Linshaw, Andrew R. Universal two-parameter \(\mathcal{W}_\infty\)-algebra and vertex algebras of type \(\mathcal{W}(2, 3,\dots,N)\). (English) Zbl 07317311 Compos. Math. 157, No. 1, 12-82 (2021). MSC: 17B67 17B68 17B69 81R10 PDF BibTeX XML Cite \textit{A. R. Linshaw}, Compos. Math. 157, No. 1, 12--82 (2021; Zbl 07317311) Full Text: DOI
Ando, Hiroshi; Matsuzawa, Yasumichi Polish groups of unitaries. (English) Zbl 07317285 Stud. Math. 257, No. 1, 25-70 (2021). MSC: 22A05 22E65 PDF BibTeX XML Cite \textit{H. Ando} and \textit{Y. Matsuzawa}, Stud. Math. 257, No. 1, 25--70 (2021; Zbl 07317285) Full Text: DOI
Carpi, Sebastiano; Del Vecchio, Simone; Iovieno, Stefano; Tanimoto, Yoh Positive energy representations of Sobolev diffeomorphism groups of the circle. (English) Zbl 07311008 Anal. Math. Phys. 11, No. 1, Paper No. 12, 36 p. (2021). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 81R10 22E66 22E65 57S05 60J99 PDF BibTeX XML Cite \textit{S. Carpi} et al., Anal. Math. Phys. 11, No. 1, Paper No. 12, 36 p. (2021; Zbl 07311008) Full Text: DOI
Molev, A. I. Casimir elements and Sugawara operators for Takiff algebras. (English) Zbl 07306522 J. Math. Phys. 62, No. 1, 011701, 12 p. (2021). MSC: 17B35 17B67 81R10 PDF BibTeX XML Cite \textit{A. I. Molev}, J. Math. Phys. 62, No. 1, 011701, 12 p. (2021; Zbl 07306522) Full Text: DOI
Duncan, Tyrone E. Theta functions and Brownian motion. (English) Zbl 07306252 J. Theor. Probab. 34, No. 1, 81-89 (2021). MSC: 58J65 22E65 60J90 22E67 PDF BibTeX XML Cite \textit{T. E. Duncan}, J. Theor. Probab. 34, No. 1, 81--89 (2021; Zbl 07306252) Full Text: DOI
Naoi, Katsuyuki; Scrimshaw, Travis Existence of Kirillov-Reshetikhin crystals for near adjoint nodes in exceptional types. (English) Zbl 07303213 J. Pure Appl. Algebra 225, No. 5, Article ID 106593, 39 p. (2021). MSC: 17B37 17B65 17B10 PDF BibTeX XML Cite \textit{K. Naoi} and \textit{T. Scrimshaw}, J. Pure Appl. Algebra 225, No. 5, Article ID 106593, 39 p. (2021; Zbl 07303213) Full Text: DOI
Jing, Naihuan; Kong, Fei; Li, Haisheng; Tan, Shaobin \((G,\chi_\phi)\)-equivariant \(\phi\)-coordinated quasi modules for nonlocal vertex algebras. (English) Zbl 07290686 J. Algebra 570, 24-74 (2021). MSC: 17B69 17B68 17B10 81R10 PDF BibTeX XML Cite \textit{N. Jing} et al., J. Algebra 570, 24--74 (2021; Zbl 07290686) Full Text: DOI
Hyde, James; Lodha, Yash; Navas, Andrés; Rivas, Cristóbal Uniformly perfect finitely generated simple left orderable groups. (English) Zbl 07277633 Ergodic Theory Dyn. Syst. 41, No. 2, 534-552 (2021). MSC: 22E40 22E65 43A07 20F05 PDF BibTeX XML Cite \textit{J. Hyde} et al., Ergodic Theory Dyn. Syst. 41, No. 2, 534--552 (2021; Zbl 07277633) Full Text: DOI
Carbone, Lisa; Kownacki, Matt; Murray, Scott H.; Srinivasan, Sowmya Commutator relations and structure constants for rank 2 Kac-Moody algebras. (English) Zbl 1450.81044 J. Algebra 566, 443-476 (2021). MSC: 81R10 17B67 17B22 17B05 PDF BibTeX XML Cite \textit{L. Carbone} et al., J. Algebra 566, 443--476 (2021; Zbl 1450.81044) Full Text: DOI
Barron, Katrina; Vander Werf, Nathan; Yang, Jinwei The level one Zhu algebra for the Virasoro vertex operator algebra. (English) Zbl 07315961 Krauel, Matthew (ed.) et al., Vertex operator algebras, number theory and related topics. International conference, California State University, Sacramento, CA, USA, June 11–15, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4938-4/pbk; 978-1-4704-5636-8/ebook). Contemporary Mathematics 753, 17-43 (2020). MSC: 17B68 17B69 17B81 81R10 81T40 PDF BibTeX XML Cite \textit{K. Barron} et al., Contemp. Math. 753, 17--43 (2020; Zbl 07315961) Full Text: DOI
Hubicska, Balázs; Muzsnay, Zoltán The holonomy group of locally projectively flat Randers two-manifolds of constant curvature. (English) Zbl 07315170 Differ. Geom. Appl. 73, Article ID 101677, 9 p. (2020). MSC: 53C29 53B40 22E65 17B66 PDF BibTeX XML Cite \textit{B. Hubicska} and \textit{Z. Muzsnay}, Differ. Geom. Appl. 73, Article ID 101677, 9 p. (2020; Zbl 07315170) Full Text: DOI
Saberi, Ingmar; Williams, Brian R. Twisted characters and holomorphic symmetries. (English) Zbl 07305697 Lett. Math. Phys. 110, No. 10, 2779-2853 (2020). MSC: 81T60 58B12 17B65 17B69 81T70 33E05 17B81 81R10 14D21 PDF BibTeX XML Cite \textit{I. Saberi} and \textit{B. R. Williams}, Lett. Math. Phys. 110, No. 10, 2779--2853 (2020; Zbl 07305697) Full Text: DOI
Cantuba, Rafael Reno S. Compactness property of Lie polynomials in the creation and annihilation operators of the \(q\)-oscillator. (English) Zbl 07305690 Lett. Math. Phys. 110, No. 10, 2639-2657 (2020). MSC: 17B10 17B15 17B81 17B37 47B07 47B15 47B32 47B37 47B47 47L30 47L90 46H70 81R10 81R50 81R99 PDF BibTeX XML Cite \textit{R. R. S. Cantuba}, Lett. Math. Phys. 110, No. 10, 2639--2657 (2020; Zbl 07305690) Full Text: DOI
