×

Kernel bandwidth optimization in spike rate estimation. (English) Zbl 1446.92170

Summary: Kernel smoother and a time-histogram are classical tools for estimating an instantaneous rate of spike occurrences. We recently established a method for selecting the bin width of the time-histogram, based on the principle of minimizing the mean integrated square error (MISE) between the estimated rate and unknown underlying rate. Here we apply the same optimization principle to the kernel density estimation in selecting the width or “bandwidth” of the kernel, and further extend the algorithm to allow a variable bandwidth, in conformity with data. The variable kernel has the potential to accurately grasp non-stationary phenomena, such as abrupt changes in the firing rate, which we often encounter in neuroscience. In order to avoid possible overfitting that may take place due to excessive freedom, we introduced a stiffness constant for bandwidth variability. Our method automatically adjusts the stiffness constant, thereby adapting to the entire set of spike data. It is revealed that the classical kernel smoother may exhibit goodness-of-fit comparable to, or even better than, that of modern sophisticated rate estimation methods, provided that the bandwidth is selected properly for a given set of spike data, according to the optimization methods presented here.

MSC:

92C20 Neural biology
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDFBibTeX XMLCite

References:

[1] Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall. · Zbl 0617.62042
[2] Snyder, D. (1975). Random point processes. New York: Wiley. · Zbl 0385.60052
[3] Scott, D. W. (1992). Multivariate density estimation: Theory, practice, and visualization. New York: Wiley-Interscience. · Zbl 0850.62006
[4] Cox, R. D. (1962). Renewal theory. London: Wiley. · Zbl 0103.11504
[5] Abramson, I. (1982). On bandwidth variation in kernel estimates-a square root law. The Annals of Statistics, 10(4), 1217-1223. · Zbl 0507.62040
[6] Abeles, M. (1982). Quantification, smoothing, and confidence-limits for single-units histograms. Journal of Neuroscience Methods, \(5(4), 317-325\).
[7] Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation, \(8(6), 1185-1202\).
[8] Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71(2), 353.
[9] Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (2004). Responses of single neurons in macaque mt/v5 as a function of motion coherence in stochastic dot stimuli. The Neural Signal Archive. nsa2004.1. http://www.neuralsignal.org.
[10] Brewer, M. J. (2004). A Bayesian model for local smoothing in kernel density estimation. Statistics and Computing, 10, 299-309.
[11] Daley, D., & Vere-Jones, D. (1988). An introduction to the theory of point processes. New York: Springer. · Zbl 0657.60069
[12] Cunningham, J., Yu, B., Shenoy, K., Sahani, M., Platt, J., Koller, D., et al. (2008). Inferring neural firing rates from spike trains using Gaussian processes. Advances in Neural Information Processing Systems, 20, 329-336.
[13] Devroye, L., & Lugosi, G. (2000). Variable kernel estimates: On the impossibility of tuning the parameters. In E. GinĂ©, D. Mason, & J. A. Wellner (Eds.), High dimensional probability II (pp. 405-442). Boston: Birkhauser. · Zbl 0961.62026
[14] DiMatteo, I., Genovese, C. R., & Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines. Biometrika, 88(4), 1055-1071. · Zbl 0986.62026
[15] Fan, J., