Wang, Fengling; Li, Yangrong Mean-square invariant manifolds for stochastic weak-damping wave equations with nonlinear noise. (English) Zbl 07765955 Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2649-2671 (2023). MSC: 37D10 60H15 35B42 35L25 37L55 PDF BibTeX XML Cite \textit{F. Wang} and \textit{Y. Li}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 10, 2649--2671 (2023; Zbl 07765955) Full Text: DOI
Anikushin, Mikhail Frequency theorem and inertial manifolds for neutral delay equations. (English) Zbl 07760687 J. Evol. Equ. 23, No. 4, Paper No. 66, 61 p. (2023). MSC: 35B42 34K35 34K40 37L45 37L15 47D06 PDF BibTeX XML Cite \textit{M. Anikushin}, J. Evol. Equ. 23, No. 4, Paper No. 66, 61 p. (2023; Zbl 07760687) Full Text: DOI arXiv
Wang, Rong-Nian; Wu, Jianhong; Zhao, Jia-Cheng Theory of invariant manifolds for Infinite-dimensional nonautonomous dynamical systems and applications. (English) Zbl 07757945 SIAM J. Math. Anal. 55, No. 5, 5386-5431 (2023). MSC: 37L25 37D10 35B40 PDF BibTeX XML Cite \textit{R.-N. Wang} et al., SIAM J. Math. Anal. 55, No. 5, 5386--5431 (2023; Zbl 07757945) Full Text: DOI
Zhao, Jia-Cheng; Wang, Rong-Nian The invariant manifold approach applied to global long-time dynamics of FitzHugh-Nagumo systems. (English) Zbl 07748194 J. Differ. Equations 375, 120-155 (2023). MSC: 35B42 35K51 35K57 37L25 PDF BibTeX XML Cite \textit{J.-C. Zhao} and \textit{R.-N. Wang}, J. Differ. Equations 375, 120--155 (2023; Zbl 07748194) Full Text: DOI
Pauthier, Antoine; Rademacher, Jens D. M.; Ulbrich, Dennis Weak and strong interaction of excitation kinks in scalar parabolic equations. (English) Zbl 1521.35111 J. Dyn. Differ. Equations 35, No. 3, 2199-2235 (2023). MSC: 35K58 35B05 35B51 37L25 PDF BibTeX XML Cite \textit{A. Pauthier} et al., J. Dyn. Differ. Equations 35, No. 3, 2199--2235 (2023; Zbl 1521.35111) Full Text: DOI arXiv
Ma, Hongyan; Gao, Hongjun Unstable manifolds for rough evolution equations. (English) Zbl 07721832 Bull. Malays. Math. Sci. Soc. (2) 46, No. 5, Paper No. 159, 36 p. (2023). MSC: 37L55 37L25 37L15 37H10 37D10 60H15 60H05 PDF BibTeX XML Cite \textit{H. Ma} and \textit{H. Gao}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 5, Paper No. 159, 36 p. (2023; Zbl 07721832) Full Text: DOI
Pötzsche, Christian Numerical dynamics of integrodifference equations: hierarchies of invariant bundles in \(L^p (\Omega)\). (English) Zbl 1515.65319 Numer. Funct. Anal. Optim. 44, No. 7, 653-686 (2023). MSC: 65P99 37J06 37L25 45M10 47H30 PDF BibTeX XML Cite \textit{C. Pötzsche}, Numer. Funct. Anal. Optim. 44, No. 7, 653--686 (2023; Zbl 1515.65319) Full Text: DOI arXiv
Chang, Shih-Sen; Yao, Jen-Chih; Liu, M.; Zhao, L. C. Inertial proximal point algorithm for variational inclusion in Hadamard manifolds. (English) Zbl 07699823 Appl. Anal. 102, No. 7, 2055-2066 (2023). MSC: 47J22 58C30 PDF BibTeX XML Cite \textit{S.-S. Chang} et al., Appl. Anal. 102, No. 7, 2055--2066 (2023; Zbl 07699823) Full Text: DOI
Zhang, Qianyun; Liu, Meilin; Wu, Shufan Design and test of the actuation circuit of the inertial sensor for space gravitational wave detection based on hardware-in-the-loop simulation. (English) Zbl 07686051 Classical Quantum Gravity 40, No. 11, Article ID 115001, 19 p. (2023). MSC: 83C56 60G35 35B42 81Q93 83B05 83-10 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Classical Quantum Gravity 40, No. 11, Article ID 115001, 19 p. (2023; Zbl 07686051) Full Text: DOI
Wang, Rong-Nian; Zhao, Jia-Cheng; Miranville, Alain Hyperdissipative Navier-Stokes equations driven by time-dependent forces: invariant manifolds. (English) Zbl 07674591 SIAM J. Appl. Dyn. Syst. 22, No. 1, 199-234 (2023). MSC: 37L25 76D05 35Q35 PDF BibTeX XML Cite \textit{R.-N. Wang} et al., SIAM J. Appl. Dyn. Syst. 22, No. 1, 199--234 (2023; Zbl 07674591) Full Text: DOI
Romanov, A. V. Finite-dimensional reduction of systems of nonlinear diffusion equations. (English. Russian original) Zbl 1512.35092 Math. Notes 113, No. 2, 267-273 (2023); translation from Mat. Zametki 113, No. 2, 265-272 (2023). MSC: 35B40 35B41 35B42 35K51 35K58 PDF BibTeX XML Cite \textit{A. V. Romanov}, Math. Notes 113, No. 2, 267--273 (2023; Zbl 1512.35092); translation from Mat. Zametki 113, No. 2, 265--272 (2023) Full Text: DOI arXiv
Anikushin, Mikhail; Romanov, Andrey Hidden and unstable periodic orbits as a result of homoclinic bifurcations in the Suarez-Schopf delayed oscillator and the irregularity of ENSO. (English) Zbl 1514.37101 Physica D 445, Article ID 133653, 15 p. (2023). Reviewer: Zhengdong Du (Chengdu) MSC: 37M20 37M21 34C15 34C23 37G15 PDF BibTeX XML Cite \textit{M. Anikushin} and \textit{A. Romanov}, Physica D 445, Article ID 133653, 15 p. (2023; Zbl 1514.37101) Full Text: DOI arXiv