Bershtein, Mikhail; Gonin, Roman Twisted representations of algebra of \(q\)-difference operators, twisted \(q-W\) algebras and conformal blocks. (English) Zbl 07292445 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 077, 55 p. (2020). MSC: 17B67 17B69 81R10 PDF BibTeX XML Cite \textit{M. Bershtein} and \textit{R. Gonin}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 077, 55 p. (2020; Zbl 07292445) Full Text: DOI
Kleinschmidt, Axel; Nicolai, Hermann; Viganò, Adriano On spinorial representations of involutory subalgebras of Kac-Moody algebras. (English) Zbl 07290807 Gritsenko, Valery (ed.) et al., Partition functions and automorphic forms. Lecture notes based on the presentations at the international scientifc school, Dubna, Russia, January 29 – February 2, 2018. Cham: Springer (ISBN 978-3-030-42399-5/hbk; 978-3-030-42400-8/ebook). Moscow Lectures 5, 179-215 (2020). MSC: 81T40 81R10 17B67 14L30 18A32 17B15 81T32 83E50 81T16 15A66 81V22 81V74 PDF BibTeX XML Cite \textit{A. Kleinschmidt} et al., Mosc. Lect. 5, 179--215 (2020; Zbl 07290807) Full Text: DOI
Dahmen, Rafael; Schmeding, Alexander Lie groups of controlled characters of combinatorial Hopf algebras. (English) Zbl 07290127 Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD) 7, No. 3, 395-456 (2020). Reviewer: Loïc Foissy (Calais) MSC: 22E65 16T05 16T30 43A40 46N40 46B45 PDF BibTeX XML Cite \textit{R. Dahmen} and \textit{A. Schmeding}, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD) 7, No. 3, 395--456 (2020; Zbl 07290127) Full Text: DOI
Morita, Shigeyuki Characteristic classes of moduli spaces – Riemann surface, graph, homology cobordism. (English. Japanese original) Zbl 07288753 Sugaku Expo. 33, No. 2, 197-222 (2020); translation from Sūgaku 69, No. 2, 113-136 (2017). MSC: 55R40 20J06 17B56 17B65 32G15 PDF BibTeX XML Full Text: DOI
Dimitrijević Ćirić, Marija; Giotopoulos, Grigorios; Radovanović, Voja; Szabo, Richard J. \(L_\infty\)-algebras of Einstein-Cartan-Palatini gravity. (English) Zbl 07287321 J. Math. Phys. 61, No. 11, 112502, 65 p. (2020). MSC: 83D05 83C05 83C40 83C45 83C65 83E15 83E50 83E30 81R10 81T33 81V17 58J28 53Z05 PDF BibTeX XML Cite \textit{M. Dimitrijević Ćirić} et al., J. Math. Phys. 61, No. 11, 112502, 65 p. (2020; Zbl 07287321) Full Text: DOI
Suh, Uhi Rinn Structures of (supersymmetric) classical W-algebras. (English) Zbl 07287311 J. Math. Phys. 61, No. 11, 111701, 27 p. (2020). MSC: 81T40 81R10 46L60 46L65 17B81 81T60 17B69 37K10 PDF BibTeX XML Cite \textit{U. R. Suh}, J. Math. Phys. 61, No. 11, 111701, 27 p. (2020; Zbl 07287311) Full Text: DOI
Opanasenko, Stanislav; Popovych, Roman O. Generalized symmetries and conservation laws of (1 + 1)-dimensional Klein-Gordon equation. (English) Zbl 07287266 J. Math. Phys. 61, No. 10, 101515, 13 p. (2020). MSC: 81Q05 81R20 81R05 81R10 22E70 17B81 PDF BibTeX XML Cite \textit{S. Opanasenko} and \textit{R. O. Popovych}, J. Math. Phys. 61, No. 10, 101515, 13 p. (2020; Zbl 07287266) Full Text: DOI
Amiri, Habib; Glöckner, Helge; Schmeding, Alexander Lie groupoids of mappings taking values in a Lie groupoid. (English) Zbl 07285968 Arch. Math., Brno 56, No. 5, 307-356 (2020). MSC: 22A22 22E65 22E67 46T10 47H30 58D15 58H05 PDF BibTeX XML Cite \textit{H. Amiri} et al., Arch. Math., Brno 56, No. 5, 307--356 (2020; Zbl 07285968) Full Text: DOI
Varchenko, Alexander; Woodruff, Tyler Critical points and mKdV hierarchy of type \(C^{(1)}_n\). (English) Zbl 07283926 Pure Appl. Math. Q. 16, No. 4, 1281-1320 (2020). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K10 37K30 37K20 17B80 81R10 PDF BibTeX XML Cite \textit{A. Varchenko} and \textit{T. Woodruff}, Pure Appl. Math. Q. 16, No. 4, 1281--1320 (2020; Zbl 07283926) Full Text: DOI
Appel, Andrea; Sala, Francesco Quantization of continuum Kac-Moody algebras. (English) Zbl 07283903 Pure Appl. Math. Q. 16, No. 3, 439-493 (2020). MSC: 17B65 17B67 81R50 PDF BibTeX XML Cite \textit{A. Appel} and \textit{F. Sala}, Pure Appl. Math. Q. 16, No. 3, 439--493 (2020; Zbl 07283903) Full Text: DOI
Kutzschebauch, Frank Manifolds with infinite dimensional group of holomorphic automorphisms and the linearization problem. (English) Zbl 1453.32026 Ji, Lizhen (ed.) et al., Handbook of group actions V. Somerville, MA: International Press; Beijing: Higher Education Press. Adv. Lect. Math. (ALM) 48, 257-300 (2020). MSC: 32M05 14R20 14R10 14L30 32M25 32Q56 PDF BibTeX XML Cite \textit{F. Kutzschebauch}, in: Handbook of group actions V. Somerville, MA: International Press; Beijing: Higher Education Press. 257--300 (2020; Zbl 1453.32026)
Norton, Emily On modular Harish-Chandra series of finite unitary groups. (English) Zbl 07270338 Represent. Theory 24, 483-524 (2020). MSC: 20C33 17B65 05E10 20C20 PDF BibTeX XML Cite \textit{E. Norton}, Represent. Theory 24, 483--524 (2020; Zbl 07270338) Full Text: DOI
