Wei, Han-Yu; Fan, En-Gui; Ma, Wen-Xiu Completion of the Guo-hierarchy integrable coupling with self-consistent sources in a nonlinear wave system. (English) Zbl 07524367 East Asian J. Appl. Math. 12, No. 3, 521-534 (2022). MSC: 35Q51 35Q53 37K40 PDF BibTeX XML Cite \textit{H.-Y. Wei} et al., East Asian J. Appl. Math. 12, No. 3, 521--534 (2022; Zbl 07524367) Full Text: DOI OpenURL
Wang, Haifeng; Zhang, Yufeng A new multi-component integrable coupling and its application to isospectral and nonisospectral problems. (English) Zbl 07443084 Commun. Nonlinear Sci. Numer. Simul. 105, Article ID 106075, 15 p. (2022). MSC: 37K10 37K30 35Q51 PDF BibTeX XML Cite \textit{H. Wang} and \textit{Y. Zhang}, Commun. Nonlinear Sci. Numer. Simul. 105, Article ID 106075, 15 p. (2022; Zbl 07443084) Full Text: DOI OpenURL
Wang, Haifeng; Zhang, Yufeng \( \bar\partial \)-dressing method for a few \((2+1)\)-dimensional integrable coupling systems. (English. Russian original) Zbl 1482.81040 Theor. Math. Phys. 208, No. 3, 1239-1255 (2021); translation from Teor. Mat. Fiz. 208, No. 3, 452-470 (2021). MSC: 81U40 81U15 81Q80 81T10 PDF BibTeX XML Cite \textit{H. Wang} and \textit{Y. Zhang}, Theor. Math. Phys. 208, No. 3, 1239--1255 (2021; Zbl 1482.81040); translation from Teor. Mat. Fiz. 208, No. 3, 452--470 (2021) Full Text: DOI OpenURL
Gao, Ben; Yin, Qinglian Construction of invariant solutions and conservation laws to the \((2+1)\)-dimensional integrable coupling of the KdV equation. (English) Zbl 07509804 Bound. Value Probl. 2020, Paper No. 169, 19 p. (2020). MSC: 35Qxx PDF BibTeX XML Cite \textit{B. Gao} and \textit{Q. Yin}, Bound. Value Probl. 2020, Paper No. 169, 19 p. (2020; Zbl 07509804) Full Text: DOI OpenURL
Dossa, Finagnon A. One-dimensional harmonic oscillator problem and its hidden \(SU(1,1)\) symmetry in the presence of a minimal length. (English) Zbl 1448.81371 Phys. Lett., A 384, No. 35, Article ID 126891, 8 p. (2020). MSC: 81R30 81R12 PDF BibTeX XML Cite \textit{F. A. Dossa}, Phys. Lett., A 384, No. 35, Article ID 126891, 8 p. (2020; Zbl 1448.81371) Full Text: DOI OpenURL
Wang, Haifeng; Zhang, Yufeng Two nonisospectral integrable hierarchies and its integrable coupling. (English) Zbl 1451.37087 Int. J. Theor. Phys. 59, No. 8, 2529-2539 (2020). Reviewer: Jipeng Cheng (Xuzhou) MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{H. Wang} and \textit{Y. Zhang}, Int. J. Theor. Phys. 59, No. 8, 2529--2539 (2020; Zbl 1451.37087) Full Text: DOI OpenURL
De Bie, Hendrik; van de Vijver, Wouter A discrete realization of the higher rank Racah algebra. (English) Zbl 1444.81019 Constr. Approx. 52, No. 1, 1-29 (2020). MSC: 81Q80 81Q10 33C50 33C80 47B39 81R10 81R12 PDF BibTeX XML Cite \textit{H. De Bie} and \textit{W. van de Vijver}, Constr. Approx. 52, No. 1, 1--29 (2020; Zbl 1444.81019) Full Text: DOI arXiv OpenURL
McAnally, Morgan; Ma, Wen-Xiu Two integrable couplings of a generalized d-Kaup-Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures. (English) Zbl 1432.37089 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111629, 13 p. (2020). MSC: 37K06 37K10 37K30 PDF BibTeX XML Cite \textit{M. McAnally} and \textit{W.-X. Ma}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 191, Article ID 111629, 13 p. (2020; Zbl 1432.37089) Full Text: DOI arXiv OpenURL
Mohammadi, M.; Riazi, N. The affective factors on the uncertainty in the collisions of the soliton solutions of the double field sine-Gordon system. (English) Zbl 1464.81034 Commun. Nonlinear Sci. Numer. Simul. 72, 176-193 (2019). MSC: 81R12 83C20 PDF BibTeX XML Cite \textit{M. Mohammadi} and \textit{N. Riazi}, Commun. Nonlinear Sci. Numer. Simul. 72, 176--193 (2019; Zbl 1464.81034) Full Text: DOI arXiv OpenURL
Vakhnenko, Oleksiy O. Four-component integrable systems inspired by the Toda and the Davydov-Kyslukha models. (English) Zbl 1446.35166 Wave Motion 88, 1-12 (2019). MSC: 35Q51 35A30 81R12 PDF BibTeX XML Cite \textit{O. O. Vakhnenko}, Wave Motion 88, 1--12 (2019; Zbl 1446.35166) Full Text: DOI OpenURL
Wei, Hanyu; Xia, Tiecheng Constructing super D-Kaup-Newell hierarchy and its nonlinear integrable coupling with self-consistent sources. (English) Zbl 1441.37075 Front. Math. China 14, No. 6, 1353-1366 (2019). MSC: 37K10 35Q53 PDF BibTeX XML Cite \textit{H. Wei} and \textit{T. Xia}, Front. Math. China 14, No. 6, 1353--1366 (2019; Zbl 1441.37075) Full Text: DOI OpenURL
McAnally, Morgan; Ma, Wen-Xiu Bi-integrable couplings associated with \(\mathrm{so}(3,\mathbb{R})\). (English) Zbl 1420.37079 Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 1921-1935 (2019). MSC: 37K10 37K05 35Q53 PDF BibTeX XML Cite \textit{M. McAnally} and \textit{W.-X. Ma}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 5, 1921--1935 (2019; Zbl 1420.37079) Full Text: DOI OpenURL