Kalantarov, Varga; Kostianko, Anna; Zelik, Sergey Determining functionals and finite-dimensional reduction for dissipative PDEs revisited. (English) Zbl 1504.35071 J. Differ. Equations 345, 78-103 (2023). MSC: 35B40 35B42 35K58 35K90 37D10 37L25 PDF BibTeX XML Cite \textit{V. Kalantarov} et al., J. Differ. Equations 345, 78--103 (2023; Zbl 1504.35071) Full Text: DOI arXiv
Anikushin, Mikhail Mikhailovich Nonlinear semigroups for delay equations in Hilbert spaces, inertial manifolds and dimension estimates. (English) Zbl 1511.47089 Differ. Uravn. Protsessy Upr. 2022, No. 4, 1-47 (2022). MSC: 47J35 47H20 PDF BibTeX XML Cite \textit{M. M. Anikushin}, Differ. Uravn. Protsessy Upr. 2022, No. 4, 1--47 (2022; Zbl 1511.47089) Full Text: arXiv Link
Kostianko, Anna; Zelik, Sergey Kwak transform and inertial manifolds revisited. (English) Zbl 1501.35087 J. Dyn. Differ. Equations 34, No. 4, 2975-2995 (2022). MSC: 35B42 35A22 35B45 35K58 35K90 PDF BibTeX XML Cite \textit{A. Kostianko} and \textit{S. Zelik}, J. Dyn. Differ. Equations 34, No. 4, 2975--2995 (2022; Zbl 1501.35087) Full Text: DOI arXiv
Aslam, M. Nauman; Zhang, Jiazhong; Dang, Nannan; Ahmad, Riaz Model reduction on approximate inertial manifolds for NS equations through multilevel finite element method and hierarchical basis. (English) Zbl 1507.35136 Zhang, Jiazhong (ed.), Dynamics and fault diagnosis of nonlinear rotors and impellers. Cham: Springer. Nonlinear Syst. Complex. 34, 249-270 (2022). MSC: 35Q30 76D05 76B10 65M60 65M06 65N30 76M10 76M20 35R01 PDF BibTeX XML Cite \textit{M. N. Aslam} et al., Nonlinear Syst. Complex. 34, 249--270 (2022; Zbl 1507.35136) Full Text: DOI
Chen, Shuang; Shen, Jun Smooth inertial manifolds for neutral differential equations with small delays. (English) Zbl 1509.34071 J. Dyn. Differ. Equations 34, No. 3, 2173-2199 (2022). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 34K19 34K40 PDF BibTeX XML Cite \textit{S. Chen} and \textit{J. Shen}, J. Dyn. Differ. Equations 34, No. 3, 2173--2199 (2022; Zbl 1509.34071) Full Text: DOI arXiv
Nguyen, Thieu Huy; Bui, Xuan-Quang; Do, Duc Thuan Regularity of the inertial manifolds for evolution equations in admissible spaces and finite-dimensional feedback controllers. (English) Zbl 1497.35061 J. Dyn. Control Syst. 28, No. 4, 657-679 (2022). MSC: 35B42 35K20 35K57 35K90 93B52 PDF BibTeX XML Cite \textit{T. H. Nguyen} et al., J. Dyn. Control Syst. 28, No. 4, 657--679 (2022; Zbl 1497.35061) Full Text: DOI
Bonfoh, Ahmed Sufficient conditions for the continuity of inertial manifolds for singularly perturbed problems. (English) Zbl 1496.35097 Evol. Equ. Control Theory 11, No. 4, 1399-1454 (2022). MSC: 35B42 35B25 35L81 35K25 37L25 47J35 80A22 82C26 PDF BibTeX XML Cite \textit{A. Bonfoh}, Evol. Equ. Control Theory 11, No. 4, 1399--1454 (2022; Zbl 1496.35097) Full Text: DOI
Lee, Jihoon; Morales, Carlos Gromov-Hausdorff stability of dynamical systems and applications to PDEs. (English) Zbl 1503.37001 Frontiers in Mathematics. Cham: Birkhäuser (ISBN 978-3-031-12030-5/pbk; 978-3-031-12031-2/ebook). viii, 166 p. (2022). MSC: 37-02 35-02 37B02 37B25 37L15 37L25 35B20 35B35 54E40 54E45 54E50 PDF BibTeX XML Cite \textit{J. Lee} and \textit{C. Morales}, Gromov-Hausdorff stability of dynamical systems and applications to PDEs. Cham: Birkhäuser (2022; Zbl 1503.37001) Full Text: DOI
Kitaeva, Ol’ga Gennad’evna Invariant manifolds of semilinear Sobolev type equations. (English) Zbl 1492.35003 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 101-111 (2022). MSC: 35-02 35B42 35K70 35S10 37L25 PDF BibTeX XML Cite \textit{O. G. Kitaeva}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 101--111 (2022; Zbl 1492.35003) Full Text: DOI MNR
Le, Anh Minh Inertial manifolds for functional differential equations with infinite delay. (English) Zbl 1487.34135 Asian-Eur. J. Math. 15, No. 3, Article ID 2250045, 14 p. (2022). MSC: 34K19 34K30 35K58 37L25 PDF BibTeX XML Cite \textit{A. M. Le}, Asian-Eur. J. Math. 15, No. 3, Article ID 2250045, 14 p. (2022; Zbl 1487.34135) Full Text: DOI
Sekatskaya, A. V. Second-kind equilibrium states of the Kuramoto-Sivashinsky equation with homogeneous Neumann boundary conditions. (English. Russian original) Zbl 1498.37122 J. Math. Sci., New York 262, No. 6, 844-854 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 80-90 (2019). MSC: 37L65 37L10 37L15 37L25 PDF BibTeX XML Cite \textit{A. V. Sekatskaya}, J. Math. Sci., New York 262, No. 6, 844--854 (2022; Zbl 1498.37122); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 80--90 (2019) Full Text: DOI
Kulikov, A. N. Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence. (English. Russian original) Zbl 1498.37114 J. Math. Sci., New York 262, No. 6, 809-816 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 45-52 (2019). MSC: 37L10 37L25 37L15 PDF BibTeX XML Cite \textit{A. N. Kulikov}, J. Math. Sci., New York 262, No. 6, 809--816 (2022; Zbl 1498.37114); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 168, 45--52 (2019) Full Text: DOI