Dobrev, Vladimir (ed.) Lie theory and Its applications in physics. Proceedings of the 13th workshop, LT 13, Varna, Bulgaria, June 17–23, 2019. (English) Zbl 07262219 Springer Proceedings in Mathematics & Statistics 335. Singapore: Springer (ISBN 978-981-15-7774-1/hbk; 978-981-15-7775-8/ebook). xiv, 552 p. (2020). MSC: 81-06 81R05 81R10 81R12 81R50 22E70 17B81 22E45 81T30 81T60 83C45 81P68 81P40 00B25 PDF BibTeX XML Cite \textit{V. Dobrev} (ed.), Lie theory and Its applications in physics. Proceedings of the 13th workshop, LT 13, Varna, Bulgaria, June 17--23, 2019. Singapore: Springer (2020; Zbl 07262219) Full Text: DOI
McRae, Robert Vertex algebraic intertwining operators among generalized Verma modules for affine Lie algebras. (English) Zbl 07258204 Adv. Math. 374, Article ID 107351, 23 p. (2020). MSC: 17B67 17B69 81R10 PDF BibTeX XML Cite \textit{R. McRae}, Adv. Math. 374, Article ID 107351, 23 p. (2020; Zbl 07258204) Full Text: DOI
Ignatyev, M. V.; Penkov, I. Ind-varieties of generalized flags: a survey. (English. Russian original) Zbl 07253550 J. Math. Sci., New York 248, No. 3, 255-302 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 147, 3-50 (2018). MSC: 22E65 17B65 14M15 PDF BibTeX XML Cite \textit{M. V. Ignatyev} and \textit{I. Penkov}, J. Math. Sci., New York 248, No. 3, 255--302 (2020; Zbl 07253550); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 147, 3--50 (2018) Full Text: DOI
Stokman, Jasper V. Generalized Onsager algebras. (English) Zbl 07246650 Algebr. Represent. Theory 23, No. 4, 1523-1541 (2020). MSC: 17B67 81R10 PDF BibTeX XML Cite \textit{J. V. Stokman}, Algebr. Represent. Theory 23, No. 4, 1523--1541 (2020; Zbl 07246650) Full Text: DOI
Knibbeler, Vincent; Lombardo, Sara; Sanders, Jan A. Hereditary automorphic Lie algebras. (English) Zbl 07245911 Commun. Contemp. Math. 22, No. 8, Article ID 1950076, 32 p. (2020). MSC: 17B05 13A50 17B65 17B80 20B25 PDF BibTeX XML Cite \textit{V. Knibbeler} et al., Commun. Contemp. Math. 22, No. 8, Article ID 1950076, 32 p. (2020; Zbl 07245911) Full Text: DOI
Cabau, Patrick; Pelletier, Fernand Projective and direct limits of Banach tensor structures. (English) Zbl 1448.58004 Differ. Geom. Dyn. Syst. 22, 42-86 (2020). Reviewer: Kaveh Eftekharinasab (Kyiv) MSC: 58B25 18A30 22E65 53C15 PDF BibTeX XML Cite \textit{P. Cabau} and \textit{F. Pelletier}, Differ. Geom. Dyn. Syst. 22, 42--86 (2020; Zbl 1448.58004) Full Text: Link
Misra, Kailash C.; Pongprasert, Suchada \(D^{(1)}_6\)-geometric crystal at the spin node. (English) Zbl 07243465 Commun. Algebra 48, No. 8, 3382-3397 (2020). MSC: 17B37 17B67 22E65 14M15 PDF BibTeX XML Cite \textit{K. C. Misra} and \textit{S. Pongprasert}, Commun. Algebra 48, No. 8, 3382--3397 (2020; Zbl 07243465) Full Text: DOI
McRae, Robert On the tensor structure of modules for compact orbifold vertex operator algebras. (English) Zbl 1453.17017 Math. Z. 296, No. 1-2, 409-452 (2020). Reviewer: Theo Johnson-Freyd (Waterloo) MSC: 17B69 18M05 20C35 81R10 PDF BibTeX XML Cite \textit{R. McRae}, Math. Z. 296, No. 1--2, 409--452 (2020; Zbl 1453.17017) Full Text: DOI
Arakawa, Tomoyuki; Moreau, Anne Corrigendum to: “Sheets and associated varieties of affine vertex algebras”. (English) Zbl 1442.17025 Adv. Math. 372, Article ID 107302, 4 p. (2020). MSC: 17B67 17B69 81R10 PDF BibTeX XML Cite \textit{T. Arakawa} and \textit{A. Moreau}, Adv. Math. 372, Article ID 107302, 4 p. (2020; Zbl 1442.17025) Full Text: DOI
Sergeev, Armen G. In search of infinite-dimensional Kähler geometry. (English. Russian original) Zbl 1446.58003 Russ. Math. Surv. 75, No. 2, 321-367 (2020); translation from Usp. Mat. Nauk 75, No. 2, 133-184 (2020). Reviewer: Kaveh Eftekharinasab (Kyiv) MSC: 58B20 22E67 32G15 32Q15 81T30 30F60 30C65 58-02 32-02 PDF BibTeX XML Cite \textit{A. G. Sergeev}, Russ. Math. Surv. 75, No. 2, 321--367 (2020; Zbl 1446.58003); translation from Usp. Mat. Nauk 75, No. 2, 133--184 (2020) Full Text: DOI
González, Nicolle S. Categorical Bernstein operators and the Boson-Fermion correspondence. (English) Zbl 07229491 Sel. Math., New Ser. 26, No. 4, Paper No. 51, 64 p. (2020). Reviewer: Shintaro Yanagida (Nagoya) MSC: 17B65 05E05 17B68 17B69 18G35 22E65 PDF BibTeX XML Cite \textit{N. S. González}, Sel. Math., New Ser. 26, No. 4, Paper No. 51, 64 p. (2020; Zbl 07229491) Full Text: DOI
Masoero, Davide; Raimondo, Andrea Opers for higher states of quantum KdV models. (English) Zbl 1448.17028 Commun. Math. Phys. 378, No. 1, 1-74 (2020). MSC: 17B67 17B80 34L40 37K10 81R10 PDF BibTeX XML Cite \textit{D. Masoero} and \textit{A. Raimondo}, Commun. Math. Phys. 378, No. 1, 1--74 (2020; Zbl 1448.17028) Full Text: DOI
Kochubei, Anatoly N.; Kondratiev, Yuri Representations of the infinite-dimensional \(p\)-adic affine group. (English) Zbl 1441.22032 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 1, Article ID 2050002, 11 p. (2020). MSC: 22E66 60B15 PDF BibTeX XML Cite \textit{A. N. Kochubei} and \textit{Y. Kondratiev}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 1, Article ID 2050002, 11 p. (2020; Zbl 1441.22032) Full Text: DOI
