDF BibTeX XML Cite \textit{B. Ambrosio}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 5, Article ID 1750065, 13 p. (2017; Zbl 1367.35028) Full Text: DOI arXiv OpenURL
Yao, Lingxing; Calderer, M. Carme; Mori, Yoichiro; Siegel, Ronald A. Rhythmomimetic drug delivery: modeling, analysis, and numerical simulation. (English) Zbl 1376.34050 SIAM J. Appl. Math. 77, No. 2, 565-592 (2017). Reviewer: Vasile Dragan (Bucureşti) MSC: 34C60 92C45 34C45 34C05 34C23 34C55 34E13 PDF BibTeX XML Cite \textit{L. Yao} et al., SIAM J. Appl. Math. 77, No. 2, 565--592 (2017; Zbl 1376.34050) Full Text: DOI arXiv OpenURL
Bates, Peter W.; Fusco, Giorgio; Jin, Jiayin Invariant manifolds of interior multi-spike states for the Cahn-Hilliard equation in higher space dimensions. (English) Zbl 1372.35019 Trans. Am. Math. Soc. 369, No. 6, 3937-3975 (2017). Reviewer: Guido Schneider (Stuttgart) MSC: 35B25 35K55 37D10 37L25 PDF BibTeX XML Cite \textit{P. W. Bates} et al., Trans. Am. Math. Soc. 369, No. 6, 3937--3975 (2017; Zbl 1372.35019) Full Text: DOI OpenURL
Chen, Huatao; Cao, Dengqing; Jiang, Jingfei Random attractors for Von Karman plates subjected to multiplicative white noise loadings. (English) Zbl 1397.37088 Awrejcewicz, Jan (ed.), Dynamical systems: theoretical and experimental analysis, Łódź, Poland, December 7–10, 2015. Proceedings. Cham: Springer (ISBN 978-3-319-42407-1/hbk; 978-3-319-42408-8/ebook). Springer Proceedings in Mathematics & Statistics 182, 59-70 (2016). MSC: 37L55 37H10 74K10 74K20 PDF BibTeX XML Cite \textit{H. Chen} et al., Springer Proc. Math. Stat. 182, 59--70 (2016; Zbl 1397.37088) Full Text: DOI OpenURL
Guo, Zhongkai; Wang, Wenya Invariant manifolds for SPDEs with linear noise. (English) Zbl 1374.60117 Math. Appl. 29, No. 4, 939-948 (2016). MSC: 60H15 37L25 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{W. Wang}, Math. Appl. 29, No. 4, 939--948 (2016; Zbl 1374.60117) OpenURL
Deshpande, Amey; Daftardar-Gejji, Varsha Local stable manifold theorem for fractional systems. (English) Zbl 1353.35304 Nonlinear Dyn. 83, No. 4, 2435-2452 (2016). MSC: 35R11 33E12 37L25 PDF BibTeX XML Cite \textit{A. Deshpande} and \textit{V. Daftardar-Gejji}, Nonlinear Dyn. 83, No. 4, 2435--2452 (2016; Zbl 1353.35304) Full Text: DOI OpenURL
Pötzsche, Christian; Russ, Evamaria Topological decoupling and linearization of nonautonomous evolution equations. (English) Zbl 1366.37062 Discrete Contin. Dyn. Syst., Ser. S 9, No. 4, 1235-1268 (2016). MSC: 37C60 37D10 37L25 35K57 PDF BibTeX XML Cite \textit{C. Pötzsche} and \textit{E. Russ}, Discrete Contin. Dyn. Syst., Ser. S 9, No. 4, 1235--1268 (2016; Zbl 1366.37062) Full Text: DOI OpenURL
Romanov, A. V. On the hyperbolicity properties of inertial manifolds of reaction-diffusion equations. (English) Zbl 1439.35273 Dyn. Partial Differ. Equ. 13, No. 3, 263-272 (2016). MSC: 35K57 35B42 35K40 35K90 35K91 PDF BibTeX XML Cite \textit{A. V. Romanov}, Dyn. Partial Differ. Equ. 13, No. 3, 263--272 (2016; Zbl 1439.35273) Full Text: DOI arXiv OpenURL