Nguyen, Thieu Huy; Bui, Xuan-Quang On the existence and regularity of admissibly inertial manifolds with sectorial operators. (English) Zbl 1490.35049 Dyn. Syst. 37, No. 2, 295-327 (2022). MSC: 35B42 35K51 35K58 35K90 37L25 47D06 PDF BibTeX XML Cite \textit{T. H. Nguyen} and \textit{X.-Q. Bui}, Dyn. Syst. 37, No. 2, 295--327 (2022; Zbl 1490.35049) Full Text: DOI
Luo, Yi-Long; Ma, Yangjun Zero inertia limit of incompressible Qian-Sheng model. (English) Zbl 1489.35212 Anal. Appl., Singap. 20, No. 2, 221-284 (2022). MSC: 35Q35 76A15 35L05 35L30 35L81 58J37 PDF BibTeX XML Cite \textit{Y.-L. Luo} and \textit{Y. Ma}, Anal. Appl., Singap. 20, No. 2, 221--284 (2022; Zbl 1489.35212) Full Text: DOI
Hummel, Felix; Kuehn, Christian Slow manifolds for infinite-dimensional evolution equations. (English) Zbl 1487.35035 Comment. Math. Helv. 97, No. 1, 61-132 (2022). MSC: 35B25 37D10 37L25 35A24 PDF BibTeX XML Cite \textit{F. Hummel} and \textit{C. Kuehn}, Comment. Math. Helv. 97, No. 1, 61--132 (2022; Zbl 1487.35035) Full Text: DOI arXiv
Venditti, Claudia; Adrover, Alessandra; Giona, Massimiliano On the dynamic role of energy in underdamped particle motion. (English) Zbl 07515907 Physica A 597, Article ID 127285, 4 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{C. Venditti} et al., Physica A 597, Article ID 127285, 4 p. (2022; Zbl 07515907) Full Text: DOI
Cao, Yu; Jolly, Michael S.; Titi, Edriss S. A determining form for the 2D Rayleigh-Bénard problem. (English) Zbl 1483.35160 Pure Appl. Funct. Anal. 7, No. 1, 99-132 (2022). MSC: 35Q35 37L25 PDF BibTeX XML Cite \textit{Y. Cao} et al., Pure Appl. Funct. Anal. 7, No. 1, 99--132 (2022; Zbl 1483.35160) Full Text: arXiv Link
Zhang, Jingxuan A generic framework of adiabatic approximation for nonlinear evolutions. (English) Zbl 1502.37084 Lett. Math. Phys. 112, No. 2, Paper No. 31, 34 p. (2022). MSC: 37L65 37L05 37L25 37K06 37K40 PDF BibTeX XML Cite \textit{J. Zhang}, Lett. Math. Phys. 112, No. 2, Paper No. 31, 34 p. (2022; Zbl 1502.37084) Full Text: DOI arXiv
Nguyen Thieu Huy; Pham Truong Xuan; Vu Thi Ngoc Ha; Vu Thi Thuy Ha Inertial manifolds for parabolic differential equations: the fully nonautonomous case. (English) Zbl 1484.35077 Commun. Pure Appl. Anal. 21, No. 3, 943-958 (2022). MSC: 35B42 35B35 35K90 PDF BibTeX XML Cite \textit{Nguyen Thieu Huy} et al., Commun. Pure Appl. Anal. 21, No. 3, 943--958 (2022; Zbl 1484.35077) Full Text: DOI
Venditti, Claudia; Adrover, Alessandra; Giona, Massimiliano Inertial effects and long-term transport properties of particle motion in washboard potential. (English) Zbl 07482551 Physica A 585, Article ID 126407, 18 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{C. Venditti} et al., Physica A 585, Article ID 126407, 18 p. (2022; Zbl 07482551) Full Text: DOI
Li, Zonghao; Zeng, Caibin; Huang, Jianhua Mean-square invariant manifolds for ill-posed stochastic evolution equations driven by nonlinear noise. (English) Zbl 1490.37095 J. Differ. Equations 313, 382-419 (2022). MSC: 37L55 37L30 37L25 35R25 60H15 PDF BibTeX XML Cite \textit{Z. Li} et al., J. Differ. Equations 313, 382--419 (2022; Zbl 1490.37095) Full Text: DOI arXiv
Kostianko, Anna; Li, Xinhua; Sun, Chunyou; Zelik, Sergey Inertial manifolds via spatial averaging revisited. (English) Zbl 1481.35079 SIAM J. Math. Anal. 54, No. 1, 268-305 (2022). MSC: 35B42 35B33 35B40 35K58 35K90 35Q30 76F20 PDF BibTeX XML Cite \textit{A. Kostianko} et al., SIAM J. Math. Anal. 54, No. 1, 268--305 (2022; Zbl 1481.35079) Full Text: DOI arXiv
Anikushin, Mikhail Frequency theorem for parabolic equations and its relation to inertial manifolds theory. (English) Zbl 1475.35074 J. Math. Anal. Appl. 505, No. 1, Article ID 125454, 23 p. (2022). MSC: 35B42 35K58 35K90 PDF BibTeX XML Cite \textit{M. Anikushin}, J. Math. Anal. Appl. 505, No. 1, Article ID 125454, 23 p. (2022; Zbl 1475.35074) Full Text: DOI arXiv
Zhao, Junyilang; Shen, Jun; Wang, Xiaohu Stationary approximations of inertial manifolds for stochastic retarded semilinear parabolic equations. (English) Zbl 1490.60193 J. Math. Anal. Appl. 506, No. 2, Article ID 125668, 34 p. (2022). Reviewer: Feng-Yu Wang (Tianjin) MSC: 60H15 37H10 34C28 60H40 PDF BibTeX XML Cite \textit{J. Zhao} et al., J. Math. Anal. Appl. 506, No. 2, Article ID 125668, 34 p. (2022; Zbl 1490.60193) Full Text: DOI
Taitano, W. T.; Chacón, L.; Simakov, A. N.; Anderson, S. E. A conservative phase-space moving-grid strategy for a 1D-2V Vlasov-Fokker-Planck solver. (English) Zbl 07689010 Comput. Phys. Commun. 258, Article ID 107547, 24 p. (2021). MSC: 81S30 70J50 62F35 65D40 74R15 35Q83 35Q84 80A10 35Q35 82D10 39A10 68Q12 35B42 PDF BibTeX XML Cite \textit{W. T. Taitano} et al., Comput. Phys. Commun. 258, Article ID 107547, 24 p. (2021; Zbl 07689010) Full Text: DOI arXiv
