×

A central limit theorem for D(A)-valued processes. (English) Zbl 0617.60020

Let D(A) be the space of set-indexed functions that are outer continuous with inner limits, a generalization of D[0,1]. This paper proves a central limit theorem (CLT) for triangular arrays of independent D(A)- valued random variables. The limit processes are not restricted to be Gaussian, but can be quite general infinitely divisible processes.
This is an important result with a basic and essential sense for the functional limit theory. Applications of this CLT include construction of set-indexed Levy processes and a unified CLT for partial sum processes and generalized empirical processes. Results obtained by this way are new even for the D[0,1] case.
Reviewer: Su Chun

MSC:

60F05 Central limit and other weak theorems
60F17 Functional limit theorems; invariance principles
60B12 Limit theorems for vector-valued random variables (infinite-dimensional case)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adler, R. J.; Feigin, P., On the cadlaguity of random measures, Ann. Probab., 12, 615-630 (1984) · Zbl 0542.60050
[2] Araujo, A.; Giné, E., The Central Limit Theorem for Real and Banach Valued Random Variables (1980), Wiley: Wiley New York
[3] Bass, R. F.; Pyke, R., The existence of set-indexed Lévy processes, Z. Wahrsch. Verw. Geb., 66, 157-172 (1984) · Zbl 0525.60079
[4] Bass, R.; Pyke, R., The space D(A) and weak convergence for set-indexed processes, Ann. Probab., 13, 860-884 (1985) · Zbl 0585.60007
[5] Bickel, P. J.; Wichura, M. J., Convergence criteria for multiparameter stochastic processes and some applications, Ann. Math. Stat., 42, 1656-1670 (1971) · Zbl 0265.60011
[6] Billingsley, P., Covergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[7] Dudley, R. M.; Philipp, W., Invariance principles for sums of Banach space valued random elements and empirical processes, Z. Wahrsch. Verw. Geb., 62, 509-552 (1983) · Zbl 0488.60044
[8] Fisz, M., A central limit theorem for stochastic processes with independent increments, Studia Math., 18, 223-227 (1959) · Zbl 0152.16404
[9] Giné, E.; Marcus, M. B., The central limit theorem for stochastic integrals with respect to Lévy processes, Ann. Probab., 11, 58-77 (1983) · Zbl 0504.60011
[10] Gnedenko, B. V.; Kolmogorov, A. N., Limit Distributions for Sums of Independent Random Variables (1954), Addison-Wesley: Addison-Wesley Cambridge. Mass · Zbl 0056.36001
[11] Hahn, M. G., Central limit theorems for D[0, 1], Z. Wahrsch. Verw. Geb., 44, 89-101 (1978) · Zbl 0378.60002
[12] Jain, N. C.; Marcus, M. B., Central limit theorems for \(C(S)\)-valued random variables, J. Funct. Anal., 19, 216-231 (1975) · Zbl 0305.60004
[13] Lindvall, T., Weak convergence of probability measures and random functions on the function space \(D\)(O, ∞), J. Appl. Probab., 10, 109-121 (1973) · Zbl 0258.60008
[14] Neuhaus, G., On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Stat., 42, 1285-1295 (1971) · Zbl 0222.60013
[15] Pisier, G., Le théorème limite central et la loi du logarithme iteré dans les éspaces de Banach, Séminaire Maurey-Schwartz (1975), 1975-1976. Exposés III et IV
[16] Pollard, D., Convergence of Stochastic Processes (1984), Springer: Springer New York · Zbl 0544.60045
[17] Prohorov, Yu. V., Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl., 1, 117-238 (1956)
[18] Skorokhod, A. V., Limit theorems for stochastic processes, Theory Probab. Appl., 1, 289-319 (1956) · Zbl 0074.33802
[19] Straf, M. L., Weak convergence of stochastic processes with several parameters, (Proc. Sixth Berkeley Symp. Math. Statist. Probab., 2 (1972), Univ. of California Press), 187-221
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.