Baigent, Stephen Convexity of the carrying simplex for discrete-time planar competitive Kolmogorov systems. (English) Zbl 1343.93055 J. Difference Equ. Appl. 22, No. 5, 609-622 (2016). MSC: 93C55 65Q10 37L25 39A60 PDF BibTeX XML Cite \textit{S. Baigent}, J. Difference Equ. Appl. 22, No. 5, 609--622 (2016; Zbl 1343.93055) Full Text: DOI Link OpenURL
de la Llave, R.; Mireles James, J. D. Connecting orbits for compact infinite dimensional maps: computer assisted proofs of existence. (English) Zbl 1343.37078 SIAM J. Appl. Dyn. Syst. 15, No. 2, 1268-1323 (2016). MSC: 37L25 37M99 65P99 65G20 PDF BibTeX XML Cite \textit{R. de la Llave} and \textit{J. D. Mireles James}, SIAM J. Appl. Dyn. Syst. 15, No. 2, 1268--1323 (2016; Zbl 1343.37078) Full Text: DOI OpenURL
Chung, Yu-Min; Steyer, Andrew; Tubbs, Michael; Van Vleck, Erik S.; Vedantam, Mihir Global error analysis and inertial manifold reduction. (English) Zbl 1382.65192 J. Comput. Appl. Math. 307, 204-215 (2016). MSC: 65L05 34C45 65P40 PDF BibTeX XML Cite \textit{Y.-M. Chung} et al., J. Comput. Appl. Math. 307, 204--215 (2016; Zbl 1382.65192) Full Text: DOI arXiv OpenURL
Huang, Qiongwei; Xue, Changfeng; Tang, Jiashi Saddle-node bifurcations on approximate inertial manifolds for a driven wave equation. (English) Zbl 1359.37141 Appl. Anal. 95, No. 5, 1059-1069 (2016). MSC: 37L10 58J55 74G60 35B42 35A15 35L05 35G31 PDF BibTeX XML Cite \textit{Q. Huang} et al., Appl. Anal. 95, No. 5, 1059--1069 (2016; Zbl 1359.37141) Full Text: DOI OpenURL
Hamed, Mohammad Abu; Guo, Yanqiu; Titi, Edriss S. Inertial manifolds for certain subgrid-scale \(\alpha\)-models of turbulence. (English) Zbl 1328.35150 SIAM J. Appl. Dyn. Syst. 14, No. 3, 1308-1325 (2015). Reviewer: Kai Schneider (Marseille) MSC: 35Q30 37L30 76B03 76F20 76F55 76F65 76D05 PDF BibTeX XML Cite \textit{M. A. Hamed} et al., SIAM J. Appl. Dyn. Syst. 14, No. 3, 1308--1325 (2015; Zbl 1328.35150) Full Text: DOI arXiv OpenURL
Sacker, Robert J. Book review of: Christian Pötzsche, Geometric theory of discrete non-autonomous dynamical systems. (English) Zbl 1319.00007 J. Difference Equ. Appl. 20, No. 3, 506-510 (2014). MSC: 00A17 37-02 37B55 39A06 39A14 39A30 37L25 37D10 37C15 PDF BibTeX XML Cite \textit{R. J. Sacker}, J. Difference Equ. Appl. 20, No. 3, 506--510 (2014; Zbl 1319.00007) Full Text: DOI OpenURL
Xu, Guigui; Wang, Libo; Lin, Guoguang Inertial manifolds for a class of the retarded nonlinear wave equations. (Chinese. English summary) Zbl 1324.35117 Math. Appl. 27, No. 4, 887-891 (2014). MSC: 35L70 35B42 PDF BibTeX XML Cite \textit{G. Xu} et al., Math. Appl. 27, No. 4, 887--891 (2014; Zbl 1324.35117) OpenURL
Romanov, A. V. A parabolic equation with nonlocal diffusion without a smooth inertial manifold. (English. Russian original) Zbl 1422.35127 Math. Notes 96, No. 4, 548-555 (2014); translation from Mat. Zametki 96, No. 4, 578-587 (2014). MSC: 35K90 35B42 35K59 35R09 37L25 45K05 PDF BibTeX XML Cite \textit{A. V. Romanov}, Math. Notes 96, No. 4, 548--555 (2014; Zbl 1422.35127); translation from Mat. Zametki 96, No. 4, 578--587 (2014) Full Text: DOI arXiv OpenURL