Xuan, Pham Truong The simplified Bardina equation on two-dimensional closed manifolds. (English) Zbl 1481.35315 Dyn. Partial Differ. Equ. 18, No. 4, 293-326 (2021). MSC: 35Q30 76D03 76D05 76F20 58A14 58D17 58D25 58D30 35B41 35A01 PDF BibTeX XML Cite \textit{P. T. Xuan}, Dyn. Partial Differ. Equ. 18, No. 4, 293--326 (2021; Zbl 1481.35315) Full Text: DOI arXiv
Wang, Libo; Xu, Guigui; Lin, Guoguang Inertial manifolds for the higher-order Kirchhoff-type equation with time delay. (Chinese. English summary) Zbl 1488.35107 J. Anhui Univ., Nat. Sci. 45, No. 4, 8-16 (2021). MSC: 35B42 37L25 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Anhui Univ., Nat. Sci. 45, No. 4, 8--16 (2021; Zbl 1488.35107) Full Text: DOI
Liu, Xianming Random invariant manifolds of stochastic evolution equations driven by Gaussian and non-Gaussian noises. (English) Zbl 1490.60203 J. Math. Phys. 62, No. 11, Article ID 112702, 20 p. (2021). MSC: 60H30 60G51 60H10 37L25 PDF BibTeX XML Cite \textit{X. Liu}, J. Math. Phys. 62, No. 11, Article ID 112702, 20 p. (2021; Zbl 1490.60203) Full Text: DOI
Vu, Thi Ngoc Ha; Nguyen, Thieu Huy; Le, Anh Minh Admissible inertial manifolds for neutral equations and applications. (English) Zbl 1484.37087 Dyn. Syst. 36, No. 4, 608-630 (2021). MSC: 37L25 34K40 35R10 PDF BibTeX XML Cite \textit{T. N. H. Vu} et al., Dyn. Syst. 36, No. 4, 608--630 (2021; Zbl 1484.37087) Full Text: DOI
Shi, Lin; Li, Dingshi; Lu, Kening Limiting behavior of unstable manifolds for SPDEs in varying phase spaces. (English) Zbl 1484.37091 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6311-6337 (2021). MSC: 37L55 37L15 37L25 35R60 60H15 PDF BibTeX XML Cite \textit{L. Shi} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6311--6337 (2021; Zbl 1484.37091) Full Text: DOI
Kwak, Minkyu; Sun, Xiuxiu Remarks on the existence of an inertial manifold. (English) Zbl 1489.37089 J. Korean Math. Soc. 58, No. 5, 1261-1277 (2021). Reviewer: Raphaël Danchin (Paris) MSC: 37L25 35B30 35B40 35B42 35Q30 PDF BibTeX XML Cite \textit{M. Kwak} and \textit{X. Sun}, J. Korean Math. Soc. 58, No. 5, 1261--1277 (2021; Zbl 1489.37089) Full Text: DOI
Honda, Hirotada Reservoir computing with an inertial form. (English) Zbl 1481.37097 SIAM J. Appl. Dyn. Syst. 20, No. 3, 1320-1347 (2021). MSC: 37M21 37C75 68T05 PDF BibTeX XML Cite \textit{H. Honda}, SIAM J. Appl. Dyn. Syst. 20, No. 3, 1320--1347 (2021; Zbl 1481.37097) Full Text: DOI
Li, Xinhua; Sun, Chunyou Inertial manifolds for a singularly non-autonomous semi-linear parabolic equations. (English) Zbl 1475.35056 Proc. Am. Math. Soc. 149, No. 12, 5275-5289 (2021). MSC: 35B40 35B42 35K58 35K90 37B55 PDF BibTeX XML Cite \textit{X. Li} and \textit{C. Sun}, Proc. Am. Math. Soc. 149, No. 12, 5275--5289 (2021; Zbl 1475.35056) Full Text: DOI
Zeng, Caibin; Lin, Xiaofang; Cui, Hongyong Uniform attractors for a class of stochastic evolution equations with multiplicative fractional noise. (English) Zbl 1481.37095 Stoch. Dyn. 21, No. 5, Article ID 2150020, 39 p. (2021). MSC: 37L55 37L30 60G22 60H15 37L25 35R60 PDF BibTeX XML Cite \textit{C. Zeng} et al., Stoch. Dyn. 21, No. 5, Article ID 2150020, 39 p. (2021; Zbl 1481.37095) Full Text: DOI
Bonfoh, Ahmed Existence and continuity of inertial manifolds for the hyperbolic relaxation of the viscous Cahn-Hilliard equation. (English) Zbl 1475.35021 Appl. Math. Optim. 84, No. 3, 3339-3416 (2021). MSC: 35B25 35B41 35B42 35B45 35L35 35L76 82C26 PDF BibTeX XML Cite \textit{A. Bonfoh}, Appl. Math. Optim. 84, No. 3, 3339--3416 (2021; Zbl 1475.35021) Full Text: DOI
Zhao, Junyilang; Shen, Jun Smooth invariant manifolds for a randomly perturbed non-autonomous coupled system and their approximations. (English) Zbl 1481.37096 J. Differ. Equations 303, 86-122 (2021). MSC: 37L55 37L50 37L25 60H15 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{J. Shen}, J. Differ. Equations 303, 86--122 (2021; Zbl 1481.37096) Full Text: DOI
Minh, Le Anh Admissible inertial manifolds for infinite delay evolution equations. (English) Zbl 1479.34120 Bull. Korean Math. Soc. 58, No. 3, 669-688 (2021). MSC: 34K19 34K30 PDF BibTeX XML Cite \textit{L. A. Minh}, Bull. Korean Math. Soc. 58, No. 3, 669--688 (2021; Zbl 1479.34120) Full Text: DOI
Yang, Xiangdong Invariant manifolds for nonautonomous stochastic evolution equation. (English) Zbl 1484.60071 Osaka J. Math. 58, No. 3, 711-729 (2021). Reviewer: Latifa Debbi (M’Sila) MSC: 60H15 37D10 37L25 37L55 60J65 PDF BibTeX XML Cite \textit{X. Yang}, Osaka J. Math. 58, No. 3, 711--729 (2021; Zbl 1484.60071) Full Text: Link