Neeb, Karl-Hermann Book review of: A. Kosyak, Regular, quasi-regular and induced representations of infinite-dimensional groups. (English) Zbl 1435.00035 Jahresber. Dtsch. Math.-Ver. 122, No. 2, 131-136 (2020). MSC: 00A17 22-06 22E66 22E65 28C20 PDF BibTeX XML Cite \textit{K.-H. Neeb}, Jahresber. Dtsch. Math.-Ver. 122, No. 2, 131--136 (2020; Zbl 1435.00035) Full Text: DOI
Fring, Andreas; Whittington, Samuel \(n\)-extended Lorentzian Kac-Moody algebras. (English) Zbl 1448.17026 Lett. Math. Phys. 110, No. 7, 1689-1710 (2020). Reviewer: Robert McRae (Beijing) MSC: 17B67 81R10 81T30 PDF BibTeX XML Cite \textit{A. Fring} and \textit{S. Whittington}, Lett. Math. Phys. 110, No. 7, 1689--1710 (2020; Zbl 1448.17026) Full Text: DOI
Coquereaux, Robert Theta functions for lattices of SU(3) hyper-roots. (English) Zbl 07214105 Exp. Math. 29, No. 2, 137-162 (2020). MSC: 17B37 17B67 18D10 22E46 52C07 81R10 81T40 PDF BibTeX XML Cite \textit{R. Coquereaux}, Exp. Math. 29, No. 2, 137--162 (2020; Zbl 07214105) Full Text: DOI
Özemir, C. Davey-Stewartson equations in \((3 + 1)\) dimensions with an infinite-dimensional symmetry algebra. (English) Zbl 1442.35367 Lett. Math. Phys. 110, No. 6, 1201-1213 (2020). MSC: 35Q51 74J30 76X05 76M60 81R10 35C20 17B68 PDF BibTeX XML Cite \textit{C. Özemir}, Lett. Math. Phys. 110, No. 6, 1201--1213 (2020; Zbl 1442.35367) Full Text: DOI
Cuenca, Cesar; Gorin, Vadim \(q\)-deformed character theory for infinite-dimensional symplectic and orthogonal groups. (English) Zbl 07213682 Sel. Math., New Ser. 26, No. 3, Paper No. 40, 55 p. (2020). MSC: 22E66 33D52 60C05 PDF BibTeX XML Cite \textit{C. Cuenca} and \textit{V. Gorin}, Sel. Math., New Ser. 26, No. 3, Paper No. 40, 55 p. (2020; Zbl 07213682) Full Text: DOI
Cederwall, Martin; Palmkvist, Jakob Tensor hierarchy algebras and extended geometry. II: Gauge structure and dynamics. (English) Zbl 1435.81089 J. High Energy Phys. 2020, No. 2, Paper No. 145, 27 p. (2020). MSC: 81R10 81T13 81T32 17B67 81T60 83E50 PDF BibTeX XML Cite \textit{M. Cederwall} and \textit{J. Palmkvist}, J. High Energy Phys. 2020, No. 2, Paper No. 145, 27 p. (2020; Zbl 1435.81089) Full Text: DOI arXiv
Cederwall, Martin; Palmkvist, Jakob Tensor hierarchy algebras and extended geometry. I: Construction of the algebra. (English) Zbl 1435.81088 J. High Energy Phys. 2020, No. 2, Paper No. 144, 34 p. (2020). MSC: 81R10 17B67 81T60 81T32 83E50 PDF BibTeX XML Cite \textit{M. Cederwall} and \textit{J. Palmkvist}, J. High Energy Phys. 2020, No. 2, Paper No. 144, 34 p. (2020; Zbl 1435.81088) Full Text: DOI arXiv
Gomis, Joaquim; Kleinschmidt, Axel; Palmkvist, Jakob; Salgado-Rebolledo, Patricio Newton-Hooke/Carrollian expansions of (A)dS and Chern-Simons gravity. (English) Zbl 1435.83123 J. High Energy Phys. 2020, No. 2, Paper No. 9, 33 p. (2020). MSC: 83D05 83C80 58J28 81T30 81R10 17B67 PDF BibTeX XML Cite \textit{J. Gomis} et al., J. High Energy Phys. 2020, No. 2, Paper No. 9, 33 p. (2020; Zbl 1435.83123) Full Text: DOI arXiv
Klein, Sebastian; Kilian, Martin On closed finite gap curves in spaceforms. II. (English) Zbl 07210462 J. Integrable Sys. 5, Article ID xyaa002, 25 p. (2020). MSC: 53A04 37K10 37K15 30D15 46E35 22E46 PDF BibTeX XML Cite \textit{S. Klein} and \textit{M. Kilian}, J. Integrable Sys. 5, Article ID xyaa002, 25 p. (2020; Zbl 07210462) Full Text: DOI
Fa, Huanxia; Li, Meijun; Li, Junbo The deformed twisted Heisenberg-Virasoro type Lie bialgebra. (English) Zbl 07209557 Commun. Algebra 48, No. 6, 2713-2722 (2020). MSC: 17B05 17B37 17B62 17B65 17B68 PDF BibTeX XML Cite \textit{H. Fa} et al., Commun. Algebra 48, No. 6, 2713--2722 (2020; Zbl 07209557) Full Text: DOI
Rapčák, Miroslav On extensions of \(\mathfrak{gl}\widehat{\left(m \vert n \right)}\) Kac-Moody algebras and Calabi-Yau singularities. (English) Zbl 1434.81045 J. High Energy Phys. 2020, No. 1, Paper No. 42, 35 p. (2020). MSC: 81R10 14J32 17B67 81T40 83E30 81T60 53Z05 PDF BibTeX XML Cite \textit{M. Rapčák}, J. High Energy Phys. 2020, No. 1, Paper No. 42, 35 p. (2020; Zbl 1434.81045) Full Text: DOI arXiv
Aggarwal, Ankit; Castro, Alejandra; Detournay, Stéphane Warped symmetries of the Kerr black hole. (English) Zbl 1434.83048 J. High Energy Phys. 2020, No. 1, Paper No. 16, 22 p. (2020). MSC: 83C57 81T35 81T40 81R10 80A10 53Z05 17B67 PDF BibTeX XML Cite \textit{A. Aggarwal} et al., J. High Energy Phys. 2020, No. 1, Paper No. 16, 22 p. (2020; Zbl 1434.83048) Full Text: DOI arXiv