Fazlpour, Behnaz; Banijamali, Ali Dynamical system analysis for a scalar-tensor model with Gauss-Bonnet coupling. (English) Zbl 1426.83046 Int. J. Geom. Methods Mod. Phys. 16, No. 3, Article ID 1950044, 14 p. (2019). MSC: 83F05 83D05 37J35 83C55 PDF BibTeX XML Cite \textit{B. Fazlpour} and \textit{A. Banijamali}, Int. J. Geom. Methods Mod. Phys. 16, No. 3, Article ID 1950044, 14 p. (2019; Zbl 1426.83046) Full Text: DOI OpenURL
Chang, Hui; Li, Yuxia; Dong, Huanhe; Zhi, Hongyan The quasi-AKNS and quasi-\(s o(3)\) type AKNS hierarchies as well as a gallery of simple Lie algebras contained in \(s l(3; \mathbb{C})\). (English) Zbl 1415.37092 J. Geom. Phys. 141, 79-91 (2019). MSC: 37K30 37K05 37K10 35Q53 PDF BibTeX XML Cite \textit{H. Chang} et al., J. Geom. Phys. 141, 79--91 (2019; Zbl 1415.37092) Full Text: DOI OpenURL
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo Integrability and linear stability of nonlinear waves. (English) Zbl 1454.37064 J. Nonlinear Sci. 28, No. 4, 1251-1291 (2018). MSC: 37K10 37K40 37K45 35Q51 35Q55 PDF BibTeX XML Cite \textit{A. Degasperis} et al., J. Nonlinear Sci. 28, No. 4, 1251--1291 (2018; Zbl 1454.37064) Full Text: DOI arXiv OpenURL
Ma, Wen-Xiu; Zhang, Yu-Juan Darboux transformations of integrable couplings and applications. (English) Zbl 1383.35194 Rev. Math. Phys. 30, No. 2, Article ID 1850003, 26 p. (2018). MSC: 35Q53 37K05 37K10 35C08 35Q55 17B81 PDF BibTeX XML Cite \textit{W.-X. Ma} and \textit{Y.-J. Zhang}, Rev. Math. Phys. 30, No. 2, Article ID 1850003, 26 p. (2018; Zbl 1383.35194) Full Text: DOI OpenURL
Xu, Xi-Xiang; Sun, Ye-Peng An integrable coupling hierarchy of Dirac integrable hierarchy, its Liouville integrability and Darboux transformation. (English) Zbl 1412.35300 J. Nonlinear Sci. Appl. 10, No. 6, 3328-3343 (2017). MSC: 35Q53 37K10 PDF BibTeX XML Cite \textit{X.-X. Xu} and \textit{Y.-P. Sun}, J. Nonlinear Sci. Appl. 10, No. 6, 3328--3343 (2017; Zbl 1412.35300) Full Text: DOI OpenURL
Muatjetjeja, Ben; Rashid Adem, Abdullahi Rosenau-KdV equation coupling with the Rosenau-RLW equation: conservation laws and exact solutions. (English) Zbl 1401.35274 Int. J. Nonlinear Sci. Numer. Simul. 18, No. 6, 451-456 (2017). MSC: 35Q53 35Q51 35A30 37K10 78A60 PDF BibTeX XML Cite \textit{B. Muatjetjeja} and \textit{A. Rashid Adem}, Int. J. Nonlinear Sci. Numer. Simul. 18, No. 6, 451--456 (2017; Zbl 1401.35274) Full Text: DOI OpenURL
Wei, Hanyu; Xia, Tiecheng Nonlinear bi-integrable couplings of Kaup-Newell hierarchy with self-consistent sources. (Chinese. English summary) Zbl 1399.37043 Math. Appl. 30, No. 4, 927-935 (2017). MSC: 37K10 37K40 PDF BibTeX XML Cite \textit{H. Wei} and \textit{T. Xia}, Math. Appl. 30, No. 4, 927--935 (2017; Zbl 1399.37043) OpenURL
Yu, Fajun; Feng, Shuo Explicit solution and Darboux transformation for a new discrete integrable soliton hierarchy with \(4\times4\) Lax pairs. (English) Zbl 1384.37093 Math. Methods Appl. Sci. 40, No. 15, 5515-5525 (2017). MSC: 37K10 37K40 35Q53 39A14 PDF BibTeX XML Cite \textit{F. Yu} and \textit{S. Feng}, Math. Methods Appl. Sci. 40, No. 15, 5515--5525 (2017; Zbl 1384.37093) Full Text: DOI OpenURL
Shepelev, Igor’ Aleksandrovich; Vadivasova, Tat’yana Evgenievna Solitary states in a 2D lattice of bistable elements with global and close to global interaction. (Russian. English summary) Zbl 1380.37136 Nelineĭn. Din. 13, No. 3, 317-330 (2017). MSC: 37K60 39A13 82B20 PDF BibTeX XML Cite \textit{I. A. Shepelev} and \textit{T. E. Vadivasova}, Nelineĭn. Din. 13, No. 3, 317--330 (2017; Zbl 1380.37136) Full Text: DOI MNR OpenURL
Huang, Guan On energy transferring in a periodic pendulum lattice with analytic weak couplings. (English) Zbl 1369.37076 Ann. Henri Poincaré 18, No. 6, 2087-2121 (2017). MSC: 37K60 37L60 PDF BibTeX XML Cite \textit{G. Huang}, Ann. Henri Poincaré 18, No. 6, 2087--2121 (2017; Zbl 1369.37076) Full Text: DOI OpenURL
Zhang, Jian; Zhang, Chiping; Cui, Yunan Bi-integrable and tri-integrable couplings of a soliton hierarchy associated with \(\mathrm{SO}(4)\). (English) Zbl 1379.37124 Open Math. 15, 203-217 (2017). MSC: 37K10 37K05 35Q53 37K30 PDF BibTeX XML Cite \textit{J. Zhang} et al., Open Math. 15, 203--217 (2017; Zbl 1379.37124) Full Text: DOI OpenURL
Zhang, Huiqun; Zhou, Yubin; Xu, Junqin Integrable couplings of the Boiti-Pempinelli-Tu hierarchy and their Hamiltonian structures. (English) Zbl 07405066 Adv. Appl. Math. Mech. 8, No. 4, 588-598 (2016). MSC: 37K10 35Q51 PDF BibTeX XML Cite \textit{H. Zhang} et al., Adv. Appl. Math. Mech. 8, No. 4, 588--598 (2016; Zbl 07405066) Full Text: DOI OpenURL