Engel, Maximilian; Hummel, Felix; Kuehn, Christian Connecting a direct and a Galerkin approach to slow manifolds in infinite dimensions. (English) Zbl 1481.37092 Proc. Am. Math. Soc., Ser. B 8, 252-266 (2021). Reviewer: Joseph Shomberg (Providence) MSC: 37L15 37L25 37L65 34E15 35K57 PDF BibTeX XML Cite \textit{M. Engel} et al., Proc. Am. Math. Soc., Ser. B 8, 252--266 (2021; Zbl 1481.37092) Full Text: DOI arXiv
You, Bo Pullback exponential attractors for some non-autonomous dissipative dynamical systems. (English) Zbl 1487.37090 Math. Methods Appl. Sci. 44, No. 13, 10361-10386 (2021). Reviewer: Stefanie Sonner (Nijmegen) MSC: 37L30 37C60 35B41 37L25 35Q86 37N10 PDF BibTeX XML Cite \textit{B. You}, Math. Methods Appl. Sci. 44, No. 13, 10361--10386 (2021; Zbl 1487.37090) Full Text: DOI
Shen, Wenxian; Wang, Yi; Zhou, Dun Non-wandering points for autonomous/periodic parabolic equations on the circle. (English) Zbl 1469.35040 J. Differ. Equations 297, 110-143 (2021). MSC: 35B40 35K57 37L25 PDF BibTeX XML Cite \textit{W. Shen} et al., J. Differ. Equations 297, 110--143 (2021; Zbl 1469.35040) Full Text: DOI arXiv
Lee, Jihoon; Nguyen, Ngocthach Gromov-Hausdorff stability of inertial manifolds under perturbations of the domain and equation. (English) Zbl 1460.37071 J. Math. Anal. Appl. 494, No. 2, Article ID 124623, 24 p. (2021). MSC: 37L25 37L15 37B25 PDF BibTeX XML Cite \textit{J. Lee} and \textit{N. Nguyen}, J. Math. Anal. Appl. 494, No. 2, Article ID 124623, 24 p. (2021; Zbl 1460.37071) Full Text: DOI arXiv
Lin, Guoguang; Chen, Yuhang Inertial manifold family of high-order nonlinear Kirchhoff-type equation. (English) Zbl 1484.35076 Adv. Differ. Equ. Control Process. 23, No. 2, 187-204 (2020). MSC: 35B42 35L35 35L76 35R09 PDF BibTeX XML Cite \textit{G. Lin} and \textit{Y. Chen}, Adv. Differ. Equ. Control Process. 23, No. 2, 187--204 (2020; Zbl 1484.35076) Full Text: DOI
Kostianko, Anna Bi-Lipschitz Mané projectors and finite-dimensional reduction for complex Ginzburg-Landau equation. (English) Zbl 1472.35225 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2239, Article ID 20200144, 14 p. (2020). MSC: 35K58 35Q55 35Q56 PDF BibTeX XML Cite \textit{A. Kostianko}, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2239, Article ID 20200144, 14 p. (2020; Zbl 1472.35225) Full Text: DOI arXiv
Sun, Xiuxiu An inertial manifold for a non-self adjoint system. (English) Zbl 1469.35052 Honam Math. J. 42, No. 4, 821-828 (2020). MSC: 35B42 35B40 35K90 37L25 47J35 PDF BibTeX XML Cite \textit{X. Sun}, Honam Math. J. 42, No. 4, 821--828 (2020; Zbl 1469.35052) Full Text: DOI
Le, Anh Minh Inertial manifolds for neutral functional differential equations with infinite delay and applications. (English) Zbl 1467.35059 Ann. Pol. Math. 125, No. 3, 255-271 (2020). MSC: 35B42 35B40 37L25 35K58 35R10 PDF BibTeX XML Cite \textit{A. M. Le}, Ann. Pol. Math. 125, No. 3, 255--271 (2020; Zbl 1467.35059) Full Text: DOI
Le, Anh Minh Admissible inertial manifolds for second order in time evolution equations. (English) Zbl 1474.35134 Khayyam J. Math. 6, No. 2, 155-173 (2020). MSC: 35B42 37L25 35L90 PDF BibTeX XML Cite \textit{A. M. Le}, Khayyam J. Math. 6, No. 2, 155--173 (2020; Zbl 1474.35134)
Avrin, Joel Asymptotic Galerkin convergence and dynamical system results for the 3-D spectrally-hyperviscous Navier-Stokes equations on bounded domains. (English) Zbl 1467.35234 Eur. J. Math. 6, No. 4, 1342-1374 (2020). MSC: 35Q30 35A35 35B40 35B41 35B42 76F02 93D20 PDF BibTeX XML Cite \textit{J. Avrin}, Eur. J. Math. 6, No. 4, 1342--1374 (2020; Zbl 1467.35234) Full Text: DOI
Webster, Justin T. Attractors and determining functionals for a flutter model: finite dimensionality out of thin air. (English) Zbl 1457.74059 Pure Appl. Funct. Anal. 5, No. 1, 85-119 (2020). MSC: 74F10 35M33 35B41 35Q74 37L25 PDF BibTeX XML Cite \textit{J. T. Webster}, Pure Appl. Funct. Anal. 5, No. 1, 85--119 (2020; Zbl 1457.74059) Full Text: arXiv Link
Cannarsa, Piermarco; Da Prato, Giuseppe; Frankowska, Hélène Domain invariance for local solutions of semilinear evolution equations in Hilbert spaces. (English) Zbl 1454.58010 J. Lond. Math. Soc., II. Ser. 102, No. 1, 287-318 (2020). MSC: 58D25 47H06 37L25 PDF BibTeX XML Cite \textit{P. Cannarsa} et al., J. Lond. Math. Soc., II. Ser. 102, No. 1, 287--318 (2020; Zbl 1454.58010) Full Text: DOI Link
Jendoubi, C. On the theory of integral manifolds for some delayed partial differential equations with nondense domain. (English) Zbl 1453.35176 Ukr. Math. J. 72, No. 6, 900-916 (2020) and Ukr. Mat. Zh. 72, No. 6, 776-789 (2020). MSC: 35R10 35L90 35K90 35B42 37L25 PDF BibTeX XML Cite \textit{C. Jendoubi}, Ukr. Math. J. 72, No. 6, 900--916 (2020; Zbl 1453.35176) Full Text: DOI