Hofmann, Karl H.; Morris, Sidney A. The structure of compact groups. A primer for the student – a handbook for the expert. 4th revised and expanded edition. (English) Zbl 1441.22001 De Gruyter Studies in Mathematics 25. Berlin: De Gruyter (ISBN 978-3-11-069595-3/hbk; 978-3-11-069599-1/ebook). xxvii, 1006 p. (2020). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 22-02 22-01 22C05 22B05 22E15 22E65 54H11 PDF BibTeX XML Cite \textit{K. H. Hofmann} and \textit{S. A. Morris}, The structure of compact groups. A primer for the student -- a handbook for the expert. 4th revised and expanded edition. Berlin: De Gruyter (2020; Zbl 1441.22001) Full Text: DOI
Neeb, Karl-Hermann A survey on invariant cones in infinite dimensional Lie algebras. (A survey on invariant cones ininfinite dimensional Lie algebras.) (English) Zbl 1440.22036 J. Lie Theory 30, No. 2, 513-564 (2020). MSC: 22E65 22E45 22-02 PDF BibTeX XML Cite \textit{K.-H. Neeb}, J. Lie Theory 30, No. 2, 513--564 (2020; Zbl 1440.22036) Full Text: Link
Lawson, Jimmie A Banach algebra approach to Loos symmetric cones. (English) Zbl 1440.53063 J. Lie Theory 30, No. 2, 461-471 (2020). MSC: 53C35 47L10 22E65 PDF BibTeX XML Cite \textit{J. Lawson}, J. Lie Theory 30, No. 2, 461--471 (2020; Zbl 1440.53063) Full Text: Link
Hofmann, Karl Heinrich; Kramer, Linus On weakly complete group algebras of compact groups. (English) Zbl 1442.22011 J. Lie Theory 30, No. 2, 407-424 (2020). MSC: 22E15 22E65 PDF BibTeX XML Cite \textit{K. H. Hofmann} and \textit{L. Kramer}, J. Lie Theory 30, No. 2, 407--424 (2020; Zbl 1442.22011) Full Text: Link
Hanusch, Maximilian The strong Trotter property for locally \(\mu \)-convex Lie groups. (English) Zbl 1440.22035 J. Lie Theory 30, No. 1, 25-32 (2020). MSC: 22E65 PDF BibTeX XML Cite \textit{M. Hanusch}, J. Lie Theory 30, No. 1, 25--32 (2020; Zbl 1440.22035) Full Text: Link
Rubio, Roberto; Tipler, Carl The Lie group of automorphisms of a Courant algebroid and the moduli space of generalized metrics. (English) Zbl 1448.53081 Rev. Mat. Iberoam. 36, No. 2, 485-536 (2020). Reviewer: Roman Golovko (Praha) MSC: 53D18 22E65 58D05 PDF BibTeX XML Cite \textit{R. Rubio} and \textit{C. Tipler}, Rev. Mat. Iberoam. 36, No. 2, 485--536 (2020; Zbl 1448.53081) Full Text: DOI
Lopushansky, Oleh Weyl-Schrödinger representations of Heisenberg groups in infinite dimensions. (English) Zbl 1437.81034 Result. Math. 75, No. 2, Paper No. 73, 31 p. (2020). MSC: 81R10 43A65 46E50 35R03 PDF BibTeX XML Cite \textit{O. Lopushansky}, Result. Math. 75, No. 2, Paper No. 73, 31 p. (2020; Zbl 1437.81034) Full Text: DOI
Pucci, Patrizia; Temperini, Letizia Concentration-compactness results for systems in the Heisenberg group. (English) Zbl 1440.35336 Opusc. Math. 40, No. 1, 151-163 (2020). MSC: 35R03 22E30 35B33 35J50 35J57 58E30 PDF BibTeX XML Cite \textit{P. Pucci} and \textit{L. Temperini}, Opusc. Math. 40, No. 1, 151--163 (2020; Zbl 1440.35336) Full Text: DOI
Luu, Martin T. Rigidity of Kac-Schwarz operators. (English) Zbl 1436.81098 Lett. Math. Phys. 110, No. 5, 911-924 (2020). MSC: 81T20 81T40 83C45 81V17 81R10 37K10 17B67 PDF BibTeX XML Cite \textit{M. T. Luu}, Lett. Math. Phys. 110, No. 5, 911--924 (2020; Zbl 1436.81098) Full Text: DOI
Liu, Si-Qi; Wu, Chao-Zhong; Zhang, Youjin; Zhou, Xu Drinfeld-Sokolov hierarchies and diagram automorphisms of affine Kac-Moody algebras. (English) Zbl 1443.37051 Commun. Math. Phys. 375, No. 1, 785-832 (2020). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 37K30 37K10 17B67 81R10 PDF BibTeX XML Cite \textit{S.-Q. Liu} et al., Commun. Math. Phys. 375, No. 1, 785--832 (2020; Zbl 1443.37051) Full Text: DOI
Schmeding, Alexander The Lie group of vertical bisections of a regular Lie groupoid. (English) Zbl 1453.22008 Forum Math. 32, No. 2, 479-489 (2020). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 22E65 22A22 58D15 58H05 PDF BibTeX XML Cite \textit{A. Schmeding}, Forum Math. 32, No. 2, 479--489 (2020; Zbl 1453.22008) Full Text: DOI
Klein, Sebastian; Kilian, Martin On closed finite gap curves in spaceforms. I. (English) Zbl 07181788 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 011, 29 p. (2020). MSC: 53B25 53A04 37K10 30D15 46E35 22E46 PDF BibTeX XML Cite \textit{S. Klein} and \textit{M. Kilian}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 011, 29 p. (2020; Zbl 07181788) Full Text: DOI
Penna, Robert SDiff \((S^2)\) and the orbit method. (English) Zbl 1434.58003 J. Math. Phys. 61, No. 1, 012301, 9 p. (2020). MSC: 58D05 22E65 22E66 17B08 83C57 PDF BibTeX XML Cite \textit{R. Penna}, J. Math. Phys. 61, No. 1, 012301, 9 p. (2020; Zbl 1434.58003) Full Text: DOI
Hubicska, Balázs; Muzsnay, Zoltán Tangent Lie algebra of a diffeomorphism group and application to holonomy theory. (English) Zbl 1433.22010 J. Geom. Anal. 30, No. 1, 107-123 (2020). MSC: 22E65 17B66 53C29 53B40 PDF BibTeX XML Cite \textit{B. Hubicska} and \textit{Z. Muzsnay}, J. Geom. Anal. 30, No. 1, 107--123 (2020; Zbl 1433.22010) Full Text: DOI
