zbMATH — the first resource for mathematics

Simulating incompressible flow on moving meshfree grids. (English) Zbl 07196650
Summary: A moving grid meshfree solver is developed for incompressible flow based on the General Finite Difference (GFD) discretization of a semi-implicit approximate projection algorithm. Boundary conditions are imposed using a sharp interface to modify the GFD stencil coefficients. To maintain grid regularity, we employ an explicit shift based on the relaxation of a linear spring model. Several test cases are presented to verify and validate the solver, including simulations of the Taylor-Green vortex problem, the flow in a lid-driven cavity and the flow around an inline oscillating cylinder.
76-XX Fluid mechanics
ROOT; Eigen; DistMesh
Full Text: DOI
[1] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer MethodsEng, 37, 2, 229-256 (1994)
[2] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl MechEng, 139, 1-4, 3-47 (1996)
[3] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C., On the completeness of meshfree particle methods, Int J Numer MethodsEng, 43, 5, 785-819 (1998)
[4] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 2, 117-127 (1998)
[5] Liszka, T.; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput Struct, 11, 83-95 (1979)
[6] Liu, M.; Liu, G., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch Comput Methods Eng, 17, 1, 25-76 (2010)
[7] Liu, M.; Liu, G., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch Comput Methods Eng, 17, 1, 25-76 (2010)
[8] Lee, E.-S.; Moulinec, C.; Xu, R.; Violeau, D.; Laurence, D.; Stansby, P., Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, J Comput Phys, 227, 18, 8417-8436 (2008)
[9] Cummins, S. J.; Rudman, M., An SPH projection method, J Comput Phys, 152, 2, 584-607 (1999)
[10] Xu, R.; Stansby, P.; Laurence, D., Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J Comput Phys, 228, 18, 6703-6725 (2009)
[11] Khorasanizade, S.; Sousa, J. M., A detailed study of lid-driven cavity flow at moderate Reynolds numbers using incompressible SPH, Int J Numer MethodsFluids, 76, 10, 653-668 (2014)
[12] Fatehi, R.; Manzari, M. T., Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives, Comput Math Appl, 61, 2, 482-498 (2011)
[13] Shadloo, M.; Oger, G.; Le Touzé, D., Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges, Comput Fluids, 136, 11-34 (2016)
[14] Kwan-yu Chiu, E.; Wang, Q.; Hu, R.; Jameson, A., A conservative mesh-free scheme and generalized framework for conservation laws, SIAM J Sci Comput, 34, 6, A2896-A2916 (2012)
[15] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math Comput, 37, 155, 141-158 (1981)
[16] Onate, E.; Idelsohn, S.; Zienkiewicz, O. C.; Taylor, R. L., A finite point method in computational mechanics. applications to convective transport and fluid flow, Int J Numer MethodsEng, 39, 3839-3866 (1996)
[17] Tiwari S., Kuhnert J.. Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations. Meshfree methods for partial differential equations2002;:373-38710.1007/978-3-642-56103-0_26.
[18] Hu, X.; Adams, N., A constant-density approach for incompressible multi-phase SPH, J Comput Phys, 228, 6, 2082-2091 (2009)
[19] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J Comput Phys, 191, 2, 448-475 (2003)
[20] Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Le Touzé, D.; Graziani, G., δ-SPH model for simulating violent impact flows, Comput Methods Appl MechEng, 200, 13, 1526-1542 (2011)
[21] Antoci, C.; Gallati, M.; Sibilla, S., Numerical simulation of fluid-structure interaction by SPH, Comput Struct, 85, 11, 879-890 (2007)
[22] Chaniotis, A.; Poulikakos, D.; Koumoutsakos, P., Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows, J Comput Phys, 182, 1, 67-90 (2002)
[23] Hirt, C. W.; Amsden, A. A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J Comput Phys, 14, 3, 227-253 (1974)
[24] Donea J., Huerta A., Ponthot J.-P., Rodriguez-Ferran A.. Encyclopedia of computational mechanics vol. 1: fundamentals., chapter 14: arbitrary Lagrangian-Eulerian methods. 2004.
[25] Hu, H. H.; Patankar, N. A.; Zhu, M., Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique, J Comput Phys, 169, 2, 427-462 (2001)
[26] Barlow, A. J.; Maire, P.-H.; Rider, W. J.; Rieben, R. N.; Shashkov, M. J., Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows, J Comput Phys, 322, 603-665 (2016)
[27] Perot, B.; Nallapati, R., A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows, J Comput Phys, 184, 1, 192-214 (2003)
[28] Oger, G.; Marrone, S.; Le Touzé, D.; De Leffe, M., SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, J Comput Phys, 313, 76-98 (2016)
[29] Vasyliv, Y.; Alexeev, A., Development of general finite differences for complex geometries using a sharp interface formulation, Comput Fluids (2018)
[30] Henriksen, M. O.; Holmen, J., Algebraic splitting for incompressible Navier-Stokes equations, J Comput Phys, 175, 2, 438-453 (2002)
[31] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical mathematics, vol. 37 (2010), Springer Science & Business Media
[32] Perot, J. B., An analysis of the fractional step method, J Comput Phys, 108, 1, 51-58 (1993)
[33] Dukowicz, J. K.; Dvinsky, A. S., Approximate factorization as a high order splitting for the implicit incompressible flow equations, J Comput Phys, 102, 2, 336-347 (1992)
[34] Quarteroni, A.; Saleri, F.; Veneziani, A., Factorization methods for the numerical approximation of Navier-Stokes equations, Comput Methods Appl MechEng, 188, 1-3, 505-526 (2000)
[35] Almgren, A. S.; Bell, J. B.; Szymczak, W. G., A numerical method for the incompressible Navier-Stokes equations based on an approximate projection, SIAM J Sci Comput, 17, 2, 358-369 (1996)
[36] Armfield, S., Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids, Comput Fluids, 20, 1, 1-17 (1991)
[37] Saleri, F.; Veneziani, A., Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations, SIAM J Numer Anal, 43, 1, 174-194 (2005)
[38] Persson, P.-O.; Strang, G., A simple mesh generator in matlab, SIAM Rev, 46, 2, 329-345 (2004)
[39] Tseng, Y.-H.; Ferziger, J. H., A ghost-cell immersed boundary method for flow in complex geometry, J Comput Phys, 192, 2, 593-623 (2003)
[40] Brun, R.; Rademakers, F., ROOT an object oriented data analysis framework, Nucl Instrum Methods Phys ResSect A, 389, 1-2, 81-86 (1997)
[41] Guennebaud G., Jacob B., et al. Eigen v3. http://eigen.tuxfamily.org; 2010.
[42] Etienne, S.; Garon, A.; Pelletier, D., Code verification for unsteady flow simulations with high order time-stepping schemes, 47th AIAA Aerospace sciences meeting including the new horizons forum and aerospace exposition, 169 (2009)
[43] Ghia, U.; Ghia, K. N.; Shin, C., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J Comput Phys, 48, 3, 387-411 (1982)
[44] Botella, O.; Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Comput Fluids, 27, 4, 421-433 (1998)
[45] Oberkampf, W. L.; Trucano, T. G., Verification and validation in computational fluid dynamics, Prog Aerosp Sci, 38, 3, 209-272 (2002)
[46] Shih, T.; Tan, C.; Hwang, B., Effects of grid staggering on numerical schemes, Int J Numer MethodsFluids, 9, 2, 193-212 (1989)
[47] Liao, C.-C.; Chang, Y.-W.; Lin, C.-A.; McDonough, J., Simulating flows with moving rigid boundary using immersed-boundary method, Comput Fluids, 39, 1, 152-167 (2010)
[48] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. M., The lattice Boltzmann method: principles and practice (2016), Springer
[49] He, X.; Luo, L.-S., A priori derivation of the lattice Boltzmann equation, Phys Rev E, 55, 6, R6333 (1997)
[50] Shan, X.; Yuan, X.-F.; Chen, H., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J Fluid Mech, 550, 1, 413 (2006)
[51] Mao, W.; Alexeev, A., Motion of spheroid particles in shear flow with inertia, J Fluid Mech, 749, 145-166 (2014)
[52] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys Fluids, 13, 11, 3452-3459 (2001)
[53] Ferziger J.H., Peric M., Leonard A.. Computational methods for fluid dynamics. 1997.
[54] Hu, W.; Guo, G.; Hu, X.; Negrut, D.; Xu, Z.; Pan, W., A consistent spatially adaptive smoothed particle hydrodynamics method for fluid-structure interactions, Comput Methods Appl MechEng, 347, 402-424 (2019)
[55] Hu, W.; Pan, W.; Rakhsha, M.; Tian, Q.; Hu, H.; Negrut, D., A consistent multi-resolution smoothed particle hydrodynamics method, Comput Methods Appl MechEng, 324, 278-299 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.