Deeba, Elias Y.; Rodriguez, Dennis M. Stirling’s series and Bernoulli numbers. (English) Zbl 0743.11012 Am. Math. Mon. 98, No. 5, 423-426 (1991). For \(n=2,3,\ldots\) the following infinite system of recurrences for the Bernoulli numbers \(B_ m\) is shown: \[ B_ m={1\over n(1-n^ m)}\sum^{m-1}_{k=0}n^ k{m\choose k}B_ k\sum^{n- 1}_{j=1}j^{m-k}. \] The proof follows by direct computations from the usual generating function of the Bernoulli numbers. Reviewer: R.F.Tichy (Graz) Cited in 3 ReviewsCited in 42 Documents MSC: 11B68 Bernoulli and Euler numbers and polynomials 05A15 Exact enumeration problems, generating functions Keywords:infinite system of recurrences; Bernoulli numbers; generating function PDFBibTeX XMLCite \textit{E. Y. Deeba} and \textit{D. M. Rodriguez}, Am. Math. Mon. 98, No. 5, 423--426 (1991; Zbl 0743.11012) Full Text: DOI