Turaev, Dmitry V.; Warner, Christopher; Zelik, Sergey Energy growth for a nonlinear oscillator coupled to a monochromatic wave. (English) Zbl 1312.35009 Regul. Chaotic Dyn. 19, No. 4, 513-522 (2014). Reviewer: Aleksander Pankov (Baltimore) MSC: 35B05 35B42 PDF BibTeX XML Cite \textit{D. V. Turaev} et al., Regul. Chaotic Dyn. 19, No. 4, 513--522 (2014; Zbl 1312.35009) Full Text: DOI arXiv OpenURL
Xiao, Mingqing; Huang, Tingwen Inertial manifold and state estimation of dissipative nonlinear PDE systems. (English) Zbl 1304.35739 Appl. Anal. 93, No. 11, 2386-2401 (2014). MSC: 35R10 35R20 93B07 PDF BibTeX XML Cite \textit{M. Xiao} and \textit{T. Huang}, Appl. Anal. 93, No. 11, 2386--2401 (2014; Zbl 1304.35739) Full Text: DOI OpenURL
Ferreira, Miguel Jorge Bernabé; Padmanabhan, Pramod; Teotonio-Sobrinho, Paulo 2D quantum double models from a 3D perspective. (English) Zbl 1300.37048 J. Phys. A, Math. Theor. 47, No. 37, Article ID 375204, 50 p. (2014). Reviewer: Guy Jumarie (Montréal) MSC: 37L25 81P68 68Q05 94A60 81T25 PDF BibTeX XML Cite \textit{M. J. B. Ferreira} et al., J. Phys. A, Math. Theor. 47, No. 37, Article ID 375204, 50 p. (2014; Zbl 1300.37048) Full Text: DOI arXiv OpenURL
Foias, C.; Jolly, M. S.; Kravchenko, R.; Titi, E. S. A unified approach to determining forms for the 2D Navier-Stokes equations – the general interpolants case. (English. Russian original) Zbl 1301.35108 Russ. Math. Surv. 69, No. 2, 359-381 (2014); translation from Usp. Mat. Nauk 69, No. 2, 177-200 (2014). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q35 76D05 35B41 PDF BibTeX XML Cite \textit{C. Foias} et al., Russ. Math. Surv. 69, No. 2, 359--381 (2014; Zbl 1301.35108); translation from Usp. Mat. Nauk 69, No. 2, 177--200 (2014) Full Text: DOI arXiv OpenURL
Weber, Joa A backward \(\lambda\)-lemma for the forward heat flow. (English) Zbl 1306.37090 Math. Ann. 359, No. 3-4, 929-967 (2014). Reviewer: Weiping Li (Stillwater) MSC: 37L05 37L15 37L25 37L45 35K05 PDF BibTeX XML Cite \textit{J. Weber}, Math. Ann. 359, No. 3--4, 929--967 (2014; Zbl 1306.37090) Full Text: DOI arXiv OpenURL
Lv, Yan; Wang, Wei; Roberts, A. J. Approximation of the random inertial manifold of singularly perturbed stochastic wave equations. (English) Zbl 1303.60058 Stoch. Dyn. 14, No. 2, Article ID 1350018, 21 p. (2014). Reviewer: Isamu Dôku (Saitama) MSC: 60H15 60F99 35R60 PDF BibTeX XML Cite \textit{Y. Lv} et al., Stoch. Dyn. 14, No. 2, Article ID 1350018, 21 p. (2014; Zbl 1303.60058) Full Text: DOI arXiv OpenURL
Bates, Peter W.; Jin, Jiayin Global dynamics of boundary droplets. (English) Zbl 1315.37049 Discrete Contin. Dyn. Syst. 34, No. 1, 1-17 (2014). Reviewer: Matheus Cheque Bortolan (Lima) MSC: 37L25 37D10 35B25 35K57 35B42 PDF BibTeX XML Cite \textit{P. W. Bates} and \textit{J. Jin}, Discrete Contin. Dyn. Syst. 34, No. 1, 1--17 (2014; Zbl 1315.37049) Full Text: DOI OpenURL
Guo, Chunxiao; Guo, Yanfeng; Li, Donglong Time analyticity and approximate inertial manifold for 3-D complex Ginzburg-Landau equation. (English) Zbl 1299.35045 Adv. Math., Beijing 42, No. 3, 279-287 (2013). MSC: 35B40 35B42 35Q56 PDF BibTeX XML Cite \textit{C. Guo} et al., Adv. Math., Beijing 42, No. 3, 279--287 (2013; Zbl 1299.35045) OpenURL