Cakir, Hayriye Guckir; Promislow, Keith Gradient invariance of slow energy descent: spectral renormalization and energy landscape techniques. (English) Zbl 1452.35031 Nonlinearity 33, No. 12, 6890-6914 (2020). MSC: 35B40 35K90 35L90 37L25 PDF BibTeX XML Cite \textit{H. G. Cakir} and \textit{K. Promislow}, Nonlinearity 33, No. 12, 6890--6914 (2020; Zbl 1452.35031) Full Text: DOI arXiv
Cheng, Hongyu; de la Llave, Rafael Time dependent center manifold in PDEs. (English) Zbl 1452.35043 Discrete Contin. Dyn. Syst. 40, No. 12, 6709-6745 (2020). MSC: 35B42 35B15 35R25 37L10 35J60 47J06 37L25 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{R. de la Llave}, Discrete Contin. Dyn. Syst. 40, No. 12, 6709--6745 (2020; Zbl 1452.35043) Full Text: DOI
Shen, Wenxian; Wang, Yi; Zhou, Dun Almost automorphically and almost periodically forced circle flows of almost periodic parabolic equations on \(S^1\). (English) Zbl 1452.35078 J. Dyn. Differ. Equations 32, No. 4, 1687-1729 (2020). MSC: 35K58 35K20 35B15 37L25 PDF BibTeX XML Cite \textit{W. Shen} et al., J. Dyn. Differ. Equations 32, No. 4, 1687--1729 (2020; Zbl 1452.35078) Full Text: DOI arXiv
Colin de Verdière, Yves Spectral theory of pseudodifferential operators of degree 0 and an application to forced linear waves. (English) Zbl 1452.35026 Anal. PDE 13, No. 5, 1521-1537 (2020). MSC: 35B34 35Q30 35Q35 35S05 58J40 76B55 76B70 PDF BibTeX XML Cite \textit{Y. Colin de Verdière}, Anal. PDE 13, No. 5, 1521--1537 (2020; Zbl 1452.35026) Full Text: DOI arXiv
Peng, Jiao; Zhu, Jianqing The Lie symmetry of relative to non-inertial systems for nonholonomic systems on time scales. (Chinese. English summary) Zbl 1463.70009 J. Cent. China Norm. Univ., Nat. Sci. 54, No. 3, 368-372 (2020). MSC: 70H33 70F25 34N05 PDF BibTeX XML Cite \textit{J. Peng} and \textit{J. Zhu}, J. Cent. China Norm. Univ., Nat. Sci. 54, No. 3, 368--372 (2020; Zbl 1463.70009) Full Text: DOI
Chen, Yuan; Doelman, Arjen; Promislow, Keith; Veerman, Frits Robust stability of multicomponent membranes: the role of glycolipids. (English) Zbl 1450.35028 Arch. Ration. Mech. Anal. 238, No. 3, 1521-1557 (2020). MSC: 35B25 37L25 35A15 35K58 35B40 PDF BibTeX XML Cite \textit{Y. Chen} et al., Arch. Ration. Mech. Anal. 238, No. 3, 1521--1557 (2020; Zbl 1450.35028) Full Text: DOI arXiv
Bessaih, Hakima; Garrido-Atienza, María J.; Köpp, Verena; Schmalfuß, Björn; Yang, Meihua Synchronization of stochastic lattice equations. (English) Zbl 1443.60033 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 4, Paper No. 36, 25 p. (2020). MSC: 60G10 37L55 37C75 37L99 PDF BibTeX XML Cite \textit{H. Bessaih} et al., NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 4, Paper No. 36, 25 p. (2020; Zbl 1443.60033) Full Text: DOI
Tang, Qian; Jian, Jigui Quasi-invariant and attractive sets of inertial neural networks with time-varying and infinite distributed delays. (English) Zbl 1449.34263 Comput. Appl. Math. 39, No. 3, Paper No. 158, 17 p. (2020). MSC: 34K25 92B20 26D10 34K19 PDF BibTeX XML Cite \textit{Q. Tang} and \textit{J. Jian}, Comput. Appl. Math. 39, No. 3, Paper No. 158, 17 p. (2020; Zbl 1449.34263) Full Text: DOI
Neamţu, Alexandra Random invariant manifolds for ill-posed stochastic evolution equations. (English) Zbl 1441.37088 Stoch. Dyn. 20, No. 2, Article ID 2050013, 31 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 37L55 37L30 37L05 37L25 35R60 60H15 PDF BibTeX XML Cite \textit{A. Neamţu}, Stoch. Dyn. 20, No. 2, Article ID 2050013, 31 p. (2020; Zbl 1441.37088) Full Text: DOI
Cheng, Hongyu; de la Llave, Rafael Stable manifolds to bounded solutions in possibly ill-posed PDEs. (English) Zbl 1448.35564 J. Differ. Equations 268, No. 8, 4830-4899 (2020). MSC: 35R25 37L10 35Q56 34D35 37L25 PDF BibTeX XML Cite \textit{H. Cheng} and \textit{R. de la Llave}, J. Differ. Equations 268, No. 8, 4830--4899 (2020; Zbl 1448.35564) Full Text: DOI
Li, Xinhua; Sun, Chunyou Inertial manifolds for the 3D modified-Leray-\( \alpha\) model. (English) Zbl 1433.35239 J. Differ. Equations 268, No. 4, 1532-1569 (2020). MSC: 35Q30 35B33 35B40 35B42 76F20 35A01 76D03 35B41 76D05 PDF BibTeX XML Cite \textit{X. Li} and \textit{C. Sun}, J. Differ. Equations 268, No. 4, 1532--1569 (2020; Zbl 1433.35239) Full Text: DOI
Li, Fang; You, Bo Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. (English) Zbl 1428.35050 Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 55-80 (2020). MSC: 35B41 37C60 37L25 35Q30 76D05 PDF BibTeX XML Cite \textit{F. Li} and \textit{B. You}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 1, 55--80 (2020; Zbl 1428.35050) Full Text: DOI
Hasan-Zadeh, Atefeh Exact inertial manifolds for dynamical systems. (English) Zbl 07477738 Adv. Differ. Equ. Control Process. 21, No. 1, 117-122 (2019). MSC: 76F20 37L25 76M60 PDF BibTeX XML Cite \textit{A. Hasan-Zadeh}, Adv. Differ. Equ. Control Process. 21, No. 1, 117--122 (2019; Zbl 07477738) Full Text: DOI