Ma, Wen-Xiu; Meng, Jinghan; Zhang, Mengshu Nonlinear bi-integrable couplings with Hamiltonian structures. (English) Zbl 07313676 Math. Comput. Simul. 127, 166-177 (2016). MSC: 35-XX 37-XX PDF BibTeX XML Cite \textit{W.-X. Ma} et al., Math. Comput. Simul. 127, 166--177 (2016; Zbl 07313676) Full Text: DOI OpenURL
Zhang, Yu-Feng; Wang, Yan Generating integrable lattice hierarchies by some matrix and operator Lie algebras. (English) Zbl 1419.37067 Adv. Difference Equ. 2016, Paper No. 313, 28 p. (2016). MSC: 37K10 PDF BibTeX XML Cite \textit{Y.-F. Zhang} and \textit{Y. Wang}, Adv. Difference Equ. 2016, Paper No. 313, 28 p. (2016; Zbl 1419.37067) Full Text: DOI OpenURL
Zhaqilao Darboux transformation and rational solutions for an integrable coupling mKdV system. (English) Zbl 1374.35369 J. Inn. Mong. Norm. Univ., Nat. Sci. 45, No. 5, 598-602, 609 (2016). MSC: 35Q53 37K35 PDF BibTeX XML Cite \textit{Zhaqilao}, J. Inn. Mong. Norm. Univ., Nat. Sci. 45, No. 5, 598--602, 609 (2016; Zbl 1374.35369) OpenURL
Wu, Jingzhu; Xing, Xiuzhi; Geng, Xianguo Integrable couplings of fractional L-hierarchy and its Hamiltonian structures. (English) Zbl 1347.65188 Math. Methods Appl. Sci. 39, No. 14, 3925-3931 (2016). MSC: 65P10 PDF BibTeX XML Cite \textit{J. Wu} et al., Math. Methods Appl. Sci. 39, No. 14, 3925--3931 (2016; Zbl 1347.65188) Full Text: DOI OpenURL
Zhang, Yu-Feng; Tam, Honwah On generating discrete integrable systems via Lie algebras and commutator equations. (English) Zbl 1335.37049 Commun. Theor. Phys. 65, No. 3, 335-340 (2016). MSC: 37K10 17B80 PDF BibTeX XML Cite \textit{Y.-F. Zhang} and \textit{H. Tam}, Commun. Theor. Phys. 65, No. 3, 335--340 (2016; Zbl 1335.37049) Full Text: DOI OpenURL
Herrmann, Michael; Mikikits-Leitner, Alice KdV waves in atomic chains with nonlocal interactions. (English) Zbl 1343.37076 Discrete Contin. Dyn. Syst. 36, No. 4, 2047-2067 (2016). Reviewer: Natalia Bondarenko (Saratov) MSC: 37K60 37K40 PDF BibTeX XML Cite \textit{M. Herrmann} and \textit{A. Mikikits-Leitner}, Discrete Contin. Dyn. Syst. 36, No. 4, 2047--2067 (2016; Zbl 1343.37076) Full Text: DOI arXiv OpenURL
Dorigoni, Daniele; Hatsuda, Yasuyuki Resurgence of the cusp anomalous dimension. (English) Zbl 1388.81311 J. High Energy Phys. 2015, No. 9, Paper No. 138, 42 p. (2015). MSC: 81T13 PDF BibTeX XML Cite \textit{D. Dorigoni} and \textit{Y. Hatsuda}, J. High Energy Phys. 2015, No. 9, Paper No. 138, 42 p. (2015; Zbl 1388.81311) Full Text: DOI arXiv OpenURL
Feng, Shuo; Yu, Fajun A new discrete integrable coupling system and its Hamiltonian structure for the modified Toda lattice hierarchy. (English) Zbl 1363.37031 Ann. Appl. Math. 31, No. 3, 274-286 (2015). MSC: 37K10 37J35 70H06 PDF BibTeX XML Cite \textit{S. Feng} and \textit{F. Yu}, Ann. Appl. Math. 31, No. 3, 274--286 (2015; Zbl 1363.37031) OpenURL
Yu, Shuimeng; Yao, Yuqin; Shen, Shoufeng; Ma, Wen-Xiu Bi-integrable couplings of a Kaup-Newell type soliton hierarchy and their bi-Hamiltonian structures. (English) Zbl 1351.37253 Commun. Nonlinear Sci. Numer. Simul. 23, No. 1-3, 366-377 (2015). MSC: 37K10 PDF BibTeX XML Cite \textit{S. Yu} et al., Commun. Nonlinear Sci. Numer. Simul. 23, No. 1--3, 366--377 (2015; Zbl 1351.37253) Full Text: DOI OpenURL
Xu, Xi-Xiang Solving an integrable coupling system of Merola-Ragnisco-Tu lattice equation by Darboux transformation of Lax pair. (English) Zbl 1352.37180 Commun. Nonlinear Sci. Numer. Simul. 23, No. 1-3, 192-201 (2015). MSC: 37K10 37K35 37K60 34K31 PDF BibTeX XML Cite \textit{X.-X. Xu}, Commun. Nonlinear Sci. Numer. Simul. 23, No. 1--3, 192--201 (2015; Zbl 1352.37180) Full Text: DOI OpenURL
Shen, Shoufeng; Li, Chunxia; Jin, Yongyang; Yu, Shuimeng Multi-component integrable couplings for the Ablowitz-Kaup-Newell-Segur and Volterra hierarchies. (English) Zbl 1335.35222 Math. Methods Appl. Sci. 38, No. 17, 4345-4356 (2015). MSC: 35Q53 35C08 37K10 17B80 PDF BibTeX XML Cite \textit{S. Shen} et al., Math. Methods Appl. Sci. 38, No. 17, 4345--4356 (2015; Zbl 1335.35222) Full Text: DOI OpenURL
Luo, Lin; Ma, Zhiyong; Xie, Xiaoqiang The algebraic structure of integrable coupling equations. (Chinese. English summary) Zbl 1340.37081 J. Shanghai Second Polytech. Univ. 32, No. 2, 152-155 (2015). MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{L. Luo} et al., J. Shanghai Second Polytech. Univ. 32, No. 2, 152--155 (2015; Zbl 1340.37081) OpenURL
Chanu, Claudia Maria; Degiovanni, Luca; Rastelli, Giovanni Extended Hamiltonians, coupling-constant metamorphosis and the Post-Winternitz system. (English) Zbl 1360.37147 SIGMA, Symmetry Integrability Geom. Methods Appl. 11, Paper 094, 9 p. (2015). MSC: 37J35 70H33 PDF BibTeX XML Cite \textit{C. M. Chanu} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 11, Paper 094, 9 p. (2015; Zbl 1360.37147) Full Text: DOI arXiv EMIS OpenURL