Mengers, J. D.; Powers, J. M. One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion. (English) Zbl 1282.35044 SIAM J. Appl. Dyn. Syst. 12, No. 2, 560-595 (2013). MSC: 35B32 35B42 35K57 57M50 80A30 PDF BibTeX XML Cite \textit{J. D. Mengers} and \textit{J. M. Powers}, SIAM J. Appl. Dyn. Syst. 12, No. 2, 560--595 (2013; Zbl 1282.35044) Full Text: DOI OpenURL
Zhang, Ji Min; Fan, Meng; Chang, Xiao Yuan Parameter dependence of stable manifolds for nonuniform \((\mu, \nu)\)-dichotomies. (English) Zbl 1347.37127 Acta Math. Sin., Engl. Ser. 29, No. 6, 1111-1130 (2013). MSC: 37L25 37D10 34D09 34A37 37L50 34C45 34G20 PDF BibTeX XML Cite \textit{J. M. Zhang} et al., Acta Math. Sin., Engl. Ser. 29, No. 6, 1111--1130 (2013; Zbl 1347.37127) Full Text: DOI OpenURL
Prüss, Jan; Wilke, Mathias; Simonett, Gieri Invariant foliations near normally hyperbolic equilibria for quasilinear parabolic problems. (English) Zbl 1282.35200 Adv. Nonlinear Stud. 13, No. 1, 231-243 (2013). Reviewer: Thomas Hagen (Memphis) MSC: 35K59 35B35 37D10 37D30 35R35 37L25 PDF BibTeX XML Cite \textit{J. Prüss} et al., Adv. Nonlinear Stud. 13, No. 1, 231--243 (2013; Zbl 1282.35200) Full Text: arXiv OpenURL
Huang, Jianhua Stochastic inertial manifold of dissipative wave equations with time delays. (Chinese. English summary) Zbl 1265.60114 Appl. Math., Ser. A (Chin. Ed.) 27, No. 1, 63-72 (2012). MSC: 60H15 35L05 PDF BibTeX XML Cite \textit{J. Huang}, Appl. Math., Ser. A (Chin. Ed.) 27, No. 1, 63--72 (2012; Zbl 1265.60114) OpenURL
Lu, Hong; Xin, Jie The approximate manifolds for the generalized (2+1)-dimensional long-short wave equations. (English) Zbl 1251.37073 Monatsh. Math. 165, No. 3-4, 393-411 (2012). Reviewer: Jörg Härterich (Bochum) MSC: 37L25 35Q35 35B42 35B40 PDF BibTeX XML Cite \textit{H. Lu} and \textit{J. Xin}, Monatsh. Math. 165, No. 3--4, 393--411 (2012; Zbl 1251.37073) Full Text: DOI OpenURL
Zhao, Zhihong; Ge, Weigao Traveling wavefront solutions for reaction-diffusion equation with small delay. (English) Zbl 1238.35174 Funkc. Ekvacioj, Ser. Int. 54, No. 2, 225-236 (2011). Reviewer: George Karakostas (Ioannina) MSC: 35R10 35K57 34K10 35B20 35C07 35B42 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{W. Ge}, Funkc. Ekvacioj, Ser. Int. 54, No. 2, 225--236 (2011; Zbl 1238.35174) Full Text: DOI OpenURL
Padbidri, Jagan M.; Mesarovic, Sinisa Dj. Acceleration of DEM algorithm for quasistatic processes. (English) Zbl 1235.74367 Int. J. Numer. Methods Eng. 86, No. 7, 816-828 (2011). MSC: 74S30 74E20 PDF BibTeX XML Cite \textit{J. M. Padbidri} and \textit{S. Dj. Mesarovic}, Int. J. Numer. Methods Eng. 86, No. 7, 816--828 (2011; Zbl 1235.74367) Full Text: DOI OpenURL
Koksch, Norbert; Siegmund, Stefan Feedback control via inertial manifolds for nonautonomous evolution equations. (English) Zbl 1238.34093 Commun. Pure Appl. Anal. 10, No. 3, 917-936 (2011). Reviewer: Christian Pötzsche (Klagenfurt) MSC: 34C45 34D45 34G20 35B42 37C60 34H05 PDF BibTeX XML Cite \textit{N. Koksch} and \textit{S. Siegmund}, Commun. Pure Appl. Anal. 10, No. 3, 917--936 (2011; Zbl 1238.34093) Full Text: DOI OpenURL