An, Yu-Cheng; Liu, Hairong The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group. (English) Zbl 1433.35442 Isr. J. Math. 235, No. 1, 385-411 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35R03 35H20 35J50 22E30 35B33 35J57 58E05 35B32 PDF BibTeX XML Cite \textit{Y.-C. An} and \textit{H. Liu}, Isr. J. Math. 235, No. 1, 385--411 (2020; Zbl 1433.35442) Full Text: DOI
Tumpach, A. B. Banach Poisson-Lie groups and Bruhat-Poisson structure of the restricted Grassmannian. (English) Zbl 1437.37087 Commun. Math. Phys. 373, No. 3, 795-858 (2020). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K25 37K30 37K10 14M15 53D17 16T10 PDF BibTeX XML Cite \textit{A. B. Tumpach}, Commun. Math. Phys. 373, No. 3, 795--858 (2020; Zbl 1437.37087) Full Text: DOI
Antonyan, Sergey A. The Gromov-Hausdorff hyperspace of a Euclidean space. (English) Zbl 1433.51009 Adv. Math. 363, Article ID 106977, 30 p. (2020). MSC: 51F99 57S20 57S25 57N20 54B20 54C55 PDF BibTeX XML Cite \textit{S. A. Antonyan}, Adv. Math. 363, Article ID 106977, 30 p. (2020; Zbl 1433.51009) Full Text: DOI
He, Baiying; Chen, Liangyun; Sun, Bing New super integrable hierarchies associated with \(\operatorname{osp}(2|2)\) and \(\operatorname{spo}(2|2)\) and their applications. (English) Zbl 1433.37068 Appl. Math. Comput. 370, Article ID 124867, 13 p. (2020). MSC: 37K40 35Q53 17B80 37K10 37K30 81R12 17B66 PDF BibTeX XML Cite \textit{B. He} et al., Appl. Math. Comput. 370, Article ID 124867, 13 p. (2020; Zbl 1433.37068) Full Text: DOI
Hanusch, Maximilian The regularity problem for Lie groups with asymptotic estimate Lie algebras. (English) Zbl 07152841 Indag. Math., New Ser. 31, No. 1, 152-176 (2020). MSC: 22E65 PDF BibTeX XML Cite \textit{M. Hanusch}, Indag. Math., New Ser. 31, No. 1, 152--176 (2020; Zbl 07152841) Full Text: DOI
Modin, Klas Geometric hydrodynamics: from Euler, to Poincaré, to Arnold. (English) Zbl 1444.76004 Barbero-Liñán, María (ed.) et al., 13th young researchers workshop on geometry, mechanics and control. Three mini-courses, Coimbra, Portugal, December 6–13, 2018. Coimbra: Universidade de Coimbra, Departamento de Matemática. Textos Mat. 48, 71-91 (2019). MSC: 76-03 35Q31 37K65 70S05 01A50 01A55 01A60 PDF BibTeX XML Cite \textit{K. Modin}, Textos Mat. 48, 71--91 (2019; Zbl 1444.76004)
Larotonda, Gabriel Functional analysis techniques in optimization and metrization problems. (English) Zbl 1442.22021 Kielanowski, Piotr (ed.) et al., Geometric methods in physics XXXVII. Workshop and summer school, Białowieża, Poland, July 1–7, 2018. Dedicated to Daniel Sternheimer on the occasion of his 80th birthday. Cham: Birkhäuser. Trends Math., 234-239 (2019). MSC: 22E65 15A42 22E30 51K05 53C25 15A60 PDF BibTeX XML Cite \textit{G. Larotonda}, in: Geometric methods in physics XXXVII. Workshop and summer school, Białowieża, Poland, July 1--7, 2018. Dedicated to Daniel Sternheimer on the occasion of his 80th birthday. Cham: Birkhäuser. 234--239 (2019; Zbl 1442.22021) Full Text: DOI
Larotonda, Gabriel Short geodesics for Ad invariant metrics in locally exponential Lie groups. (English) Zbl 1436.22015 Kielanowski, Piotr (ed.) et al., Geometric methods in physics XXXVII. Workshop and summer school, Białowieża, Poland, July 1–7, 2018. Dedicated to Daniel Sternheimer on the occasion of his 80th birthday. Cham: Birkhäuser. Trends Math., 153-160 (2019). MSC: 22E65 58B20 53C22 47B10 58D05 PDF BibTeX XML Cite \textit{G. Larotonda}, in: Geometric methods in physics XXXVII. Workshop and summer school, Białowieża, Poland, July 1--7, 2018. Dedicated to Daniel Sternheimer on the occasion of his 80th birthday. Cham: Birkhäuser. 153--160 (2019; Zbl 1436.22015) Full Text: DOI
De Sole, Alberto Classical and quantum \(\mathcal{W} \)-algebras and applications to Hamiltonian equations. (English) Zbl 1448.37083 Adamović, Dražen (ed.) et al., Affine, vertex and \(W\)-algebras. Based on the INdAM workshop, Rome, Italy, December 11–15, 2017. Cham: Springer. Springer INdAM Ser. 37, 99-134 (2019). Reviewer: Jipeng Cheng (Xuzhou) MSC: 37K30 37K10 81T70 81R05 81R10 81R12 17B69 17B68 17B80 70S05 PDF BibTeX XML Cite \textit{A. De Sole}, Springer INdAM Ser. 37, 99--134 (2019; Zbl 1448.37083) Full Text: DOI
Amiri, Habib; Schmeding, Alexander A differentiable monoid of smooth maps on Lie groupoids. (English) Zbl 1436.58015 J. Lie Theory 29, No. 4, 1167-1192 (2019). MSC: 58H05 22A15 22A22 22E65 58B25 58D05 58D15 PDF BibTeX XML Cite \textit{H. Amiri} and \textit{A. Schmeding}, J. Lie Theory 29, No. 4, 1167--1192 (2019; Zbl 1436.58015) Full Text: Link
Kang, Bei; Wu, Ke; Yan, Zhao-Wen; Yang, Jie; Zhao, Wei-Zhong Exact correlators in the Gaussian Hermitian matrix model. (English) Zbl 1434.81043 Phys. Lett., B 798, Article ID 134986, 6 p. (2019). MSC: 81R10 17B81 17B68 PDF BibTeX XML Cite \textit{B. Kang} et al., Phys. Lett., B 798, Article ID 134986, 6 p. (2019; Zbl 1434.81043) Full Text: DOI