Münkler, Hagen; Pollok, Jonas Minimal surfaces of the \(\mathrm{AdS}_{5}\times {S}^{5}\) superstring and the symmetries of super Wilson loops at strong coupling. (English) Zbl 1342.81460 J. Phys. A, Math. Theor. 48, No. 36, Article ID 365402, 46 p. (2015). Reviewer: Saeid Jafari (Slagelse) MSC: 81T30 81T60 81T13 46S60 81T20 81T40 81R12 58E12 PDF BibTeX XML Cite \textit{H. Münkler} and \textit{J. Pollok}, J. Phys. A, Math. Theor. 48, No. 36, Article ID 365402, 46 p. (2015; Zbl 1342.81460) Full Text: DOI arXiv OpenURL
He, Baiying; Chen, Liangyun; Cao, Yan Bi-integrable couplings and tri-integrable couplings of the modified Ablowitz-Kaup-Newell-Segur hierarchy with self-consistent sources. (English) Zbl 1306.37076 J. Math. Phys. 56, No. 1, 013502, 15 p. (2015). MSC: 37K10 PDF BibTeX XML Cite \textit{B. He} et al., J. Math. Phys. 56, No. 1, 013502, 15 p. (2015; Zbl 1306.37076) Full Text: DOI OpenURL
Dong, Xia; Xia, Tiecheng; Li, Desheng The semidirect sum of Lie algebras and its applications to C-KdV hierarchy. (English) Zbl 1449.37048 Abstr. Appl. Anal. 2014, Article ID 295068, 6 p. (2014). MSC: 37K30 37K10 37K06 17B80 PDF BibTeX XML Cite \textit{X. Dong} et al., Abstr. Appl. Anal. 2014, Article ID 295068, 6 p. (2014; Zbl 1449.37048) Full Text: DOI OpenURL
Wang, Xiangrong; Zhang, Xiaoen; Zhao, Peiyi Binary nonlinearization for AKNS-KN coupling system. (English) Zbl 1472.37074 Abstr. Appl. Anal. 2014, Article ID 253102, 12 p. (2014). MSC: 37K10 37K06 37K60 PDF BibTeX XML Cite \textit{X. Wang} et al., Abstr. Appl. Anal. 2014, Article ID 253102, 12 p. (2014; Zbl 1472.37074) Full Text: DOI OpenURL
Manukure, Solomon; Ma, Wen-Xiu Bi-integrable couplings of a new soliton hierarchy associated with a non-semisimple Lie algebra. (English) Zbl 1335.37048 Appl. Math. Comput. 245, 44-52 (2014). MSC: 37K10 37K40 PDF BibTeX XML Cite \textit{S. Manukure} and \textit{W.-X. Ma}, Appl. Math. Comput. 245, 44--52 (2014; Zbl 1335.37048) Full Text: DOI OpenURL
Xia, Dong; Xia, Tiecheng; Li, Desheng The fractional quadratic-form identity and bi-Hamiltonian structures of an integrable coupling of the fractional coupled Burgers hierarchy. (English) Zbl 1324.37030 Ann. Differ. Equations 30, No. 4, 438-448 (2014). MSC: 37K10 35Q53 35R11 PDF BibTeX XML Cite \textit{D. Xia} et al., Ann. Differ. Equations 30, No. 4, 438--448 (2014; Zbl 1324.37030) OpenURL
Tang, Yaning; Wang, Lei A new soliton hierarchy and integrable couplings as well as their Hamiltonian structures. (Chinese. English summary) Zbl 1324.37029 J. Northwest Univ., Nat. Sci. Ed. 44, No. 5, 709-714 (2014). MSC: 37K10 37K05 37K40 PDF BibTeX XML Cite \textit{Y. Tang} and \textit{L. Wang}, J. Northwest Univ., Nat. Sci. Ed. 44, No. 5, 709--714 (2014; Zbl 1324.37029) OpenURL
Zhao, Jing Two expanding integrable models of the AKNS hierarchy with five-potential functions. (English) Zbl 1311.35249 Far East J. Appl. Math. 89, No. 1, 41-45 (2014). MSC: 35Q51 PDF BibTeX XML Cite \textit{J. Zhao}, Far East J. Appl. Math. 89, No. 1, 41--45 (2014; Zbl 1311.35249) Full Text: Link OpenURL
Sun, Kai-Shi; Liu, Fa-Sheng Hamiltonian structure and integrable coupling to a system of Liouville integrable. (English) Zbl 1307.35259 Far East J. Math. Sci. (FJMS) 93, No. 2, 165-174 (2014). MSC: 35Q53 37K10 PDF BibTeX XML Cite \textit{K.-S. Sun} and \textit{F.-S. Liu}, Far East J. Math. Sci. (FJMS) 93, No. 2, 165--174 (2014; Zbl 1307.35259) Full Text: Link OpenURL
Wei, Han-Yu; Xia, Tie-Cheng The generalized fractional trace variational identity and fractional integrable couplings of Kaup-Newell hierarchy. (English) Zbl 1301.37051 J. Math. Phys. 55, No. 8, 083501, 11 p. (2014). MSC: 37K10 26A33 PDF BibTeX XML Cite \textit{H.-Y. Wei} and \textit{T.-C. Xia}, J. Math. Phys. 55, No. 8, 083501, 11 p. (2014; Zbl 1301.37051) Full Text: DOI OpenURL
Zhang, Yu-Feng; Tam, Hon-Wah Generation of nonlinear evolution equations by reductions of the self-dual Yang-Mills equations. (English) Zbl 1284.53029 Commun. Theor. Phys. 61, No. 2, 203-206 (2014). MSC: 53C07 37J35 70S15 PDF BibTeX XML Cite \textit{Y.-F. Zhang} and \textit{H.-W. Tam}, Commun. Theor. Phys. 61, No. 2, 203--206 (2014; Zbl 1284.53029) Full Text: DOI OpenURL
Li, Li; Yu, Fajun A new nonlinear integrable couplings of soliton hierarchy and its Hamiltonian structure with Kronecker product. (A new nonlinear integrable couplings of solioton hierarchy and its Hamiltonian structure with Kronecker product.) (English) Zbl 1401.37083 Int. J. Nonlinear Sci. Numer. Simul. 14, No. 7-8, 513-519 (2013). MSC: 37K40 PDF BibTeX XML Cite \textit{L. Li} and \textit{F. Yu}, Int. J. Nonlinear Sci. Numer. Simul. 14, No. 7--8, 513--519 (2013; Zbl 1401.37083) Full Text: DOI OpenURL