Ma, Lirong Approximate inertial manifolds of KdV-Burgers-Kuramoto systems. (Chinese. English summary) Zbl 1240.35471 J. Sichuan Norm. Univ., Nat. Sci. 33, No. 5, 617-620 (2010). MSC: 35Q53 35B42 35B41 PDF BibTeX XML Cite \textit{L. Ma}, J. Sichuan Norm. Univ., Nat. Sci. 33, No. 5, 617--620 (2010; Zbl 1240.35471) Full Text: DOI OpenURL
Palin, V. V.; Radkevich, E. V. The Maxwell problem and the Chapman projection. (English) Zbl 1283.35055 Cubo 12, No. 2, 275-298 (2010). MSC: 35L65 35B40 35Q40 82C40 PDF BibTeX XML Cite \textit{V. V. Palin} and \textit{E. V. Radkevich}, Cubo 12, No. 2, 275--298 (2010; Zbl 1283.35055) Full Text: DOI OpenURL
Hetzer, Georg; Nguyen, Tung; Shen, Wenxian \({\mathcal A}\)-stability of global attractors of competition diffusion systems. (English) Zbl 1205.35032 J. Dyn. Differ. Equations 22, No. 3, 533-561 (2010). Reviewer: Jiaqi Mo (Wuhu) MSC: 35B41 35B42 37D15 35K51 92D25 PDF BibTeX XML Cite \textit{G. Hetzer} et al., J. Dyn. Differ. Equations 22, No. 3, 533--561 (2010; Zbl 1205.35032) Full Text: DOI OpenURL
Caraballo, Tomás; Duan, Jinqiao; Lu, Kening; Schmalfuß, Björn Invariant manifolds for random and stochastic partial differential equations. (English) Zbl 1209.37094 Adv. Nonlinear Stud. 10, No. 1, 23-52 (2010). Reviewer: Hans Crauel (Frankfurt am Main) MSC: 37L55 35R60 37D10 37L25 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Adv. Nonlinear Stud. 10, No. 1, 23--52 (2010; Zbl 1209.37094) Full Text: arXiv OpenURL
Pötzsche, Christian Geometric theory of discrete nonautonomous dynamical systems. (English) Zbl 1247.37003 Lecture Notes in Mathematics 2002. Berlin: Springer (ISBN 978-3-642-14257-4/pbk; 978-3-642-14258-1/ebook). xxiv, 399 p. (2010). Reviewer: Jörg Härterich (Bochum) MSC: 37-02 37B55 39A06 39A14 39A30 37L25 37D10 37C15 PDF BibTeX XML Cite \textit{C. Pötzsche}, Geometric theory of discrete nonautonomous dynamical systems. Berlin: Springer (2010; Zbl 1247.37003) Full Text: DOI OpenURL
Liu, Zhenxin Stochastic inertial manifolds for damped wave equations. (English) Zbl 1201.60065 Stoch. Dyn. 10, No. 2, 211-230 (2010). Reviewer: Carles Rovira (Barcelona) MSC: 60H15 35L70 35L25 35L55 37L25 37L55 PDF BibTeX XML Cite \textit{Z. Liu}, Stoch. Dyn. 10, No. 2, 211--230 (2010; Zbl 1201.60065) Full Text: DOI arXiv OpenURL
Zhao, Zhihong; Xu, Yuantong Solitary waves for Korteweg-de Vries equation with small delay. (English) Zbl 1191.35244 J. Math. Anal. Appl. 368, No. 1, 43-53 (2010). MSC: 35Q53 35Q51 35C08 35R01 53Z05 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{Y. Xu}, J. Math. Anal. Appl. 368, No. 1, 43--53 (2010; Zbl 1191.35244) Full Text: DOI OpenURL
Lin, Guoguang An inertial manifold of the 2D Swift-Hohenberg equation. (Chinese. English summary) Zbl 1224.35045 J. Yunnan Univ., Nat. Sci. 31, No. 4, 334-340 (2009). MSC: 35B42 35B41 PDF BibTeX XML Cite \textit{G. Lin}, J. Yunnan Univ., Nat. Sci. 31, No. 4, 334--340 (2009; Zbl 1224.35045) OpenURL
