Salas, Ruben Andres; da Silva, Andre Luis Ferreira; de Sá, Luis Fernando Nogueira; Silva, Emilio Carlos Nelli Hybrid absorbing scheme based on hyperelliptical layers with non-reflecting boundary conditions in scalar wave equations. (English) Zbl 07636523 Appl. Math. Modelling 113, 475-513 (2023). MSC: 65M60 35M10 86-08 PDF BibTeX XML Cite \textit{R. A. Salas} et al., Appl. Math. Modelling 113, 475--513 (2023; Zbl 07636523) Full Text: DOI OpenURL
Gie, Gung-Min; Jung, Chang-Yeol; Lee, Hoyeon Semi-analytic shooting methods for Burgers’ equation. (English) Zbl 1496.65085 J. Comput. Appl. Math. 418, Article ID 114694, 18 p. (2023). MSC: 65L04 34E15 76R50 PDF BibTeX XML Cite \textit{G.-M. Gie} et al., J. Comput. Appl. Math. 418, Article ID 114694, 18 p. (2023; Zbl 1496.65085) Full Text: DOI OpenURL
Besse, Christophe; Gavrilyuk, Sergey; Kazakova, Maria; Noble, Pascal Perfectly matched layers methods for mixed hyperbolic-dispersive equations. (English) Zbl 07639236 Water Waves 4, No. 3, 313-343 (2022). MSC: 65M06 65N06 65L06 65M12 76B03 76B15 76B25 76L05 76M20 35C08 35A01 35A02 PDF BibTeX XML Cite \textit{C. Besse} et al., Water Waves 4, No. 3, 313--343 (2022; Zbl 07639236) Full Text: DOI OpenURL
Volkov, V. T.; Nefedov, N. N. Asymptotic solution of the boundary control problem for a Burgers-type equation with modular advection and linear gain. (English. Russian original) Zbl 07626878 Comput. Math. Math. Phys. 62, No. 11, 1849-1858 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 11, 1851-1860 (2022). MSC: 35B25 35C10 35K20 35K58 35R30 PDF BibTeX XML Cite \textit{V. T. Volkov} and \textit{N. N. Nefedov}, Comput. Math. Math. Phys. 62, No. 11, 1849--1858 (2022; Zbl 07626878); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 11, 1851--1860 (2022) Full Text: DOI OpenURL
Delmas, Vincent; Soulaïmani, Azzeddine Parallel high-order resolution of the shallow-water equations on real large-scale meshes with complex bathymetries. (English) Zbl 07605599 J. Comput. Phys. 471, Article ID 111629, 25 p. (2022). MSC: 76Mxx 65Mxx 76Bxx PDF BibTeX XML Cite \textit{V. Delmas} and \textit{A. Soulaïmani}, J. Comput. Phys. 471, Article ID 111629, 25 p. (2022; Zbl 07605599) Full Text: DOI OpenURL
Govindarao, L.; Das, Abhishek A second-order fractional step method for two-dimensional delay parabolic partial differential equations with a small parameter. (English) Zbl 1495.65134 Palest. J. Math. 11, No. 3, 96-111 (2022). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{L. Govindarao} and \textit{A. Das}, Palest. J. Math. 11, No. 3, 96--111 (2022; Zbl 1495.65134) Full Text: Link OpenURL
Singh, Satpal; Kumar, Devendra; Deswal, Komal Trigonometric \(B\)-spline based \(\varepsilon\)-uniform scheme for singularly perturbed problems with Robin boundary conditions. (English) Zbl 1492.65283 J. Difference Equ. Appl. 28, No. 7, 924-945 (2022). MSC: 65M70 65D07 65M12 65M15 PDF BibTeX XML Cite \textit{S. Singh} et al., J. Difference Equ. Appl. 28, No. 7, 924--945 (2022; Zbl 1492.65283) Full Text: DOI OpenURL
Singh, Maneesh Kumar; Natesan, Srinivasan Numerical analysis of singularly perturbed system of parabolic convection-diffusion problem with regular boundary layers. (English) Zbl 1492.65245 Differ. Equ. Dyn. Syst. 30, No. 3, 695-717 (2022). MSC: 65M06 65N06 65N50 65M12 65M15 35B25 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{S. Natesan}, Differ. Equ. Dyn. Syst. 30, No. 3, 695--717 (2022; Zbl 1492.65245) Full Text: DOI OpenURL
Li, Jichun; Zhu, Li Analysis and application of a spatial fourth-order finite difference scheme for the Ziolkowski’s PML model. (English) Zbl 07540377 J. Comput. Phys. 464, Article ID 111350, 19 p. (2022). MSC: 65Mxx 78Mxx 78Axx PDF BibTeX XML Cite \textit{J. Li} and \textit{L. Zhu}, J. Comput. Phys. 464, Article ID 111350, 19 p. (2022; Zbl 07540377) Full Text: DOI OpenURL
Du, Yu; Zhang, Jiwei Perfectly matched layers for nonlocal Helmholtz equations. II: Multi-dimensional cases. (English) Zbl 07540346 J. Comput. Phys. 464, Article ID 111192, 20 p. (2022). MSC: 65Nxx 78Axx 65Mxx PDF BibTeX XML Cite \textit{Y. Du} and \textit{J. Zhang}, J. Comput. Phys. 464, Article ID 111192, 20 p. (2022; Zbl 07540346) Full Text: DOI arXiv OpenURL
Hou, Qianqian Global well-posedness and boundary layer effects of radially symmetric solutions for the singular Keller-Segel model. (English) Zbl 1490.35026 J. Math. Fluid Mech. 24, No. 3, Paper No. 58, 24 p. (2022). MSC: 35B25 35B40 35K51 35K57 92C17 PDF BibTeX XML Cite \textit{Q. Hou}, J. Math. Fluid Mech. 24, No. 3, Paper No. 58, 24 p. (2022; Zbl 1490.35026) Full Text: DOI OpenURL
Argun, R. L.; Volkov, V. T.; Lukyanenko, D. V. Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction-diffusion problem. (English) Zbl 1490.35024 J. Comput. Appl. Math. 412, Article ID 114294, 15 p. (2022). MSC: 35B25 35B44 35C20 35K20 35K57 PDF BibTeX XML Cite \textit{R. L. Argun} et al., J. Comput. Appl. Math. 412, Article ID 114294, 15 p. (2022; Zbl 1490.35024) Full Text: DOI OpenURL
Shumilova, V. V. Homogenization of the system of acoustic equations for layered viscoelastic media. (English. Russian original) Zbl 1486.35030 J. Math. Sci., New York 261, No. 3, 488-501 (2022); translation from Probl. Mat. Anal. 114, 109-120 (2022). MSC: 35B27 35L53 74Q10 PDF BibTeX XML Cite \textit{V. V. Shumilova}, J. Math. Sci., New York 261, No. 3, 488--501 (2022; Zbl 1486.35030); translation from Probl. Mat. Anal. 114, 109--120 (2022) Full Text: DOI OpenURL