Ma, Wen-Xiu; Meng, Jinghan; Zhang, Huiqun Tri-integrable couplings by matrix loop algebras. (English) Zbl 1401.37077 Int. J. Nonlinear Sci. Numer. Simul. 14, No. 6, 377-388 (2013). MSC: 37K10 37K05 PDF BibTeX XML Cite \textit{W.-X. Ma} et al., Int. J. Nonlinear Sci. Numer. Simul. 14, No. 6, 377--388 (2013; Zbl 1401.37077) Full Text: DOI OpenURL
Ngọc, San Vũ Spectral invariants for coupled spin-oscillators. (English) Zbl 1319.35208 Sémin. Laurent Schwartz, EDP Appl. 2011-2012, Exp. No. VII, 18 p. (2013). MSC: 35Q41 35Q55 35P05 37K10 PDF BibTeX XML Cite \textit{S. V. Ngọc}, Sémin. Laurent Schwartz, EDP Appl. 2011--2012, Exp. No. VII, 18 p. (2013; Zbl 1319.35208) Full Text: DOI Numdam OpenURL
Li, Xin-Yue; Li, Yu-Xia; Zhao, Qiu-Lan New integrable coupling form associated with a discrete three by three matrix spectral problem. (English) Zbl 1310.37036 Pac. J. Appl. Math. 5, No. 1, 1-16 (2013). MSC: 37K10 37K05 PDF BibTeX XML Cite \textit{X.-Y. Li} et al., Pac. J. Appl. Math. 5, No. 1, 1--16 (2013; Zbl 1310.37036) OpenURL
Wang, Sichuan; Xia, Tiecheng Integrable couplings of TD soliton equation hierarchy and its Hamiltonian structures. (Chinese. English summary) Zbl 1299.37056 Commun. Appl. Math. Comput. 27, No. 4, 450-458 (2013). MSC: 37K10 37K40 35Q51 PDF BibTeX XML Cite \textit{S. Wang} and \textit{T. Xia}, Commun. Appl. Math. Comput. 27, No. 4, 450--458 (2013; Zbl 1299.37056) OpenURL
Ma, Wen-Xiu; Zhang, Huiqun; Meng, Jinghan A block matrix loop algebra and bi-integrable couplings of the Dirac equations. (English) Zbl 1331.37094 East Asian J. Appl. Math. 3, No. 3, 171-189 (2013). MSC: 37K10 37K05 37K40 35F05 35Q53 PDF BibTeX XML Cite \textit{W.-X. Ma} et al., East Asian J. Appl. Math. 3, No. 3, 171--189 (2013; Zbl 1331.37094) Full Text: DOI Link OpenURL
Yue, Chao; Xia, Tiecheng The fractional quadratic-form identity and Hamiltonian structure of an integrable coupling of the fractional Ablowitz-Kaup-Newell-segur hierarchy. (English) Zbl 1298.37062 J. Math. Phys. 54, No. 7, 073518, 8 p. (2013). MSC: 37K10 26A33 35R11 37K30 PDF BibTeX XML Cite \textit{C. Yue} and \textit{T. Xia}, J. Math. Phys. 54, No. 7, 073518, 8 p. (2013; Zbl 1298.37062) Full Text: DOI OpenURL
Liu, Guanming; Xia, Tiecheng Nonlinear integrable couplings of Boiti-Pempinelli-Tu equations hierarchy and its Hamiltonian structures. (Chinese. English summary) Zbl 1299.37055 Commun. Appl. Math. Comput. 27, No. 3, 313-321 (2013). MSC: 37K05 37K10 37K40 PDF BibTeX XML Cite \textit{G. Liu} and \textit{T. Xia}, Commun. Appl. Math. Comput. 27, No. 3, 313--321 (2013; Zbl 1299.37055) Full Text: DOI OpenURL
Yu, Fajun; Li, Li Continuous limits for an integrable coupling of the Kac-Van Moerbeke hierarchy. (English) Zbl 1338.37112 Appl. Math. Comput. 219, No. 11, 5772-5778 (2013). MSC: 37K60 37K10 PDF BibTeX XML Cite \textit{F. Yu} and \textit{L. Li}, Appl. Math. Comput. 219, No. 11, 5772--5778 (2013; Zbl 1338.37112) Full Text: DOI OpenURL
Lhotka, Christoph A symplectic mapping for the synchronous spin-orbit problem. (English) Zbl 1266.70034 Celest. Mech. Dyn. Astron. 115, No. 4, 405-426 (2013). MSC: 70H09 70E20 70E40 PDF BibTeX XML Cite \textit{C. Lhotka}, Celest. Mech. Dyn. Astron. 115, No. 4, 405--426 (2013; Zbl 1266.70034) Full Text: DOI OpenURL
Wang, Hui; Xia, Tie-Cheng Coupling integrable couplings of an equation hierarchy. (English) Zbl 1264.37030 Commun. Theor. Phys. 59, No. 4, 393-397 (2013). MSC: 37K10 22E70 58J53 PDF BibTeX XML Cite \textit{H. Wang} and \textit{T.-C. Xia}, Commun. Theor. Phys. 59, No. 4, 393--397 (2013; Zbl 1264.37030) Full Text: DOI OpenURL
Meng, Jing-Han; Ma, Wen-Xiu Hamiltonian tri-integrable couplings of the AKNS hierarchy. (English) Zbl 1264.37026 Commun. Theor. Phys. 59, No. 4, 385-392 (2013). MSC: 37K10 37K05 37K40 22E67 PDF BibTeX XML Cite \textit{J.-H. Meng} and \textit{W.-X. Ma}, Commun. Theor. Phys. 59, No. 4, 385--392 (2013; Zbl 1264.37026) Full Text: DOI OpenURL
Sergyeyev, Artur Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs. (English) Zbl 1266.37025 Phys. Lett., A 376, No. 28-29, 2015-2022 (2012). MSC: 37J35 70H15 70H30 PDF BibTeX XML Cite \textit{A. Sergyeyev}, Phys. Lett., A 376, No. 28--29, 2015--2022 (2012; Zbl 1266.37025) Full Text: DOI arXiv OpenURL
Yu, Fajun A real nonlinear integrable coupling for the generalized Toda soliton hierarchy. (Chinese. English summary) Zbl 1274.35316 Acta Math. Sci., Ser. A, Chin. Ed. 32, No. 5, 974-981 (2012). MSC: 35Q51 37K40 PDF BibTeX XML Cite \textit{F. Yu}, Acta Math. Sci., Ser. A, Chin. Ed. 32, No. 5, 974--981 (2012; Zbl 1274.35316) OpenURL