Guo, Liuxiao; Xu, Zhenyuan; Zhang, Rong The Hölder continuous inertial manifold for nonlinear evolutionary equation. (Chinese. English summary) Zbl 1212.34171 J. Syst. Sci. Math. Sci. 29, No. 12, 1631-1643 (2009). MSC: 34G20 37L25 34C45 35B42 PDF BibTeX XML Cite \textit{L. Guo} et al., J. Syst. Sci. Math. Sci. 29, No. 12, 1631--1643 (2009; Zbl 1212.34171) OpenURL
Nartea, Cristina Computation of approximate inertial manifolds for the Samuelson prey-predator model. (English) Zbl 1212.37079 Beznea, Lucian (ed.) et al., Proceedings of the sixth congress of Romanian Mathematicians, Bucharest, Romania, June 28–July 4, 2007. Vol. 1: Scientific contributions. Bucharest: Editura Academiei Române (ISBN 978-973-27-1781-3/v.1; 978-973-27-1780-6/set). 279-283 (2009). MSC: 37L25 PDF BibTeX XML Cite \textit{C. Nartea}, in: Proceedings of the sixth congress of Romanian Mathematicians, Bucharest, Romania, June 28--July 4, 2007. Vol. 1: Scientific contributions. Bucharest: Editura Academiei Române. 279--283 (2009; Zbl 1212.37079) OpenURL
Prüss, Jan; Simonett, Gieri; Zacher, Rico On normal stability for nonlinear parabolic equations. (English) Zbl 1194.35047 Discrete Contin. Dyn. Syst. 2009, Suppl., 612-621 (2009). MSC: 35B35 34G20 37D10 35R35 37L25 35K20 35K59 35K90 PDF BibTeX XML Cite \textit{J. Prüss} et al., Discrete Contin. Dyn. Syst. 2009, 612--621 (2009; Zbl 1194.35047) Full Text: arXiv OpenURL
Xiao, Qingkun; Gao, Hongjun Bifurcation analysis of the Swift-Hohenberg equation with quintic nonlinearity. (English) Zbl 1179.35072 Int. J. Bifurcation Chaos Appl. Sci. Eng. 19, No. 9, 2927-2937 (2009). MSC: 35B42 35B40 35B41 PDF BibTeX XML Cite \textit{Q. Xiao} and \textit{H. Gao}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 19, No. 9, 2927--2937 (2009; Zbl 1179.35072) Full Text: DOI OpenURL
Song, Lunji; Wu, Yujiang Incremental unknowns method based on the \(\theta \)-scheme for time-dependent convection-diffusion equations. (English) Zbl 1167.65055 Math. Comput. Simul. 79, No. 7, 2001-2012 (2009). Reviewer: Thomas Sonar (Braunschweig) MSC: 65M55 65M06 65M12 35K15 PDF BibTeX XML Cite \textit{L. Song} and \textit{Y. Wu}, Math. Comput. Simul. 79, No. 7, 2001--2012 (2009; Zbl 1167.65055) Full Text: DOI OpenURL
Takagi, Satoru Smoothness of inertial manifolds for semilinear evolution equations in complex Banach spaces. (English) Zbl 1224.35046 Differ. Integral Equ. 21, No. 1-2, 63-80 (2008). MSC: 35B42 37L25 35K57 PDF BibTeX XML Cite \textit{S. Takagi}, Differ. Integral Equ. 21, No. 1--2, 63--80 (2008; Zbl 1224.35046) OpenURL
Ito, Kazufumi; Kunisch, Karl Reduced-order optimal control based on approximate inertial manifolds for nonlinear dynamical systems. (English) Zbl 1178.93033 SIAM J. Numer. Anal. 46, No. 6, 2867-2891 (2008). MSC: 93B11 93B52 49N35 PDF BibTeX XML Cite \textit{K. Ito} and \textit{K. Kunisch}, SIAM J. Numer. Anal. 46, No. 6, 2867--2891 (2008; Zbl 1178.93033) Full Text: DOI Link OpenURL
Li, Xiang; Zhu, Jianmin; Huang, Jianhua Inertial manifolds with delays and approximate inertial manifolds of a class of non-autonomous retarded evolution equations with quasi-periodic terms. (Chinese. English summary) Zbl 1199.37146 Acta Math. Sci., Ser. A, Chin. Ed. 28, No. 6, 1088-1096 (2008). MSC: 37L25 35B42 37L30 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Math. Sci., Ser. A, Chin. Ed. 28, No. 6, 1088--1096 (2008; Zbl 1199.37146) OpenURL
You, Yuncheng Inertial manifolds for nonautonomous skew product semiflows. (English) Zbl 1153.37436 Far East J. Appl. Math. 32, No. 2, 141-188 (2008). MSC: 37L05 37L25 35B40 35B42 35K55 35K57 PDF BibTeX XML Cite \textit{Y. You}, Far East J. Appl. Math. 32, No. 2, 141--188 (2008; Zbl 1153.37436) Full Text: Link OpenURL
Lu, Kening; Schmalfuß, Björn Invariant foliations for stochastic partial differential equations. (English) Zbl 1153.60362 Stoch. Dyn. 8, No. 3, 505-518 (2008). MSC: 60H15 37H10 37L55 37L25 37D10 PDF BibTeX XML Cite \textit{K. Lu} and \textit{B. Schmalfuß}, Stoch. Dyn. 8, No. 3, 505--518 (2008; Zbl 1153.60362) Full Text: DOI OpenURL
Bates, Peter W.; Lu, Kening; Zeng, Chongchun Approximately invariant manifolds and global dynamics of spike states. (English) Zbl 1157.37013 Invent. Math. 174, No. 2, 355-433 (2008). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 37D10 37L25 35K55 58J10 PDF BibTeX XML Cite \textit{P. W. Bates} et al., Invent. Math. 174, No. 2, 355--433 (2008; Zbl 1157.37013) Full Text: DOI OpenURL
Li, Weigu; Lu, Kening A Siegel theorem for dynamical systems under random perturbations. (English) Zbl 1145.60317 Discrete Contin. Dyn. Syst., Ser. B 9, No. 3-4, 635-642 (2008). MSC: 60H15 37H05 37L55 37L25 37D10 PDF BibTeX XML Cite \textit{W. Li} and \textit{K. Lu}, Discrete Contin. Dyn. Syst., Ser. B 9, No. 3--4, 635--642 (2008; Zbl 1145.60317) Full Text: DOI OpenURL
Pötzsche, Christian Discrete inertial manifolds. (English) Zbl 1146.39030 Math. Nachr. 281, No. 6, 847-878 (2008). MSC: 39A12 39A70 34K19 35B42 34C40 PDF BibTeX XML Cite \textit{C. Pötzsche}, Math. Nachr. 281, No. 6, 847--878 (2008; Zbl 1146.39030) Full Text: DOI OpenURL
Schmalfuss, Björn; Schneider, Klaus R. Invariant manifolds for random dynamical systems with slow and fast variables. (English) Zbl 1138.37032 J. Dyn. Differ. Equations 20, No. 1, 133-164 (2008). Reviewer: Hans Crauel (Frankfurt) MSC: 37H99 34F05 34C25 37D10 70K70 PDF BibTeX XML Cite \textit{B. Schmalfuss} and \textit{K. R. Schneider}, J. Dyn. Differ. Equations 20, No. 1, 133--164 (2008; Zbl 1138.37032) Full Text: DOI OpenURL
Nartea, Simona Cristina Approximate inertial manifolds for a bubble of gas model. (English) Zbl 1164.37022 Păltineanu, Gavriil (ed.) et al., Trends and challenges in applied mathematics. Conference proceedings of the international conference, ICTCAM 2007, Bucharest, Romania, June 20–23, 2007. Bucharest: Matrix Rom (ISBN 978-973-755-283-9/pbk). 271-274 (2007). Reviewer: Hans Crauel (Frankfurt) MSC: 37L25 37N15 PDF BibTeX XML Cite \textit{S. C. Nartea}, in: Trends and challenges in applied mathematics. Conference proceedings of the international conference, ICTCAM 2007, Bucharest, Romania, June 20--23, 2007. Bucharest: Matrix Rom. 271--274 (2007; Zbl 1164.37022) OpenURL