Cabau, Patrick; Pelletier, Fernand Integrability on direct limits of Banach manifolds. (English. French summary) Zbl 1446.58002 Ann. Fac. Sci. Toulouse, Math. (6) 28, No. 5, 909-956 (2019). Reviewer: Luen-Chau Li (University Park) MSC: 58A30 18A30 46T05 17B66 37K30 22E65 PDF BibTeX XML Cite \textit{P. Cabau} and \textit{F. Pelletier}, Ann. Fac. Sci. Toulouse, Math. (6) 28, No. 5, 909--956 (2019; Zbl 1446.58002) Full Text: DOI
Mamon, S. V. On the transfer of the Wiener measure to the set of continuous trajectories in the Heisenberg group. (English) Zbl 1452.28008 Russ. J. Math. Phys. 26, No. 4, 454-469 (2019). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 28C20 22E25 58D20 PDF BibTeX XML Cite \textit{S. V. Mamon}, Russ. J. Math. Phys. 26, No. 4, 454--469 (2019; Zbl 1452.28008) Full Text: DOI
Tronci, Cesare Momentum maps for mixed states in quantum and classical mechanics. (English) Zbl 1448.81070 J. Geom. Mech. 11, No. 4, 639-656 (2019). MSC: 81P16 37K06 53D20 70H05 81Q70 22E70 81S10 53D50 PDF BibTeX XML Cite \textit{C. Tronci}, J. Geom. Mech. 11, No. 4, 639--656 (2019; Zbl 1448.81070) Full Text: DOI
Zharinov, V. V. Analysis in noncommutative algebras and modules. (English. Russian original) Zbl 1453.16030 Proc. Steklov Inst. Math. 306, 90-101 (2019); translation from Tr. Mat. Inst. Steklova 306, 100-111 (2019). MSC: 16S50 16E40 17B40 81R10 16-02 PDF BibTeX XML Cite \textit{V. V. Zharinov}, Proc. Steklov Inst. Math. 306, 90--101 (2019; Zbl 1453.16030); translation from Tr. Mat. Inst. Steklova 306, 100--111 (2019) Full Text: DOI
Basalaev, Alexey; Buryak, Alexandr Open WDVV equations and Virasoro constraints. (English) Zbl 1437.37088 Arnold Math. J. 5, No. 2-3, 145-186 (2019). Reviewer: Ahmed Lesfari (El Jadida) MSC: 37K30 37K20 37K25 17B68 81R10 14N35 53D45 PDF BibTeX XML Cite \textit{A. Basalaev} and \textit{A. Buryak}, Arnold Math. J. 5, No. 2--3, 145--186 (2019; Zbl 1437.37088) Full Text: DOI
Babenko, C.; Smirnov, F. One point functions of fermionic operators in the super sine Gordon model. (English) Zbl 1430.81069 Nucl. Phys., B 946, Article ID 114698, 36 p. (2019). MSC: 81T40 81T50 35Q55 81R12 81R10 17B67 PDF BibTeX XML Cite \textit{C. Babenko} and \textit{F. Smirnov}, Nucl. Phys., B 946, Article ID 114698, 36 p. (2019; Zbl 1430.81069) Full Text: DOI
Isidro, José M. Jordan triple systems in complex and functional analysis. (English) Zbl 1447.46002 Mathematical Surveys and Monographs 243. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5083-0/hbk; 978-1-4704-5440-1/ebook). xiii, 560 p. (2019). Reviewer: Dirk Werner (Berlin) MSC: 46-02 46G20 46L70 58B12 53C35 32M15 17C65 57S20 22E65 17B65 46B04 58B25 PDF BibTeX XML Cite \textit{J. M. Isidro}, Jordan triple systems in complex and functional analysis. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 1447.46002) Full Text: DOI
Sergeev, A. On Kähler geometry of infinite-dimensional complex manifolds \(\operatorname{Diff}_+(S^1)/S^1\) and \(\operatorname{Diff}_+(S^1)/\text{Möb}(S^1)\). (English) Zbl 1431.58003 Lobachevskii J. Math. 40, No. 9, 1410-1416 (2019). MSC: 58B25 32Q15 58D05 22E65 53C55 PDF BibTeX XML Cite \textit{A. Sergeev}, Lobachevskii J. Math. 40, No. 9, 1410--1416 (2019; Zbl 1431.58003) Full Text: DOI
Sala, Francesco; Schiffmann, Olivier The circle quantum group and the infinite root stack of a curve. (English) Zbl 07149828 Sel. Math., New Ser. 25, No. 5, Paper No. 77, 86 p. (2019). MSC: 17B37 17B67 22E65 14A20 PDF BibTeX XML Cite \textit{F. Sala} and \textit{O. Schiffmann}, Sel. Math., New Ser. 25, No. 5, Paper No. 77, 86 p. (2019; Zbl 07149828) Full Text: DOI
Mahanta, Ratul; Maharana, Anshuman Crossing, modular averages and \(N \leftrightarrow k\) in WZW models. (English) Zbl 1427.81140 J. High Energy Phys. 2019, No. 10, Paper No. 61, 36 p. (2019). MSC: 81T40 81R10 17B67 83E05 62P35 PDF BibTeX XML Cite \textit{R. Mahanta} and \textit{A. Maharana}, J. High Energy Phys. 2019, No. 10, Paper No. 61, 36 p. (2019; Zbl 1427.81140) Full Text: DOI arXiv
Salgado-Rebolledo, Patricio The Maxwell group in 2+1 dimensions and its infinite-dimensional enhancements. (English) Zbl 1427.81051 J. High Energy Phys. 2019, No. 10, Paper No. 39, 37 p. (2019). MSC: 81R05 58J28 17B67 81R10 83C80 PDF BibTeX XML Cite \textit{P. Salgado-Rebolledo}, J. High Energy Phys. 2019, No. 10, Paper No. 39, 37 p. (2019; Zbl 1427.81051) Full Text: DOI arXiv
Andruchow, Esteban; Corach, Gustavo; Recht, Lázaro The Poincaré half-space of a \({C}^*\)-algebra. (English) Zbl 1442.46038 Rev. Mat. Iberoam. 35, No. 7, 2187-2219 (2019). Reviewer: Ralf Meyer (Göttingen) MSC: 46L05 58B20 53C30 22E65 46L08 PDF BibTeX XML Cite \textit{E. Andruchow} et al., Rev. Mat. Iberoam. 35, No. 7, 2187--2219 (2019; Zbl 1442.46038) Full Text: DOI