Wang, Xinzeng; Dong, Huanhe; Li, Yuxia Some reductions from a Lax integrable system and their Hamiltonian structures. (English) Zbl 1254.37047 Appl. Math. Comput. 218, No. 20, 10032-10039 (2012). MSC: 37K10 37K15 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Math. Comput. 218, No. 20, 10032--10039 (2012; Zbl 1254.37047) Full Text: DOI OpenURL
Tang, Yaning; Ma, Wen-Xiu; Xu, Wei; Gao, Liang Integrable coupling hierarchy and Hamiltonian structure for a matrix spectral problem with arbitrary-order. (English) Zbl 1242.37050 Commun. Nonlinear Sci. Numer. Simul. 17, No. 2, 585-592 (2012). MSC: 37K10 35Q51 PDF BibTeX XML Cite \textit{Y. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 17, No. 2, 585--592 (2012; Zbl 1242.37050) Full Text: DOI OpenURL
Wen, Xiao-Yong An integrable lattice hierarchy, associated integrable coupling, Darboux transformation and conservation laws. (English) Zbl 1257.37049 Appl. Math. Comput. 218, No. 9, 5796-5805 (2012). Reviewer: Ma Wen-Xiu (Tampa) MSC: 37K10 37K35 35Q51 PDF BibTeX XML Cite \textit{X.-Y. Wen}, Appl. Math. Comput. 218, No. 9, 5796--5805 (2012; Zbl 1257.37049) Full Text: DOI OpenURL
Pelayo, Álvaro; Vũ Ngọc, San Hamiltonian dynamics and spectral theory for SPIN-oscillators. (English) Zbl 1263.70022 Commun. Math. Phys. 309, No. 1, 123-154 (2012). Reviewer: Ivailo Mladenov (Sofia) MSC: 70H06 81Q20 81S10 PDF BibTeX XML Cite \textit{Á. Pelayo} and \textit{S. Vũ Ngọc}, Commun. Math. Phys. 309, No. 1, 123--154 (2012; Zbl 1263.70022) Full Text: DOI arXiv OpenURL
Lin, Chang; Lin, Mai-Mai New DLW hierarchy of an integrable coupling and its Hamiltonian structure. (English) Zbl 1264.37023 Commun. Theor. Phys. 55, No. 6, 1012-1016 (2011). MSC: 37K10 PDF BibTeX XML Cite \textit{C. Lin} and \textit{M.-M. Lin}, Commun. Theor. Phys. 55, No. 6, 1012--1016 (2011; Zbl 1264.37023) Full Text: DOI OpenURL
Shamolin, M. V. Rigid body motion in a resisting medium. (Russian. English summary) Zbl 1274.74112 Mat. Model. 23, No. 12, 79-104 (2011). Reviewer: Sergei Georgievich Zhuravlev (Moskva) MSC: 74F10 70E40 70K05 70K20 PDF BibTeX XML Cite \textit{M. V. Shamolin}, Mat. Model. 23, No. 12, 79--104 (2011; Zbl 1274.74112) Full Text: MNR OpenURL
Yu, Fa-Jun A kind of new continuous limits of an integrable coupling system for discrete AKNS hierarchy. (English) Zbl 1247.37072 Int. J. Mod. Phys. B 25, No. 26, 3443-3454 (2011). MSC: 37K10 37K60 81T27 PDF BibTeX XML Cite \textit{F.-J. Yu}, Int. J. Mod. Phys. B 25, No. 26, 3443--3454 (2011; Zbl 1247.37072) Full Text: DOI OpenURL
Hao, Tao; Sun, Ye-Peng Non-isospectral multi-component AKNS equations and new integrable couplings. (English) Zbl 1245.35103 Int. Math. Forum 6, No. 25-28, 1249-1260 (2011). MSC: 35Q51 37K10 PDF BibTeX XML Cite \textit{T. Hao} and \textit{Y.-P. Sun}, Int. Math. Forum 6, No. 25--28, 1249--1260 (2011; Zbl 1245.35103) Full Text: Link OpenURL
Yu, Fajun A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure. (English) Zbl 1242.37051 Phys. Lett., A 375, No. 13, 1504-1509 (2011). MSC: 37K10 37K40 37K15 PDF BibTeX XML Cite \textit{F. Yu}, Phys. Lett., A 375, No. 13, 1504--1509 (2011; Zbl 1242.37051) Full Text: DOI OpenURL
Wei, Yuan; Xu, Fenghua A higher-dimensional Lie algebra and its applications. (Chinese. English summary) Zbl 1249.37046 J. Xuzhou Norm. Univ., Nat. Sci. 29, No. 1, 27-30 (2011). MSC: 37K30 37K10 17B80 PDF BibTeX XML Cite \textit{Y. Wei} and \textit{F. Xu}, J. Xuzhou Norm. Univ., Nat. Sci. 29, No. 1, 27--30 (2011; Zbl 1249.37046) OpenURL
Vakhnenko, Oleksiy O. Semidiscrete integrable nonlinear systems generated by the new fourth order spectral operator: systems of obverse type. (English) Zbl 1269.35040 J. Nonlinear Math. Phys. 18, No. 3, 415-425 (2011). MSC: 35Q55 37K60 35P30 PDF BibTeX XML Cite \textit{O. O. Vakhnenko}, J. Nonlinear Math. Phys. 18, No. 3, 415--425 (2011; Zbl 1269.35040) Full Text: DOI OpenURL
Wang, Xiangrong; Fang, Yong; Dong, Huanhe Component-trace identity for Hamiltonian structure of the integrable couplings of the giachetti-johnson (GJ) hierarchy and coupling integrable couplings. (English) Zbl 1221.37136 Commun. Nonlinear Sci. Numer. Simul. 16, No. 7, 2680-2688 (2011). MSC: 37K10 PDF BibTeX XML Cite \textit{X. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 7, 2680--2688 (2011; Zbl 1221.37136) Full Text: DOI OpenURL
Guo, Xiurong The coupling integrable couplings of the modified Korteweg-de Vries (mKdV) hierarchy. (English) Zbl 1221.37128 Commun. Nonlinear Sci. Numer. Simul. 16, No. 4, 1760-1768 (2011). MSC: 37K10 PDF BibTeX XML Cite \textit{X. Guo}, Commun. Nonlinear Sci. Numer. Simul. 16, No. 4, 1760--1768 (2011; Zbl 1221.37128) Full Text: DOI OpenURL