Yang, Peng; Wang, JinRong; O’Regan, Donal; Fečkan, Michal Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space. (English) Zbl 1509.35067 Commun. Nonlinear Sci. Numer. Simul. 75, 174-191 (2019). MSC: 35B42 35K58 35R12 PDF BibTeX XML Cite \textit{P. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 75, 174--191 (2019; Zbl 1509.35067) Full Text: DOI
Larios, Adam; Rebholz, Leo G.; Zerfas, Camille Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier-Stokes equations. (English) Zbl 1440.76075 Comput. Methods Appl. Mech. Eng. 345, 1077-1093 (2019). MSC: 76M10 65M60 35B42 35Q30 37L65 65M12 65M15 76D05 PDF BibTeX XML Cite \textit{A. Larios} et al., Comput. Methods Appl. Mech. Eng. 345, 1077--1093 (2019; Zbl 1440.76075) Full Text: DOI arXiv
Kondratieva, Liudmila; Romanov, Aleksandr Inertial manifolds and limit cycles of dynamical systems in \({\mathbb{R}}^{n}\). (English) Zbl 1449.34127 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 96, 11 p. (2019). MSC: 34C45 34C07 34C05 34C20 PDF BibTeX XML Cite \textit{L. Kondratieva} and \textit{A. Romanov}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 96, 11 p. (2019; Zbl 1449.34127) Full Text: DOI arXiv
Guo, Zhengguang; Wittwer, Peter; Zhou, Yong Asymptotic behavior of D-solutions to the steady Navier-Stokes flow in an exterior domain of a half-space. (English) Zbl 1433.35224 Z. Angew. Math. Phys. 70, No. 6, Paper No. 167, 21 p. (2019). MSC: 35Q30 76D05 35B40 35B42 35D30 35A02 74F10 PDF BibTeX XML Cite \textit{Z. Guo} et al., Z. Angew. Math. Phys. 70, No. 6, Paper No. 167, 21 p. (2019; Zbl 1433.35224) Full Text: DOI
Ziessler, Adrian; Dellnitz, Michael; Gerlach, Raphael The numerical computation of unstable manifolds for infinite dimensional dynamical systems by embedding techniques. (English) Zbl 1435.37103 SIAM J. Appl. Dyn. Syst. 18, No. 3, 1265-1292 (2019). MSC: 37M21 35B42 37L25 PDF BibTeX XML Cite \textit{A. Ziessler} et al., SIAM J. Appl. Dyn. Syst. 18, No. 3, 1265--1292 (2019; Zbl 1435.37103) Full Text: DOI arXiv
Hu, Wenjie Stability and Hopf bifurcation in a class of nonlocal delay differential equation with the zero-flux boundary condition. (English) Zbl 1428.35624 Math. Methods Appl. Sci. 42, No. 12, 4184-4196 (2019). MSC: 35Q92 92D25 35R10 35B32 35B35 35B42 35B10 PDF BibTeX XML Cite \textit{W. Hu}, Math. Methods Appl. Sci. 42, No. 12, 4184--4196 (2019; Zbl 1428.35624) Full Text: DOI
Lin, Jiazhe; Xu, Rui; Tian, Xiaohong Spatiotemporal dynamics in reaction-diffusion neural networks near a Turing-Hopf bifurcation point. (English) Zbl 1430.35027 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950154, 16 p. (2019). MSC: 35B36 35K40 35K20 35B42 35B32 35B10 PDF BibTeX XML Cite \textit{J. Lin} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950154, 16 p. (2019; Zbl 1430.35027) Full Text: DOI
Nauman, Aslam M.; Zhang, Jiazhong; Dang, Nannan; Ahmad, Riaz An improved model reduction method on AIMs for N-S equations using multilevel finite element method and hierarchical basis. (English) Zbl 1438.65291 Numer. Math., Theory Methods Appl. 12, No. 1, 115-133 (2019). MSC: 65N30 76M10 76D05 PDF BibTeX XML Cite \textit{A. M. Nauman} et al., Numer. Math., Theory Methods Appl. 12, No. 1, 115--133 (2019; Zbl 1438.65291) Full Text: DOI
Yan, Xiang-Ping; Ding, Ya-Jun; Zhang, Cun-Hua Dynamics analysis in a Gierer-Meinhardt reaction-diffusion model with homogeneous Neumann boundary condition. (English) Zbl 1423.35174 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1930025, 26 p. (2019). MSC: 35K51 35B10 35B32 35B35 35B42 PDF BibTeX XML Cite \textit{X.-P. Yan} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1930025, 26 p. (2019; Zbl 1423.35174) Full Text: DOI
Yuan, Shenglan; Hu, Jianyu; Liu, Xianming; Duan, Jinqiao Slow manifolds for dynamical systems with non-Gaussian stable Lévy noise. (English) Zbl 1417.37269 Anal. Appl., Singap. 17, No. 3, 477-511 (2019). MSC: 37L55 60H15 37L25 37H10 PDF BibTeX XML Cite \textit{S. Yuan} et al., Anal. Appl., Singap. 17, No. 3, 477--511 (2019; Zbl 1417.37269) Full Text: DOI arXiv
Szalai, Robert Model reduction of non-densely defined piecewise-smooth systems in Banach spaces. (English) Zbl 1501.37074 J. Nonlinear Sci. 29, No. 3, 897-960 (2019). MSC: 37L25 35B65 35Q70 47D06 PDF BibTeX XML Cite \textit{R. Szalai}, J. Nonlinear Sci. 29, No. 3, 897--960 (2019; Zbl 1501.37074) Full Text: DOI arXiv
Cardin, Franco; Favretti, Marco; Lovison, Alberto; Masci, Leonardo Stochastic and geometric aspects of reduced reaction-diffusion dynamics. (English) Zbl 1419.82029 Ric. Mat. 68, No. 1, 103-118 (2019). MSC: 82C05 60F10 37L25 35Q84 70H20 82C31 35K57 37B30 82C35 PDF BibTeX XML Cite \textit{F. Cardin} et al., Ric. Mat. 68, No. 1, 103--118 (2019; Zbl 1419.82029) Full Text: DOI