Li, Jingwei; Zhang, Yunxin Existence and uniqueness of solution of the differential equation describing the TASEP-LK coupled transport process. (English) Zbl 1484.35056 J. Differ. Equations 316, 762-802 (2022). MSC: 35B40 35B50 35K20 35K58 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zhang}, J. Differ. Equations 316, 762--802 (2022; Zbl 1484.35056) Full Text: DOI arXiv OpenURL
Rao, S. Chandra Sekhara; Chaturvedi, Abhay Kumar Analysis and implementation of a computational technique for a coupled system of two singularly perturbed parabolic semilinear reaction-diffusion equations having discontinuous source terms. (English) Zbl 1480.65222 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106232, 34 p. (2022). MSC: 65M06 65M12 65M15 65M22 PDF BibTeX XML Cite \textit{S. C. S. Rao} and \textit{A. K. Chaturvedi}, Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106232, 34 p. (2022; Zbl 1480.65222) Full Text: DOI OpenURL
Ishwariya, R.; Miller, John J. H.; Sigamani, Valarmathi A parameter-uniform essentially first-order convergence of a fitted mesh method for a class of parabolic singularly perturbed system of Robin problems. (English) Zbl 07615243 Sigamani, Valarmathi (ed.) et al., Differential equations and applications. Selected papers based on the presentations at the international conference on applications of basic science, ICABS 2019, Tiruchirappalli, India, November 19–21, 2019. Singapore: Springer. Springer Proc. Math. Stat. 368, 117-145 (2021). MSC: 65M06 35K57 65M12 PDF BibTeX XML Cite \textit{R. Ishwariya} et al., Springer Proc. Math. Stat. 368, 117--145 (2021; Zbl 07615243) Full Text: DOI arXiv OpenURL
Elango, Sekar; Tamilselvan, Ayyadurai; Vadivel, R.; Gunasekaran, Nallappan; Zhu, Haitao; Cao, Jinde; Li, Xiaodi Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation with nonlocal boundary condition. (English) Zbl 1494.65069 Adv. Difference Equ. 2021, Paper No. 151, 20 p. (2021). MSC: 65M06 65M12 35K20 35K15 PDF BibTeX XML Cite \textit{S. Elango} et al., Adv. Difference Equ. 2021, Paper No. 151, 20 p. (2021; Zbl 1494.65069) Full Text: DOI OpenURL
Marulli, Marta; Milišić, Vuk; Vauchelet, Nicolas Reduction of a model for sodium exchanges in kidney nephron. (English) Zbl 1481.35027 Netw. Heterog. Media 16, No. 4, 609-636 (2021). MSC: 35B25 35L50 35L60 35L81 92C42 PDF BibTeX XML Cite \textit{M. Marulli} et al., Netw. Heterog. Media 16, No. 4, 609--636 (2021; Zbl 1481.35027) Full Text: DOI arXiv OpenURL
Nefedov, N. N. Development of methods of asymptotic analysis of transition layers in reaction-diffusion-advection equations: theory and applications. (English. Russian original) Zbl 1481.35009 Comput. Math. Math. Phys. 61, No. 12, 2068-2087 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 12, 2074-2094 (2021). MSC: 35-02 35B25 35K20 35K57 35R30 PDF BibTeX XML Cite \textit{N. N. Nefedov}, Comput. Math. Math. Phys. 61, No. 12, 2068--2087 (2021; Zbl 1481.35009); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 12, 2074--2094 (2021) Full Text: DOI OpenURL
Nefedov, N. N.; Nikulin, E. I. On unstable solutions with a nonmonotone boundary layer in a two-dimensional reaction-diffusion problem. (English. Russian original) Zbl 1481.35028 Math. Notes 110, No. 6, 922-931 (2021); translation from Mat. Zametki 110, No. 6, 899-910 (2021). MSC: 35B25 35B10 35B35 35K20 35K57 PDF BibTeX XML Cite \textit{N. N. Nefedov} and \textit{E. I. Nikulin}, Math. Notes 110, No. 6, 922--931 (2021; Zbl 1481.35028); translation from Mat. Zametki 110, No. 6, 899--910 (2021) Full Text: DOI OpenURL
Levashova, N. T.; Tishchenko, B. V. Existence and stability of the solution to a system of two nonlinear diffusion equations in a medium with discontinuous characteristics. (English. Russian original) Zbl 07444580 Comput. Math. Math. Phys. 61, No. 11, 1811-1833 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 11, 1850-1872 (2021). MSC: 35B25 35K51 35K58 PDF BibTeX XML Cite \textit{N. T. Levashova} and \textit{B. V. Tishchenko}, Comput. Math. Math. Phys. 61, No. 11, 1811--1833 (2021; Zbl 07444580); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 11, 1850--1872 (2021) Full Text: DOI OpenURL
Rao, S. Chandra Sekhara; Chaturvedi, Abhay Kumar Pointwise error estimates for a system of two singularly perturbed time-dependent semilinear reaction-diffusion equations. (English) Zbl 1481.65152 Math. Methods Appl. Sci. 44, No. 17, 13287-13325 (2021). MSC: 65M06 65M12 65M15 65M22 35B25 35K58 35K57 PDF BibTeX XML Cite \textit{S. C. S. Rao} and \textit{A. K. Chaturvedi}, Math. Methods Appl. Sci. 44, No. 17, 13287--13325 (2021; Zbl 1481.65152) Full Text: DOI OpenURL
Kim, H. H.; Jung, C.-Y.; Nguyen, T. B. A staggered discontinuous Galerkin method for elliptic problems on rectangular grids. (English) Zbl 07411564 Comput. Math. Appl. 99, 133-154 (2021). MSC: 65N30 65M60 65M12 65N12 65N15 PDF BibTeX XML Cite \textit{H. H. Kim} et al., Comput. Math. Appl. 99, 133--154 (2021; Zbl 07411564) Full Text: DOI OpenURL
Antonopoulou, D. C.; Karali, G.; Tzirakis, K. Layer dynamics for the one dimensional \(\varepsilon\)-dependent Cahn-Hilliard/Allen-Cahn equation. (English) Zbl 1472.35024 Calc. Var. Partial Differ. Equ. 60, No. 6, Paper No. 207, 58 p. (2021). MSC: 35B25 35B40 35K35 35K58 PDF BibTeX XML Cite \textit{D. C. Antonopoulou} et al., Calc. Var. Partial Differ. Equ. 60, No. 6, Paper No. 207, 58 p. (2021; Zbl 1472.35024) Full Text: DOI arXiv OpenURL
Yang, Di; He, Yinnian A discontinuous Galerkin method by patch reconstruction for convection-diffusion-reaction problems over polytopic meshes. (English) Zbl 07384060 Comput. Math. Appl. 97, 175-206 (2021). MSC: 65N30 65N12 65N15 35J25 65M60 PDF BibTeX XML Cite \textit{D. Yang} and \textit{Y. He}, Comput. Math. Appl. 97, 175--206 (2021; Zbl 07384060) Full Text: DOI arXiv OpenURL
Egger, Herbert; Philippi, Nora On the transport limit of singularly perturbed convection-diffusion problems on networks. (English) Zbl 1470.35027 Math. Methods Appl. Sci. 44, No. 6, 5005-5020 (2021). MSC: 35B25 35K20 35R02 76M45 PDF BibTeX XML Cite \textit{H. Egger} and \textit{N. Philippi}, Math. Methods Appl. Sci. 44, No. 6, 5005--5020 (2021; Zbl 1470.35027) Full Text: DOI arXiv OpenURL
Bécache, Eliane; Kachanovska, Maryna Stability and convergence analysis of time-domain perfectly matched layers for the wave equation in waveguides. (English) Zbl 1493.65142 SIAM J. Numer. Anal. 59, No. 4, 2004-2039 (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M12 65M99 35L05 44A10 78A50 78A40 35Q60 PDF BibTeX XML Cite \textit{E. Bécache} and \textit{M. Kachanovska}, SIAM J. Numer. Anal. 59, No. 4, 2004--2039 (2021; Zbl 1493.65142) Full Text: DOI OpenURL
Sônego, Maicon Stable transition layers in an unbalanced bistable equation. (English) Zbl 1467.35030 Discrete Contin. Dyn. Syst., Ser. B 26, No. 10, 5627-5640 (2021). MSC: 35B25 35B35 35B36 35B40 35K20 35K58 34D15 34E15 PDF BibTeX XML Cite \textit{M. Sônego}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 10, 5627--5640 (2021; Zbl 1467.35030) Full Text: DOI OpenURL
Antoine, Xavier; Lorin, Emmanuel; Zhang, Y. Derivation and analysis of computational methods for fractional Laplacian equations with absorbing layers. (English) Zbl 1468.65159 Numer. Algorithms 87, No. 1, 409-444 (2021). MSC: 65M70 65M06 65N35 35R11 PDF BibTeX XML Cite \textit{X. Antoine} et al., Numer. Algorithms 87, No. 1, 409--444 (2021; Zbl 1468.65159) Full Text: DOI HAL OpenURL
Jung, Chang-Yeol; Kwon, Bongsuk; Suzuki, Masahiro On approximate solutions to the Euler-Poisson system with boundary layers. (English) Zbl 1459.82305 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105717, 28 p. (2021). MSC: 82D10 76X05 35Q31 35Q60 35C20 35B25 65M06 PDF BibTeX XML Cite \textit{C.-Y. Jung} et al., Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105717, 28 p. (2021; Zbl 1459.82305) Full Text: DOI OpenURL
Omuraliev, A. S.; Abylaeva, E. D.; Esengul kyzy, P. Parabolic problem with a power-law boundary layer. (English. Russian original) Zbl 1458.35033 Differ. Equ. 57, No. 1, 75-85 (2021); translation from Differ. Uravn. 57, No. 1, 76-86 (2021). MSC: 35B25 35K20 PDF BibTeX XML Cite \textit{A. S. Omuraliev} et al., Differ. Equ. 57, No. 1, 75--85 (2021; Zbl 1458.35033); translation from Differ. Uravn. 57, No. 1, 76--86 (2021) Full Text: DOI OpenURL
Folino, Raffaele Metastable dynamics for a hyperbolic variant of the mass conserving Allen-Cahn equation in one space dimension. (English) Zbl 1456.35011 J. Differ. Equations 276, 493-532 (2021). MSC: 35B25 35L20 35L71 35R09 PDF BibTeX XML Cite \textit{R. Folino}, J. Differ. Equations 276, 493--532 (2021; Zbl 1456.35011) Full Text: DOI arXiv OpenURL
Singh, Maneesh Kumar; Natesan, Srinivasan A parameter-uniform hybrid finite difference scheme for singularly perturbed system of parabolic convection-diffusion problems. (English) Zbl 1480.65224 Int. J. Comput. Math. 97, No. 4, 875-905 (2020). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{S. Natesan}, Int. J. Comput. Math. 97, No. 4, 875--905 (2020; Zbl 1480.65224) Full Text: DOI OpenURL
Nefedov, N. N.; Rudenko, O. V. On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity. (English. Russian original) Zbl 1477.35017 Dokl. Math. 102, No. 1, 283-287 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 493, 26-31 (2020). MSC: 35B25 35B44 35C20 35K20 35K58 PDF BibTeX XML Cite \textit{N. N. Nefedov} and \textit{O. V. Rudenko}, Dokl. Math. 102, No. 1, 283--287 (2020; Zbl 1477.35017); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 493, 26--31 (2020) Full Text: DOI OpenURL
Kaushik, Aditya; Sharma, Nitika An adaptive difference scheme for parabolic delay differential equation with discontinuous coefficients and interior layers. (English) Zbl 1466.65065 J. Difference Equ. Appl. 26, No. 11-12, 1450-1470 (2020). MSC: 65M06 65M12 65M50 35B25 35K15 35R07 PDF BibTeX XML Cite \textit{A. Kaushik} and \textit{N. Sharma}, J. Difference Equ. Appl. 26, No. 11--12, 1450--1470 (2020; Zbl 1466.65065) Full Text: DOI OpenURL
Xenophontos, C. Isogeometric analysis for singularly perturbed high-order, two-point boundary value problems of reaction-diffusion type. (English) Zbl 07283111 Comput. Math. Appl. 80, No. 11, 2340-2350 (2020). MSC: 65N30 65L10 65M60 65L60 41A15 PDF BibTeX XML Cite \textit{C. Xenophontos}, Comput. Math. Appl. 80, No. 11, 2340--2350 (2020; Zbl 07283111) Full Text: DOI OpenURL
Amirat, Youcef; Münch, Arnaud Asymptotic analysis of an advection-diffusion equation involving interacting boundary and internal layers. (English) Zbl 1452.35013 Math. Methods Appl. Sci. 43, No. 11, 6823-6860 (2020). MSC: 35B25 35K20 35C20 35B40 PDF BibTeX XML Cite \textit{Y. Amirat} and \textit{A. Münch}, Math. Methods Appl. Sci. 43, No. 11, 6823--6860 (2020; Zbl 1452.35013) Full Text: DOI arXiv OpenURL
Nefedov, N. N.; Nikulin, E. I.; Orlov, A. O. On a periodic inner layer in the reaction-diffusion problem with a modular cubic source. (English. Russian original) Zbl 1451.35017 Comput. Math. Math. Phys. 60, No. 9, 1461-1479 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 9, 1513-1532 (2020). MSC: 35B25 35K20 35K57 35B10 PDF BibTeX XML Cite \textit{N. N. Nefedov} et al., Comput. Math. Math. Phys. 60, No. 9, 1461--1479 (2020; Zbl 1451.35017); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 9, 1513--1532 (2020) Full Text: DOI OpenURL
Antoine, Xavier; Geuzaine, Christophe; Tang, Qinglin Perfectly matched layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates. (English) Zbl 1453.65353 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105406, 15 p. (2020). MSC: 65M70 35Q41 35Q55 82C10 PDF BibTeX XML Cite \textit{X. Antoine} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105406, 15 p. (2020; Zbl 1453.65353) Full Text: DOI HAL OpenURL
Wang, Hao; Yang, Wei; Huang, Yunqing Adaptive finite element method for the sound wave problems in two kinds of media. (English) Zbl 1443.65224 Comput. Math. Appl. 79, No. 3, 789-801 (2020). MSC: 65M60 76Q05 PDF BibTeX XML Cite \textit{H. Wang} et al., Comput. Math. Appl. 79, No. 3, 789--801 (2020; Zbl 1443.65224) Full Text: DOI OpenURL
Singh, Maneesh Kumar; Natesan, Srinivasan Numerical solution of 2D singularly perturbed reaction-diffusion system with multiple scales. (English) Zbl 1446.65077 Comput. Math. Appl. 80, No. 4, 36-53 (2020). MSC: 65M06 65M12 65M15 65M50 65N06 35B25 76S05 76N10 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{S. Natesan}, Comput. Math. Appl. 80, No. 4, 36--53 (2020; Zbl 1446.65077) Full Text: DOI OpenURL
Gie, Gung-Min; Jung, Chang-Yeol; Lee, Hoyeon Enriched finite volume approximations of the plane-parallel flow at a small viscosity. (English) Zbl 1447.65051 J. Sci. Comput. 84, No. 1, Paper No. 7, 26 p. (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65N08 76M12 PDF BibTeX XML Cite \textit{G.-M. Gie} et al., J. Sci. Comput. 84, No. 1, Paper No. 7, 26 p. (2020; Zbl 1447.65051) Full Text: DOI OpenURL
Belding, Jeffrey; Neda, Monika; Pahlevani, Fran Computational study of the time relaxation model with high order deconvolution operator. (English) Zbl 1447.35240 Results Appl. Math. 8, Article ID 100111, 15 p. (2020). MSC: 35Q30 76F65 76F40 76D05 76M10 76M20 76M30 65M60 65N30 65M06 35B65 PDF BibTeX XML Cite \textit{J. Belding} et al., Results Appl. Math. 8, Article ID 100111, 15 p. (2020; Zbl 1447.35240) Full Text: DOI OpenURL
Li, Tingyue; Kabanikhin, Sergey; Nakamura, Gen; Wang, Faming; Xu, Dinghua An inverse problem of triple-thickness parameters determination for thermal protective clothing with Stephan-Boltzmann interface conditions. (English) Zbl 1448.35577 J. Inverse Ill-Posed Probl. 28, No. 3, 411-424 (2020). MSC: 35R30 65M32 74N05 80A19 PDF BibTeX XML Cite \textit{T. Li} et al., J. Inverse Ill-Posed Probl. 28, No. 3, 411--424 (2020; Zbl 1448.35577) Full Text: DOI OpenURL
Yadav, Swati; Rai, Pratima A higher order numerical scheme for singularly perturbed parabolic turning point problems exhibiting twin boundary layers. (English) Zbl 1474.65296 Appl. Math. Comput. 376, Article ID 125095, 21 p. (2020). MSC: 65M06 65M12 65M50 65M15 35B25 PDF BibTeX XML Cite \textit{S. Yadav} and \textit{P. Rai}, Appl. Math. Comput. 376, Article ID 125095, 21 p. (2020; Zbl 1474.65296) Full Text: DOI arXiv OpenURL
Kumar, Devendra; Kumari, Parvin Parameter-uniform numerical treatment of singularly perturbed initial-boundary value problems with large delay. (English) Zbl 1436.35028 Appl. Numer. Math. 153, 412-429 (2020). MSC: 35B25 65M12 35K57 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{P. Kumari}, Appl. Numer. Math. 153, 412--429 (2020; Zbl 1436.35028) Full Text: DOI OpenURL
Rao, S. Chandra Sekhara; Chawla, Sheetal Robin boundary value problems for a singularly perturbed weakly coupled system of convection-diffusion equations having discontinuous source term. (English) Zbl 1435.65131 J. Anal. 28, No. 1, 305-321 (2020). MSC: 65M06 65M12 65M15 76R50 35B25 PDF BibTeX XML Cite \textit{S. C. S. Rao} and \textit{S. Chawla}, J. Anal. 28, No. 1, 305--321 (2020; Zbl 1435.65131) Full Text: DOI OpenURL
Nakashima, Kimie Multiple existence of indefinite nonlinear diffusion problem in population genetics. (English) Zbl 1439.35210 J. Differ. Equations 268, No. 12, 7803-7842 (2020). Reviewer: Guglielmo Feltrin (Spilimbergo) MSC: 35K20 34B08 34B15 34B18 35K58 35K57 PDF BibTeX XML Cite \textit{K. Nakashima}, J. Differ. Equations 268, No. 12, 7803--7842 (2020; Zbl 1439.35210) Full Text: DOI OpenURL
Huang, Yunqing; Li, Jichun; Fang, Zhiwei Mathematical analysis of Ziolkowski’s PML model with application for wave propagation in metamaterials. (English) Zbl 1431.78010 J. Comput. Appl. Math. 366, Article ID 112434, 14 p. (2020). MSC: 78M10 65N30 35L15 65M06 78A25 65M12 65M15 PDF BibTeX XML Cite \textit{Y. Huang} et al., J. Comput. Appl. Math. 366, Article ID 112434, 14 p. (2020; Zbl 1431.78010) Full Text: DOI OpenURL
Jia, Jinhong; Wang, Hong A fast finite volume method on locally refined meshes for fractional diffusion equations. (English) Zbl 1465.65086 East Asian J. Appl. Math. 9, No. 4, 755-779 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65F10 15B05 35R11 PDF BibTeX XML Cite \textit{J. Jia} and \textit{H. Wang}, East Asian J. Appl. Math. 9, No. 4, 755--779 (2019; Zbl 1465.65086) Full Text: DOI OpenURL
Antoine, Xavier; Lorin, Emmanuel A simple pseudospectral method for the computation of the time-dependent Dirac equation with perfectly matched layers. (English) Zbl 1452.65267 J. Comput. Phys. 395, 583-601 (2019). MSC: 65M70 35Q41 81Q05 65Z05 PDF BibTeX XML Cite \textit{X. Antoine} and \textit{E. Lorin}, J. Comput. Phys. 395, 583--601 (2019; Zbl 1452.65267) Full Text: DOI HAL OpenURL
Chern, Albert A reflectionless discrete perfectly matched layer. (English) Zbl 1451.65132 J. Comput. Phys. 381, 91-109 (2019). MSC: 65M22 30G25 65E05 35L05 65M06 PDF BibTeX XML Cite \textit{A. Chern}, J. Comput. Phys. 381, 91--109 (2019; Zbl 1451.65132) Full Text: DOI arXiv OpenURL
Lukyanenko, D. V.; Grigorev, Valentin B.; Volkov, V. T.; Shishlenin, M. A. Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction-diffusion equation with the location of moving front data. (English) Zbl 1442.65233 Comput. Math. Appl. 77, No. 5, 1245-1254 (2019). MSC: 65M32 35B25 35K58 35R30 PDF BibTeX XML Cite \textit{D. V. Lukyanenko} et al., Comput. Math. Appl. 77, No. 5, 1245--1254 (2019; Zbl 1442.65233) Full Text: DOI OpenURL
Shojaei, Arman; Mossaiby, Farshid; Zaccariotto, Mirco; Galvanetto, Ugo A local collocation method to construct Dirichlet-type absorbing boundary conditions for transient scalar wave propagation problems. (English) Zbl 1441.65080 Comput. Methods Appl. Mech. Eng. 356, 629-651 (2019). MSC: 65M70 PDF BibTeX XML Cite \textit{A. Shojaei} et al., Comput. Methods Appl. Mech. Eng. 356, 629--651 (2019; Zbl 1441.65080) Full Text: DOI OpenURL
Baffet, Daniel H.; Grote, Marcus J.; Imperiale, Sébastien; Kachanovska, Maryna Energy decay and stability of a perfectly matched layer for the wave equation. (English) Zbl 1447.35304 J. Sci. Comput. 81, No. 3, 2237-2270 (2019). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q60 78A40 35B35 65N30 65M06 PDF BibTeX XML Cite \textit{D. H. Baffet} et al., J. Sci. Comput. 81, No. 3, 2237--2270 (2019; Zbl 1447.35304) Full Text: DOI HAL OpenURL
Gargano, F.; Sammartino, M.; Sciacca, V. Numerical study of the primitive equations in the small viscosity regime. (English) Zbl 1431.35125 Ric. Mat. 68, No. 2, 383-397 (2019). MSC: 35Q35 76F40 35A21 65M70 86A05 86A10 35Q86 76V05 76D05 41A50 PDF BibTeX XML Cite \textit{F. Gargano} et al., Ric. Mat. 68, No. 2, 383--397 (2019; Zbl 1431.35125) Full Text: DOI OpenURL
Lukyanenko, Dmitry V.; Shishlenin, Maxim A.; Volkov, Vladimir T. Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation. (English) Zbl 1430.35269 J. Inverse Ill-Posed Probl. 27, No. 5, 745-758 (2019). MSC: 35R30 31B20 65M32 65L09 65J22 49N45 PDF BibTeX XML Cite \textit{D. V. Lukyanenko} et al., J. Inverse Ill-Posed Probl. 27, No. 5, 745--758 (2019; Zbl 1430.35269) Full Text: DOI OpenURL
Gowrisankar, S.; Natesan, Srinivasan An efficient robust numerical method for singularly perturbed Burgers’ equation. (English) Zbl 1429.65182 Appl. Math. Comput. 346, 385-394 (2019). MSC: 65M06 35B25 35Q53 65M12 PDF BibTeX XML Cite \textit{S. Gowrisankar} and \textit{S. Natesan}, Appl. Math. Comput. 346, 385--394 (2019; Zbl 1429.65182) Full Text: DOI OpenURL
Levashova, N. T.; Nefedov, N. N.; Orlov, A. O. Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source. (English. Russian original) Zbl 1423.35232 Comput. Math. Math. Phys. 59, No. 4, 573-582 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 4, 611-620 (2019). MSC: 35K91 35K57 35B25 35C20 35J91 35K20 PDF BibTeX XML Cite \textit{N. T. Levashova} et al., Comput. Math. Math. Phys. 59, No. 4, 573--582 (2019; Zbl 1423.35232); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 4, 611--620 (2019) Full Text: DOI OpenURL
Tselishcheva, Irina; Shishkin, Grigorii On a reliable numerical method for a singularly perturbed parabolic reaction-diffusion problem in a doubly connected domain. (English) Zbl 1434.65139 Dimov, Ivan (ed.) et al., Finite difference methods. Theory and applications. 7th international conference, FDM 2018, Lozenetz, Bulgaria, June 11–16, 2018. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11386, 558-565 (2019). MSC: 65M06 65M50 65M55 65M12 PDF BibTeX XML Cite \textit{I. Tselishcheva} and \textit{G. Shishkin}, Lect. Notes Comput. Sci. 11386, 558--565 (2019; Zbl 1434.65139) Full Text: DOI OpenURL
Kim, Dojin Multi-directional approach of perfectly matched layers. (English) Zbl 1438.65226 Adv. Stud. Contemp. Math., Kyungshang 29, No. 1, 59-67 (2019). MSC: 65M38 35L20 PDF BibTeX XML Cite \textit{D. Kim}, Adv. Stud. Contemp. Math., Kyungshang 29, No. 1, 59--67 (2019; Zbl 1438.65226) OpenURL
Das, Abhishek; Natesan, Srinivasan Parameter-uniform numerical method for singularly perturbed 2D delay parabolic convection-diffusion problems on Shishkin mesh. (English) Zbl 1422.65150 J. Appl. Math. Comput. 59, No. 1-2, 207-225 (2019). MSC: 65M06 65M12 65M15 35B25 35K10 PDF BibTeX XML Cite \textit{A. Das} and \textit{S. Natesan}, J. Appl. Math. Comput. 59, No. 1--2, 207--225 (2019; Zbl 1422.65150) Full Text: DOI OpenURL
Kumar, Devendra; Kumari, Parvin A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay. (English) Zbl 1418.65101 J. Appl. Math. Comput. 59, No. 1-2, 179-206 (2019). MSC: 65M06 65M12 65M15 35K10 65N06 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{P. Kumari}, J. Appl. Math. Comput. 59, No. 1--2, 179--206 (2019; Zbl 1418.65101) Full Text: DOI OpenURL
Nefedov, N. N.; Nikulin, E. I.; Recke, L. On the existence and asymptotic stability of periodic contrast structures in quasilinear reaction-advection-diffusion equations. (English) Zbl 1416.35027 Russ. J. Math. Phys. 26, No. 1, 55-69 (2019). MSC: 35B25 35K20 35K57 35B10 35B35 PDF BibTeX XML Cite \textit{N. N. Nefedov} et al., Russ. J. Math. Phys. 26, No. 1, 55--69 (2019; Zbl 1416.35027) Full Text: DOI OpenURL
Ishwariya, R.; Miller, J. J. H.; Valarmathi, S. A parameter uniform essentially first-order convergent numerical method for a parabolic system of singularly perturbed differential equations of reaction-diffusion type with initial and Robin boundary conditions. (English) Zbl 07012060 Int. J. Biomath. 12, No. 1, Article ID 1950001, 31 p. (2019). MSC: 35K51 35K57 65M06 PDF BibTeX XML Cite \textit{R. Ishwariya} et al., Int. J. Biomath. 12, No. 1, Article ID 1950001, 31 p. (2019; Zbl 07012060) Full Text: DOI arXiv OpenURL
Huang, Yongting; Liu, Cheng-Jie; Yang, Tong Local-in-time well-posedness for compressible MHD boundary layer. (English) Zbl 1456.35162 J. Differ. Equations 266, No. 6, 2978-3013 (2019). MSC: 35Q35 35M33 76N20 76W05 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Huang} et al., J. Differ. Equations 266, No. 6, 2978--3013 (2019; Zbl 1456.35162) Full Text: DOI arXiv OpenURL
Halpern, Laurence; Métivier, Ludovic; Rauch, Jeffrey; Ryan, Juliette Nobody’s perfect; matched layers for heterogeneous media. (English) Zbl 1407.65157 SIAM J. Sci. Comput. 41, No. 1, A1-A25 (2019). MSC: 65M55 65M12 30E10 78A05 35C20 PDF BibTeX XML Cite \textit{L. Halpern} et al., SIAM J. Sci. Comput. 41, No. 1, A1--A25 (2019; Zbl 1407.65157) Full Text: DOI OpenURL
Wang, Jing; Tong, Lining Vanishing viscosity limit of 1D quasilinear parabolic equation with multiple boundary layers. (English) Zbl 1404.35018 Commun. Pure Appl. Anal. 18, No. 2, 887-910 (2019). MSC: 35B25 35L50 35K51 PDF BibTeX XML Cite \textit{J. Wang} and \textit{L. Tong}, Commun. Pure Appl. Anal. 18, No. 2, 887--910 (2019; Zbl 1404.35018) Full Text: DOI OpenURL
Zhou, Jian; Venayagamoorthy, Subhas K. Near-field mean flow dynamics of a cylindrical canopy patch suspended in deep water. (English) Zbl 1415.76138 J. Fluid Mech. 858, 634-655 (2019). MSC: 76D05 76D25 76M12 65M08 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{S. K. Venayagamoorthy}, J. Fluid Mech. 858, 634--655 (2019; Zbl 1415.76138) Full Text: DOI OpenURL
Rawat, Subhandu; Chouippe, Agathe; Zamansky, Rémi; Legendre, Dominique; Climent, Eric Drag modulation in turbulent boundary layers subject to different bubble injection strategies. (English) Zbl 1410.76259 Comput. Fluids 178, 73-87 (2019). MSC: 76M12 76T10 65M08 76F40 PDF BibTeX XML Cite \textit{S. Rawat} et al., Comput. Fluids 178, 73--87 (2019; Zbl 1410.76259) Full Text: DOI Link OpenURL
Lukyanenko, Dmitry V.; Shishlenin, Maxim A.; Volkov, V. T. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data. (English) Zbl 07262008 Commun. Nonlinear Sci. Numer. Simul. 54, 233-247 (2018). MSC: 65M32 65L04 65L12 65L20 65M20 35G31 PDF BibTeX XML Cite \textit{D. V. Lukyanenko} et al., Commun. Nonlinear Sci. Numer. Simul. 54, 233--247 (2018; Zbl 07262008) Full Text: DOI OpenURL
Nguyen-Quang, K.; Vo-Duy, T.; Dang-Trung, H.; Nguyen-Thoi, T. An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers. (English) Zbl 1439.74454 Comput. Methods Appl. Mech. Eng. 332, 25-46 (2018). MSC: 74S05 74E30 65D07 65M60 74K20 PDF BibTeX XML Cite \textit{K. Nguyen-Quang} et al., Comput. Methods Appl. Mech. Eng. 332, 25--46 (2018; Zbl 1439.74454) Full Text: DOI OpenURL
Singh, Maneesh Kumar; Natesan, Srinivasan Richardson extrapolation technique for singularly perturbed system of parabolic partial differential equations with exponential boundary layers. (English) Zbl 1427.65186 Appl. Math. Comput. 333, 254-275 (2018). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{M. K. Singh} and \textit{S. Natesan}, Appl. Math. Comput. 333, 254--275 (2018; Zbl 1427.65186) Full Text: DOI OpenURL
Du, Jinyue; Wang, Caihua; Zhang, Wenyi A non-equidistant grid difference scheme for solving reaction-diffusion problem with dual layers. (Chinese. English summary) Zbl 1438.65172 J. Tianjin Norm. Univ., Nat. Sci. Ed. 38, No. 6, 1-5 (2018). MSC: 65M06 65M50 35C20 35K57 PDF BibTeX XML Cite \textit{J. Du} et al., J. Tianjin Norm. Univ., Nat. Sci. Ed. 38, No. 6, 1--5 (2018; Zbl 1438.65172) Full Text: DOI OpenURL
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H. High-performance multi-GPU solver for describing nonlinear acoustic waves in homogeneous thermoviscous media. (English) Zbl 1410.76283 Comput. Fluids 173, 195-205 (2018). MSC: 76M20 65M06 65Y10 76Q05 PDF BibTeX XML Cite \textit{M. A. Diaz} et al., Comput. Fluids 173, 195--205 (2018; Zbl 1410.76283) Full Text: DOI OpenURL
Dauge, Monique; Lafranche, Yvon; Ourmières-Bonafos, Thomas Dirichlet spectrum of the Fichera layer. (English) Zbl 1401.35032 Integral Equations Oper. Theory 90, No. 5, Paper No. 60, 41 p. (2018). MSC: 35J05 35P15 35Q40 81Q10 65M60 PDF BibTeX XML Cite \textit{M. Dauge} et al., Integral Equations Oper. Theory 90, No. 5, Paper No. 60, 41 p. (2018; Zbl 1401.35032) Full Text: DOI arXiv OpenURL
Das, Abhishek; Natesan, Srinivasan Fractional step method for singularly perturbed 2D delay parabolic convection diffusion problems on Shishkin mesh. (English) Zbl 1401.65092 Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 65, 23 p. (2018). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{A. Das} and \textit{S. Natesan}, Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 65, 23 p. (2018; Zbl 1401.65092) Full Text: DOI OpenURL
Ritos, Konstantinos; Kokkinakis, Ioannis W.; Drikakis, Dimitris Physical insight into the accuracy of finely-resolved iLES in turbulent boundary layers. (English) Zbl 1410.76260 Comput. Fluids 169, 309-316 (2018). MSC: 76M12 65M08 76F40 76J20 76F65 76N20 PDF BibTeX XML Cite \textit{K. Ritos} et al., Comput. Fluids 169, 309--316 (2018; Zbl 1410.76260) Full Text: DOI Link OpenURL
Li, Z.; Mysa, R. C.; Jaiman, R. K.; Khoo, B. C. Freely vibrating circular cylinder in the vicinity of fully developed scour holes at low Reynolds numbers. (English) Zbl 1390.76472 Comput. Fluids 163, 97-120 (2018). MSC: 76M12 65M08 74H45 74F10 PDF BibTeX XML Cite \textit{Z. Li} et al., Comput. Fluids 163, 97--120 (2018; Zbl 1390.76472) Full Text: DOI OpenURL
Liu, Xiaowei; Zhang, Jin Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with characteristic layers. (English) Zbl 1397.65280 Numer. Algorithms 78, No. 2, 465-483 (2018). Reviewer: Noureddine Daili (Sétif) MSC: 65N30 65N50 65N15 65L50 65L20 65M25 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Numer. Algorithms 78, No. 2, 465--483 (2018; Zbl 1397.65280) Full Text: DOI OpenURL
Geng, Fazhan; Tang, Zhiqiang; Zhou, Yongfang Reproducing kernel method for singularly perturbed one-dimensional initial-boundary value problems with exponential initial layers. (English) Zbl 1448.65079 Qual. Theory Dyn. Syst. 17, No. 1, 177-187 (2018). MSC: 65L11 65L03 PDF BibTeX XML Cite \textit{F. Geng} et al., Qual. Theory Dyn. Syst. 17, No. 1, 177--187 (2018; Zbl 1448.65079) Full Text: DOI OpenURL
Gracia, José Luis; O’Riordan, Eugene; Stynes, Martin Numerical approximation of a time fractional-derivative initial-boundary value problem with boundary layers. (English) Zbl 1448.65100 López de Silanes, M. C. (ed.) et al., Fourteenth international conference Zaragoza-Pau on mathematics and its applications. Proceedings of the conference, Jaca, Spain, September 12–15, 2016. Zaragoza: Prensas de la Universidad de Zaragoza. Monogr. Mat. García Galdeano 41, 95-105 (2018). MSC: 65M06 65M50 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{J. L. Gracia} et al., Monogr. Mat. García Galdeano 41, 95--105 (2018; Zbl 1448.65100) OpenURL
Franz, Sebastian; Matthies, Gunar A unified framework for time-dependent singularly perturbed problems with discontinuous Galerkin methods in time. (English) Zbl 1395.65127 Math. Comput. 87, No. 313, 2113-2132 (2018). Reviewer: Aziz Takhirov (Edmonton) MSC: 65N15 35B25 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{S. Franz} and \textit{G. Matthies}, Math. Comput. 87, No. 313, 2113--2132 (2018; Zbl 1395.65127) Full Text: DOI OpenURL
Polyanin, Andrei D.; Shingareva, Inna K. Hypersingular nonlinear boundary-value problems with a small parameter. (English) Zbl 06869203 Appl. Math. Lett. 81, 93-98 (2018). MSC: 35B25 34E15 35B20 34E05 65M06 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{I. K. Shingareva}, Appl. Math. Lett. 81, 93--98 (2018; Zbl 06869203) Full Text: DOI arXiv OpenURL
Hong, Youngjoon; Jung, Chang-Yeol Enriched spectral method for stiff convection-dominated equations. (English) Zbl 1394.65155 J. Sci. Comput. 74, No. 3, 1325-1346 (2018). MSC: 65N35 35Q35 65M06 35Q53 PDF BibTeX XML Cite \textit{Y. Hong} and \textit{C.-Y. Jung}, J. Sci. Comput. 74, No. 3, 1325--1346 (2018; Zbl 1394.65155) Full Text: DOI OpenURL
Rao, S. Chandra Sekhara; Chawla, Sheetal Numerical solution of singularly perturbed linear parabolic system with discontinuous source term. (English) Zbl 1382.65255 Appl. Numer. Math. 127, 249-265 (2018). MSC: 65M06 35K57 35B25 35R05 65M50 PDF BibTeX XML Cite \textit{S. C. S. Rao} and \textit{S. Chawla}, Appl. Numer. Math. 127, 249--265 (2018; Zbl 1382.65255) Full Text: DOI OpenURL
Ganesan, Sashikumaar; Srivastava, Shweta ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: conservative form. (English) Zbl 1411.65127 Appl. Math. Comput. 303, 128-145 (2017). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{S. Ganesan} and \textit{S. Srivastava}, Appl. Math. Comput. 303, 128--145 (2017; Zbl 1411.65127) Full Text: DOI arXiv OpenURL
Boutin, Benjamin; Coulombel, Jean Francois Stability of finite difference schemes for hyperbolic initial boundary value problems: numerical boundary layers. (English) Zbl 1399.65203 Numer. Math., Theory Methods Appl. 10, No. 3, 489-519 (2017). MSC: 65M12 65M06 PDF BibTeX XML Cite \textit{B. Boutin} and \textit{J. F. Coulombel}, Numer. Math., Theory Methods Appl. 10, No. 3, 489--519 (2017; Zbl 1399.65203) Full Text: DOI arXiv OpenURL