Xie, Lingli; Teo, Kok-Lay; Zhao, Yi Chaos synchronization for continuous chaotic systems by inertial manifold approach. (English) Zbl 1138.93048 Chaos Solitons Fractals 32, No. 1, 234-245 (2007). MSC: 93D15 34C28 37D45 PDF BibTeX XML Cite \textit{L. Xie} et al., Chaos Solitons Fractals 32, No. 1, 234--245 (2007; Zbl 1138.93048) Full Text: DOI OpenURL
Lin, Guojian; Yuan, Rong Periodic solution and wave front solution for delay equation. (English) Zbl 1138.34033 Math. Comput. Modelling 45, No. 7-8, 974-980 (2007). Reviewer: Klaus R. Schneider (Berlin) MSC: 34K13 35R10 34C37 PDF BibTeX XML Cite \textit{G. Lin} and \textit{R. Yuan}, Math. Comput. Modelling 45, No. 7--8, 974--980 (2007; Zbl 1138.34033) Full Text: DOI OpenURL
Gafiychuk, V. V.; Prykarpatsky, A. K.; Pytel-Kudela, M. Projected dynamical systems related with analytical constraints in Hilbert spaces. (English) Zbl 1220.37067 Far East J. Dyn. Syst. 9, No. 2, 279-294 (2007). Reviewer: Messoud A. Efendiev (Berlin) MSC: 37L05 34C45 34G20 37L25 37L30 PDF BibTeX XML Cite \textit{V. V. Gafiychuk} et al., Far East J. Dyn. Syst. 9, No. 2, 279--294 (2007; Zbl 1220.37067) OpenURL
Hughes, Bruce; Taylor, Laurence R.; Weinberger, Shmuel; Williams, Bruce Examples of exotic stratifications. (English) Zbl 1136.57012 Geom. Topol. 11, 1477-1505 (2007). Reviewer: Ioan Pop (Iaşi) MSC: 57N80 19J99 55R65 57N55 PDF BibTeX XML Cite \textit{B. Hughes} et al., Geom. Topol. 11, 1477--1505 (2007; Zbl 1136.57012) Full Text: DOI OpenURL
Zhu, Jianmin; Li, Xiang; Huang, Jianhua Inertial manifolds of delayed semilinear wave equations with quasi-periodic terms. (Chinese. English summary) Zbl 1125.37055 Math. Appl. 20, No. 2, 263-269 (2007). MSC: 37L25 35B41 35R10 37L30 PDF BibTeX XML Cite \textit{J. Zhu} et al., Math. Appl. 20, No. 2, 263--269 (2007; Zbl 1125.37055) OpenURL
Lin, Guojian Periodic solutions for Van der Pol equation with time delay. (English) Zbl 1210.34096 Appl. Math. Comput. 187, No. 2, 1187-1198 (2007). MSC: 34K13 34E15 34C45 PDF BibTeX XML Cite \textit{G. Lin}, Appl. Math. Comput. 187, No. 2, 1187--1198 (2007; Zbl 1210.34096) Full Text: DOI OpenURL
Rodríguez Bernal, A.; Willie, Robert Nesting inertial manifolds for reaction and diffusion equations with large diffusivity. (English) Zbl 1119.35008 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 1, 70-93 (2007). Reviewer: Bruno Scarpellini (Basel) MSC: 35B42 35K57 37L05 37L25 47H20 PDF BibTeX XML Cite \textit{A. Rodríguez Bernal} and \textit{R. Willie}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 1, 70--93 (2007; Zbl 1119.35008) Full Text: DOI OpenURL
Nartea, Cristina The approximation of inertial manifolds: the Lotka-Volterra model. (English) Zbl 1240.37083 Bul. Ştiinţ., Univ. Piteşti, Ser. Mat. Inf. 12, 109-120 (2006). MSC: 37N25 37L25 PDF BibTeX XML Cite \textit{C. Nartea}, Bul. Științ., Univ. Pitești, Ser. Mat. Inf. 12, 109--120 (2006; Zbl 1240.37083) OpenURL
Xu, Zhenyuan; Hu, Aihua; Li, Fang Chaos control of a Sine-Gordon equation. (Chinese. English summary) Zbl 1115.35358 J. Jiangsu Univ., Nat. Sci. 27, No. 3, 274-278 (2006). MSC: 35L70 37D45 35B42 93D15 PDF BibTeX XML Cite \textit{Z. Xu} et al., J. Jiangsu Univ., Nat. Sci. 27, No. 3, 274--278 (2006; Zbl 1115.35358) OpenURL