Tang, Lei-Yu; Fan, Jian-Cong; Li, Xue-Hua A hierarchy of Liouville integrable lattice equations and its integrable coupling systems. (English) Zbl 1221.37152 Commun. Nonlinear Sci. Numer. Simul. 16, No. 4, 1742-1751 (2011). MSC: 37K60 37K10 37K15 PDF BibTeX XML Cite \textit{L.-Y. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 4, 1742--1751 (2011; Zbl 1221.37152) Full Text: DOI OpenURL
Wang, Hui; Xia, Tie-cheng Three nonlinear integrable couplings of the nonlinear Schrödinger equations. (English) Zbl 1225.37076 Commun. Nonlinear Sci. Numer. Simul. 16, No. 11, 4232-4237 (2011). MSC: 37K10 35Q55 37K30 PDF BibTeX XML Cite \textit{H. Wang} and \textit{T.-c. Xia}, Commun. Nonlinear Sci. Numer. Simul. 16, No. 11, 4232--4237 (2011; Zbl 1225.37076) Full Text: DOI OpenURL
Guo, Fu-Kui; Zhang, Yu-Feng Double integrable couplings and their constructing method. (English) Zbl 1223.81120 Commun. Theor. Phys. 55, No. 1, 6-12 (2011). MSC: 81R10 81R12 22E70 37K10 PDF BibTeX XML Cite \textit{F.-K. Guo} and \textit{Y.-F. Zhang}, Commun. Theor. Phys. 55, No. 1, 6--12 (2011; Zbl 1223.81120) Full Text: DOI OpenURL
Ballesteros, Ángel; Enciso, Alberto; Herranz, Francisco J.; Ragnisco, Orlando; Riglioni, Danilo Superintegrable oscillator and Kepler systems on spaces of nonconstant curvature via the Stäckel transform. (English) Zbl 1218.37075 SIGMA, Symmetry Integrability Geom. Methods Appl. 7, Paper 048, 15 p. (2011). MSC: 37J35 70H06 81R12 PDF BibTeX XML Cite \textit{Á. Ballesteros} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 7, Paper 048, 15 p. (2011; Zbl 1218.37075) Full Text: DOI arXiv EuDML OpenURL
Bartels, J.; Kotanski, J.; Schomerus, V. Excited hexagon Wilson loops for strongly coupled \({\mathcal N} = 4\) SYM. (English) Zbl 1214.81290 J. High Energy Phys. 2011, No. 1, Paper No. 096, 32 p. (2011). MSC: 81V05 81U05 81T13 81T30 81T60 81R12 PDF BibTeX XML Cite \textit{J. Bartels} et al., J. High Energy Phys. 2011, No. 1, Paper No. 096, 32 p. (2011; Zbl 1214.81290) Full Text: DOI arXiv OpenURL
Serban, Didina Integrability and the AdS/CFT correspondence. (English) Zbl 1228.81242 J. Phys. A, Math. Theor. 44, No. 12, Article ID 124001, 83 p. (2011). Reviewer: Nikolaj M. Glazunov (Kyïv) MSC: 81T30 81R12 81T20 81T13 81T60 81V05 81T40 47A20 PDF BibTeX XML Cite \textit{D. Serban}, J. Phys. A, Math. Theor. 44, No. 12, Article ID 124001, 83 p. (2011; Zbl 1228.81242) Full Text: DOI arXiv OpenURL
Yang, Gang Scattering amplitudes at strong coupling for 4K gluons. (English) Zbl 1294.81297 J. High Energy Phys. 2010, No. 12, Paper No. 082, 26 p. (2010). MSC: 81V05 81U05 81T60 81T30 81T20 81T40 81R12 PDF BibTeX XML Cite \textit{G. Yang}, J. High Energy Phys. 2010, No. 12, Paper No. 082, 26 p. (2010; Zbl 1294.81297) Full Text: DOI arXiv OpenURL
Ding, Hai-Yong; Sun, Ye-Peng; Xue, Feng-Chang A hierarchy of differential-difference equations, conservation laws and new integrable coupling system. (English) Zbl 1222.37077 Commun. Nonlinear Sci. Numer. Simul. 15, No. 8, 2037-2043 (2010). MSC: 37K60 39A70 PDF BibTeX XML Cite \textit{H.-Y. Ding} et al., Commun. Nonlinear Sci. Numer. Simul. 15, No. 8, 2037--2043 (2010; Zbl 1222.37077) Full Text: DOI OpenURL
Lin, Chang; Lin, Mai-Mai The hierarchy of an integrable coupling and its Hamiltonian structure. (English) Zbl 1221.37131 Commun. Nonlinear Sci. Numer. Simul. 15, No. 2, 232-237 (2010). MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{C. Lin} and \textit{M.-M. Lin}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 2, 232--237 (2010; Zbl 1221.37131) Full Text: DOI OpenURL
Li, Xuehua; Shang, Wanqun A hierarchy of discrete integrable coupling and its Hamiltonian structure. (Chinese. English summary) Zbl 1229.37095 Ludong Univ. J., Nat. Sci. 26, No. 2, 112-116, 126 (2010). MSC: 37K10 PDF BibTeX XML Cite \textit{X. Li} and \textit{W. Shang}, Ludong Univ. J., Nat. Sci. 26, No. 2, 112--116, 126 (2010; Zbl 1229.37095) OpenURL
Wang, Yun-Hu; Dong, Huan-He; He, Bai-Ying; Wang, Hui Two new expanding Lie algebras and their integrable models. (English) Zbl 1222.37067 Commun. Theor. Phys. 53, No. 4, 619-623 (2010). MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{Y.-H. Wang} et al., Commun. Theor. Phys. 53, No. 4, 619--623 (2010; Zbl 1222.37067) Full Text: DOI OpenURL
Sun, Ye-Peng; Zhao, Hong-Qing Two hierarchies of nonlinear soliton equations, new integrable symplectic map and discrete integrable couplings. (English) Zbl 1219.37053 Int. J. Mod. Phys. B 24, No. 24, 4821-4834 (2010). MSC: 37K40 37K30 37K10 PDF BibTeX XML Cite \textit{Y.-P. Sun} and \textit{H.-Q. Zhao}, Int. J. Mod. Phys. B 24, No. 24, 4821--4834 (2010; Zbl 1219.37053) Full Text: DOI OpenURL