Folino, Raffaele; Lattanzio, Corrado; Mascia, Corrado Metastable dynamics for hyperbolic variations of the Allen-Cahn equation. (English) Zbl 1406.35198 Commun. Math. Sci. 15, No. 7, 2055-2085 (2017). MSC: 35L72 35B25 35K57 35L20 35B36 PDF BibTeX XML Cite \textit{R. Folino} et al., Commun. Math. Sci. 15, No. 7, 2055--2085 (2017; Zbl 1406.35198) Full Text: DOI arXiv OpenURL
Lai, Chen; Minkoff, Susan E. Nearly perfectly matched layer boundary conditions for operator upscaling of the acoustic wave equation. (English) Zbl 1383.65091 Comput. Geosci. 21, No. 3, 359-372 (2017). MSC: 65M06 35L05 PDF BibTeX XML Cite \textit{C. Lai} and \textit{S. E. Minkoff}, Comput. Geosci. 21, No. 3, 359--372 (2017; Zbl 1383.65091) Full Text: DOI OpenURL
Bécache, Eliane; Kachanovska, Maryna Stable perfectly matched layers for a class of anisotropic dispersive models. I: Necessary and sufficient conditions of stability. (English) Zbl 1454.78010 ESAIM, Math. Model. Numer. Anal. 51, No. 6, 2399-2434 (2017). MSC: 78A40 65M12 35Q60 44A10 78A25 PDF BibTeX XML Cite \textit{E. Bécache} and \textit{M. Kachanovska}, ESAIM, Math. Model. Numer. Anal. 51, No. 6, 2399--2434 (2017; Zbl 1454.78010) Full Text: DOI OpenURL
Calvez, Vincent; Gosse, Laurent; Twarogowska, Monika Travelling chemotactic aggregates at mesoscopic scale and bistability. (English) Zbl 1379.35333 SIAM J. Appl. Math. 77, No. 6, 2224-2249 (2017). MSC: 35Q92 65M06 92C37 92C45 35C08 35B40 PDF BibTeX XML Cite \textit{V. Calvez} et al., SIAM J. Appl. Math. 77, No. 6, 2224--2249 (2017; Zbl 1379.35333) Full Text: DOI OpenURL
Duben, A. P.; Kozubskaya, T. K.; Potapov, D. V. Simulation of unsteady isotropic turbulent flows on unstructured meshes using edge-based algorithms. (Russian. English summary) Zbl 1389.76021 Mat. Model. 29, No. 5, 27-45 (2017). Reviewer: Sergei Georgievich Zhuravlev (Moskva) MSC: 76F05 65M50 76F40 76F65 PDF BibTeX XML Cite \textit{A. P. Duben} et al., Mat. Model. 29, No. 5, 27--45 (2017; Zbl 1389.76021) Full Text: MNR OpenURL
Modave, Axel; Lambrechts, Jonathan; Geuzaine, Christophe Perfectly matched layers for convex truncated domains with discontinuous Galerkin time domain simulations. (English) Zbl 1371.65109 Comput. Math. Appl. 73, No. 4, 684-700 (2017). MSC: 65M60 35L05 76Q05 76M10 PDF BibTeX XML Cite \textit{A. Modave} et al., Comput. Math. Appl. 73, No. 4, 684--700 (2017; Zbl 1371.65109) Full Text: DOI HAL OpenURL
Volkov, Vladimir; Lukyanenko, Dmitry; Nefedov, Nikolay Asymptotic-numerical method for the location and dynamics of internal layers in singular perturbed parabolic problems. (English) Zbl 1368.65167 Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 6th international conference, NAA 2016, Lozenetz, Bulgaria, June 15–22, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-57098-3/pbk; 978-3-319-57099-0/ebook). Lecture Notes in Computer Science 10187, 721-729 (2017). MSC: 65M22 35K57 35B25 PDF BibTeX XML Cite \textit{V. Volkov} et al., Lect. Notes Comput. Sci. 10187, 721--729 (2017; Zbl 1368.65167) Full Text: DOI OpenURL
Clavero, C.; Gracia, J. L.; Shishkin, G. I.; Shishkina, L. P. An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers. (English) Zbl 1357.65115 J. Comput. Appl. Math. 318, 634-645 (2017). MSC: 65M06 35K57 35B25 65M50 65M12 PDF BibTeX XML Cite \textit{C. Clavero} et al., J. Comput. Appl. Math. 318, 634--645 (2017; Zbl 1357.65115) Full Text: DOI OpenURL
Sun, Hong; Sun, Zhi-Zhong; Dai, Weizhong A second-order finite difference scheme for solving the dual-phase-lagging equation in a double-layered nanoscale thin film. (English) Zbl 1359.65161 Numer. Methods Partial Differ. Equations 33, No. 1, 142-173 (2017). Reviewer: Ivan Secrieru (Chişinău) MSC: 65M06 65M12 35K05 PDF BibTeX XML Cite \textit{H. Sun} et al., Numer. Methods Partial Differ. Equations 33, No. 1, 142--173 (2017; Zbl 1359.65161) Full Text: DOI OpenURL
Cohen, Gary; Pernet, Sébastien Finite element and discontinuous Galerkin methods for transient wave equations. (English) Zbl 1360.65233 Scientific Computation. Dordrecht: Springer (ISBN 978-94-017-7759-9/hbk; 978-94-017-7761-2/ebook). xvii, 381 p. (2017). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65M60 65-02 65M12 65M15 35L05 74S05 76M10 78M10 35Q61 74B05 PDF BibTeX XML Cite \textit{G. Cohen} and \textit{S. Pernet}, Finite element and discontinuous Galerkin methods for transient wave equations. Dordrecht: Springer (2017; Zbl 1360.65233) Full Text: DOI OpenURL
Ishwariya, Raj; Merlin, Johnson Princy; Miller, J. J. H.; Valarmathi, Sigamani A parameter uniform almost first order convergent numerical method for nonlinear system of singularly perturbed differential equations. (English) Zbl 1466.92066 Biomath 5, No. 2, 1-9 (2016). MSC: 92C45 34D15 65L11 65M06 PDF BibTeX XML Cite \textit{R. Ishwariya} et al., Biomath 5, No. 2, 1--9 (2016; Zbl 1466.92066) Full Text: DOI OpenURL
Chapelier, J.-B.; Lodato, G.; Jameson, A. A study on the numerical dissipation of the spectral difference method for freely decaying and wall-bounded turbulence. (English) Zbl 1390.76557 Comput. Fluids 139, 261-280 (2016). MSC: 76M20 76M22 65M06 65M70 76F40 76Nxx PDF BibTeX XML Cite \textit{J. B. Chapelier} et al., Comput. Fluids 139, 261--280 (2016; Zbl 1390.76557) Full Text: DOI OpenURL