Amjad, Z.; Haider, B. Binary Darboux transformations of the supersymmetric Heisenberg magnet model. (English. Russian original) Zbl 1435.82038 Theor. Math. Phys. 199, No. 3, 784-797 (2019); translation from Teor. Mat. Fiz. 199, No. 3, 357-371 (2019). Reviewer: Guy Jumarie (Montréal) MSC: 82D40 81T60 37K35 37K40 37K15 22E70 PDF BibTeX XML Cite \textit{Z. Amjad} and \textit{B. Haider}, Theor. Math. Phys. 199, No. 3, 784--797 (2019; Zbl 1435.82038); translation from Teor. Mat. Fiz. 199, No. 3, 357--371 (2019) Full Text: DOI
Larotonda, Gabriel Metric geometry of infinite-dimensional Lie groups and their homogeneous spaces. (English) Zbl 1430.22026 Forum Math. 31, No. 6, 1567-1605 (2019). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 22E65 58B20 53C22 47B10 58D05 PDF BibTeX XML Cite \textit{G. Larotonda}, Forum Math. 31, No. 6, 1567--1605 (2019; Zbl 1430.22026) Full Text: DOI
Yao, Lucien Kouassi; Kangni, Kinvi An extension of the Poisson transform. (English) Zbl 1429.22010 Int. J. Math. Comput. Sci. 14, No. 4, 821-831 (2019). MSC: 22E30 46G20 46A13 32A10 PDF BibTeX XML Cite \textit{L. K. Yao} and \textit{K. Kangni}, Int. J. Math. Comput. Sci. 14, No. 4, 821--831 (2019; Zbl 1429.22010) Full Text: Link
Azam, Saeid; Soltani, Mohammad Bagher; Tomie, Masaya; Yoshii, Yoji A graph-theoretical classification for reflectable bases. (English) Zbl 07143116 Publ. Res. Inst. Math. Sci. 55, No. 4, 689-736 (2019). MSC: 17B67 17B65 20F55 51F15 PDF BibTeX XML Cite \textit{S. Azam} et al., Publ. Res. Inst. Math. Sci. 55, No. 4, 689--736 (2019; Zbl 07143116) Full Text: DOI
Cafasso, Mattia; Wu, Chao-Zhong Borodin-Okounkov formula, string equation and topological solutions of Drinfeld-Sokolov hierarchies. (English) Zbl 1436.37084 Lett. Math. Phys. 109, No. 12, 2681-2722 (2019). MSC: 37K30 37K10 17B67 81R10 PDF BibTeX XML Cite \textit{M. Cafasso} and \textit{C.-Z. Wu}, Lett. Math. Phys. 109, No. 12, 2681--2722 (2019; Zbl 1436.37084) Full Text: DOI
Mickelsson, Jouko; Niemimäki, Ossi A 2-group construction from an extension of the 3-loop group \(\varOmega ^3G\). (English) Zbl 1430.22027 Lett. Math. Phys. 109, No. 12, 2649-2664 (2019). Reviewer: Volodymyr Mazorchuk (Uppsala) MSC: 22E67 81R10 PDF BibTeX XML Cite \textit{J. Mickelsson} and \textit{O. Niemimäki}, Lett. Math. Phys. 109, No. 12, 2649--2664 (2019; Zbl 1430.22027) Full Text: DOI
McClellan, Gene E. Using raising and lowering operators from geometric algebra for electroweak theory in particle physics. (English) Zbl 1429.81105 Adv. Appl. Clifford Algebr. 29, No. 5, Paper No. 90, 34 p. (2019). MSC: 81V15 81T10 81V10 14D24 15A66 81R10 17B81 81V22 PDF BibTeX XML Cite \textit{G. E. McClellan}, Adv. Appl. Clifford Algebr. 29, No. 5, Paper No. 90, 34 p. (2019; Zbl 1429.81105) Full Text: DOI
Fei, Jinxi; Cao, Weiping; Ma, Zhengyi Nonlocal symmetry and Bäcklund transformation of a negative-order Korteweg-de Vries equation. (English) Zbl 1434.35156 Complexity 2019, Article ID 5479695, 10 p. (2019). MSC: 35Q53 37K35 22E70 PDF BibTeX XML Cite \textit{J. Fei} et al., Complexity 2019, Article ID 5479695, 10 p. (2019; Zbl 1434.35156) Full Text: DOI
Bufetov, Alexey; Gorin, Vadim Fourier transform on high-dimensional unitary groups with applications to random tilings. (English) Zbl 1436.60016 Duke Math. J. 168, No. 13, 2559-2649 (2019). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 60B15 22E65 60K35 PDF BibTeX XML Cite \textit{A. Bufetov} and \textit{V. Gorin}, Duke Math. J. 168, No. 13, 2559--2649 (2019; Zbl 1436.60016) Full Text: DOI Euclid
Hanusch, Maximilian Differentiability of the evolution map and Mackey continuity. (English) Zbl 1430.22025 Forum Math. 31, No. 5, 1139-1177 (2019). Reviewer: Volodymyr Mazorchuk (Uppsala) MSC: 22E65 58B25 22E10 58C20 PDF BibTeX XML Cite \textit{M. Hanusch}, Forum Math. 31, No. 5, 1139--1177 (2019; Zbl 1430.22025) Full Text: DOI
Marquis, Timothée Around the Lie correspondence for complete Kac-Moody groups and Gabber-Kac simplicity. (Autour de la correspondance de Lie pour les groupes de Kac-Moody maximaux et de la simplicité au sens de Gabber-Kac.) (English. French summary) Zbl 07128537 Ann. Inst. Fourier 69, No. 6, 2519-2576 (2019). Reviewer: Robert McRae (Beijing) MSC: 20G44 22E65 17B67 20E42 20E18 PDF BibTeX XML Cite \textit{T. Marquis}, Ann. Inst. Fourier 69, No. 6, 2519--2576 (2019; Zbl 07128537) Full Text: DOI
Andruchow, Esteban; Chiumiento, Eduardo; Larotonda, Gabriel Canonical sphere bundles of the Grassmann manifold. (English) Zbl 1432.22023 Geom. Dedicata 203, 179-203 (2019). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 22E65 47B10 58B20 PDF BibTeX XML Cite \textit{E. Andruchow} et al., Geom. Dedicata 203, 179--203 (2019; Zbl 1432.22023) Full Text: DOI arXiv
Gomis, Joaquim; Kleinschmidt, Axel; Palmkvist, Jakob Galilean free Lie algebras. (English) Zbl 1423.83056 J. High Energy Phys. 2019, No. 9, Paper No. 109, 21 p. (2019). MSC: 83D05 53Z05 81T30 17B67 81R05 81R10 PDF BibTeX XML Cite \textit{J. Gomis} et al., J. High Energy Phys. 2019, No. 9, Paper No. 109, 21 p. (2019; Zbl 1423.83056) Full Text: DOI arXiv