Mohamad, Haidar; Oliver, Marcel A direct construction of a slow manifold for a semilinear wave equation of Klein-Gordon type. (English) Zbl 1415.35206 J. Differ. Equations 267, No. 1, 1-14 (2019). Reviewer: Denis Borisov (Ufa) MSC: 35L71 81Q05 35B25 35Q55 37L25 35B42 PDF BibTeX XML Cite \textit{H. Mohamad} and \textit{M. Oliver}, J. Differ. Equations 267, No. 1, 1--14 (2019; Zbl 1415.35206) Full Text: DOI
Chepyzhov, Vladimir V.; Kostianko, Anna; Zelik, Sergey Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. (English) Zbl 1411.35173 Discrete Contin. Dyn. Syst., Ser. B 24, No. 3, 1115-1142 (2019). Reviewer: Denise Huet (Nancy) MSC: 35K58 35B42 35B40 35B45 35Q56 PDF BibTeX XML Cite \textit{V. V. Chepyzhov} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 3, 1115--1142 (2019; Zbl 1411.35173) Full Text: DOI arXiv
Naderifard, Azadeh; Hejazi, S. Reza; Dastranj, Elham; Motamednezhad, Ahmad Symmetry operators and exact solutions of a type of time-fractional Burgers-KdV equation. (English) Zbl 1407.76129 Int. J. Geom. Methods Mod. Phys. 16, No. 2, Article ID 1950032, 15 p. (2019). MSC: 76M60 35R11 35Q53 37K15 37L25 PDF BibTeX XML Cite \textit{A. Naderifard} et al., Int. J. Geom. Methods Mod. Phys. 16, No. 2, Article ID 1950032, 15 p. (2019; Zbl 1407.76129) Full Text: DOI
Biswas, Animikh; Foias, Ciprian; Mondaini, Cecilia F.; Titi, Edriss S. Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations. (English) Zbl 1420.35181 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 2, 295-326 (2019). Reviewer: Gheorghe Moroşanu (Budapest) MSC: 35Q30 76D06 34A45 34A55 35B42 93B52 PDF BibTeX XML Cite \textit{A. Biswas} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 2, 295--326 (2019; Zbl 1420.35181) Full Text: DOI arXiv
Beck, Margaret; Cooper, Eric; Spiliopoulos, Konstantinos Selection of quasi-stationary states in the Navier-Stokes equation on the torus. (English) Zbl 1406.35219 Nonlinearity 32, No. 1, 209-237 (2019). MSC: 35Q30 37L25 76D05 PDF BibTeX XML Cite \textit{M. Beck} et al., Nonlinearity 32, No. 1, 209--237 (2019; Zbl 1406.35219) Full Text: DOI arXiv
Luo, Jiawei; Xu, Xu Stability and Hopf bifurcation analysis of delayed oscillator with delay-dependent parameters. (Chinese. English summary) Zbl 1438.34250 J. Jilin Univ., Sci. 56, No. 6, 1337-1344 (2018). MSC: 34K18 34K20 34K17 34K19 PDF BibTeX XML Cite \textit{J. Luo} and \textit{X. Xu}, J. Jilin Univ., Sci. 56, No. 6, 1337--1344 (2018; Zbl 1438.34250) Full Text: DOI
Zumbrun, Kevin Invariant manifolds for a class of degenerate evolution equations and structure of kinetic shock layers. (English) Zbl 1405.37087 Klingenberg, Christian (ed.) et al., Theory, numerics and applications of hyperbolic problems II, Aachen, Germany, August 2016. Cham: Springer (ISBN 978-3-319-91547-0/hbk; 978-3-319-91548-7/ebook). Springer Proceedings in Mathematics & Statistics 237, 691-714 (2018). MSC: 37L15 37L10 37L25 35Q20 76P05 PDF BibTeX XML Cite \textit{K. Zumbrun}, Springer Proc. Math. Stat. 237, 691--714 (2018; Zbl 1405.37087) Full Text: DOI arXiv
Nguyen, Thieu Huy; Bui, Xuan-Quang Competition models with diffusion, analytic semigroups, and inertial manifolds. (English) Zbl 1405.35008 Math. Methods Appl. Sci. 41, No. 17, 8182-8200 (2018). MSC: 35B42 37L25 35K58 PDF BibTeX XML Cite \textit{T. H. Nguyen} and \textit{X.-Q. Bui}, Math. Methods Appl. Sci. 41, No. 17, 8182--8200 (2018; Zbl 1405.35008) Full Text: DOI
Bates, Peter; Fusco, Giorgio; Karali, Georgia Gradient dynamics: motion near a manifold of quasi-equilibria. (English) Zbl 1409.37076 SIAM J. Appl. Dyn. Syst. 17, No. 3, 2106-2145 (2018). Reviewer: Ahmed Youssfi (Fès) MSC: 37L25 35A15 35K58 35B40 PDF BibTeX XML Cite \textit{P. Bates} et al., SIAM J. Appl. Dyn. Syst. 17, No. 3, 2106--2145 (2018; Zbl 1409.37076) Full Text: DOI
Arrieta, José M.; Santamaría, Esperanza \(C^{1,\theta }\)-estimates on the distance of inertial manifolds. (English) Zbl 1397.35040 Collect. Math. 69, No. 3, 315-336 (2018). MSC: 35B42 35K90 PDF BibTeX XML Cite \textit{J. M. Arrieta} and \textit{E. Santamaría}, Collect. Math. 69, No. 3, 315--336 (2018; Zbl 1397.35040) Full Text: DOI arXiv
Nguyen, Thieu Huy; Le, Anh Minh Admissible inertial manifolds for delay equations and applications to Fisher-Kolmogorov model. (English) Zbl 1409.34066 Acta Appl. Math. 156, No. 1, 15-31 (2018). Reviewer: Ábel Garab (Szeged) MSC: 34K30 34K19 PDF BibTeX XML Cite \textit{T. H. Nguyen} and \textit{A. M. Le}, Acta Appl. Math. 156, No. 1, 15--31 (2018; Zbl 1409.34066) Full Text: DOI
Gal, Ciprian G.; Guo, Yanqiu Inertial manifolds for the hyperviscous Navier-Stokes equations. (English) Zbl 1397.35041 J. Differ. Equations 265, No. 9, 4335-4374 (2018). MSC: 35B42 35Q30 35B41 PDF BibTeX XML Cite \textit{C. G. Gal} and \textit{Y. Guo}, J. Differ. Equations 265, No. 9, 4335--4374 (2018; Zbl 1397.35041) Full Text: DOI