Li, Zhu Multi component matrix loop algebras and their applications to integrable systems. (English) Zbl 1223.37092 Ma, Wen-Xiu (ed.) et al., Nonlinear and modern mathematical physics. Proceedings of the 1st international workshop held in Beijing, China, July 15–21, 2009. Melville, NY: American Institute of Physics (ISBN 978-0-7354-0755-8/pbk). AIP Conference Proceedings 1212, 286-292 (2010). Reviewer: Chuangan Hu (Cupertino) MSC: 37K15 37K10 37K30 PDF BibTeX XML Cite \textit{Z. Li}, AIP Conf. Proc. 1212, 286--292 (2010; Zbl 1223.37092) OpenURL
Ma, Wen-Xiu Variational identities and Hamiltonian structures. (English) Zbl 1230.37086 Ma, Wen-Xiu (ed.) et al., Nonlinear and modern mathematical physics. Proceedings of the 1st international workshop held in Beijing, China, July 15–21, 2009. Melville, NY: American Institute of Physics (ISBN 978-0-7354-0755-8/pbk). AIP Conference Proceedings 1212, 1-27 (2010). Reviewer: Chuan-Fu Yang (Nanjing) MSC: 37K10 37K05 49S05 35Q51 PDF BibTeX XML Cite \textit{W.-X. Ma}, AIP Conf. Proc. 1212, 1--27 (2010; Zbl 1230.37086) OpenURL
Yang, Hong-Xiang; Du, Jun; Xu, Xi-Xiang; Cui, Jin-Ping Hamiltonian and super-Hamiltonian systems of a hierarchy of soliton equations. (English) Zbl 1202.35205 Appl. Math. Comput. 217, No. 4, 1497-1508 (2010). MSC: 35Q51 37K05 37K10 PDF BibTeX XML Cite \textit{H.-X. Yang} et al., Appl. Math. Comput. 217, No. 4, 1497--1508 (2010; Zbl 1202.35205) Full Text: DOI OpenURL
Yu, Fajun Integrable coupling system of fractional soliton equation hierarchy. (English) Zbl 1233.35172 Phys. Lett., A 373, No. 41, 3730-3733 (2009). MSC: 35Q51 35R11 35C08 PDF BibTeX XML Cite \textit{F. Yu}, Phys. Lett., A 373, No. 41, 3730--3733 (2009; Zbl 1233.35172) Full Text: DOI OpenURL
Li, Li; Yu, Fajun Continuous limits for an integrable coupling system of Toda equation hierarchy. (English) Zbl 1233.37038 Phys. Lett., A 373, No. 39, 3501-3506 (2009). MSC: 37K10 81T27 22E70 35Q51 PDF BibTeX XML Cite \textit{L. Li} and \textit{F. Yu}, Phys. Lett., A 373, No. 39, 3501--3506 (2009; Zbl 1233.37038) Full Text: DOI OpenURL
Yu, Fajun; Li, Li An integrable coupling system of lattice hierarchy and its continuous limits. (English) Zbl 1228.37050 Phys. Lett., A 373, No. 17, 1540-1545 (2009). MSC: 37K10 35Q51 35P30 81T27 PDF BibTeX XML Cite \textit{F. Yu} and \textit{L. Li}, Phys. Lett., A 373, No. 17, 1540--1545 (2009; Zbl 1228.37050) Full Text: DOI OpenURL
Dong, Huan-He; Wang, Xinzeng Lie algebras and Lie super algebra for the integrable couplings of NLS-mKdV hierarchy. (English) Zbl 1221.37120 Commun. Nonlinear Sci. Numer. Simul. 14, No. 12, 4071-4077 (2009). MSC: 37K10 37K30 35Q55 PDF BibTeX XML Cite \textit{H.-H. Dong} and \textit{X. Wang}, Commun. Nonlinear Sci. Numer. Simul. 14, No. 12, 4071--4077 (2009; Zbl 1221.37120) Full Text: DOI OpenURL
Yan, Qingyou; Zhang, Xingping; Luo, Guoliang A new loop algebra and its expanded loop algebras, as well as their applications. (English) Zbl 1221.37139 Commun. Nonlinear Sci. Numer. Simul. 14, No. 8, 3266-3273 (2009). MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{Q. Yan} et al., Commun. Nonlinear Sci. Numer. Simul. 14, No. 8, 3266--3273 (2009; Zbl 1221.37139) Full Text: DOI OpenURL
Zhao, Wencai; Li, Ling Two classes of integrable coupling for AKNS hierarchy. (English) Zbl 1212.35403 Ann. Differ. Equations 25, No. 4, 495-501 (2009). MSC: 35Q51 PDF BibTeX XML Cite \textit{W. Zhao} and \textit{L. Li}, Ann. Differ. Equations 25, No. 4, 495--501 (2009; Zbl 1212.35403) OpenURL
Li, Zhu Liouville integrable system and associated integrable coupling. (English) Zbl 1187.37098 Commun. Theor. Phys. 52, No. 6, 987-991 (2009). MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{Z. Li}, Commun. Theor. Phys. 52, No. 6, 987--991 (2009; Zbl 1187.37098) Full Text: DOI OpenURL
Yue, Chao; Liu, Zhaojun; Yu, Jiadong Two \((2+1)\)-dimensional integrable couplings of the KN hierarchy and corresponding Hamiltonian structures. (English) Zbl 1180.37101 Mod. Phys. Lett. B 23, No. 30, 3643-3658 (2009). MSC: 37K10 81T13 17B68 PDF BibTeX XML Cite \textit{C. Yue} et al., Mod. Phys. Lett. B 23, No. 30, 3643--3658 (2009; Zbl 1180.37101) Full Text: DOI OpenURL
Li, Zhu; Dong, Huanhe New integrable lattice hierarchy and its integrable coupling. (English) Zbl 1211.37091 Int. J. Mod. Phys. B 23, No. 23, 4791-4800 (2009). Reviewer: Athanasios Yannacopoulos (Athens) MSC: 37K60 PDF BibTeX XML Cite \textit{Z. Li} and \textit{H. Dong}, Int. J. Mod. Phys. B 23, No. 23, 4791--4800 (2009; Zbl 1211.37091) Full Text: DOI OpenURL
Yu, Fajun A non-isospectral integrable couplings of Volterra lattice hierarchy with self-consistent sources. (English) Zbl 1220.37059 Appl. Math. Comput. 215, No. 3, 1217-1223 (2009). Reviewer: Chuangan Hu (Cupertino) MSC: 37K10 37K60 34A33 PDF BibTeX XML Cite \textit{F. Yu}, Appl. Math. Comput. 215, No. 3, 1217--1223 (2009; Zbl 1220.37059) Full Text: DOI OpenURL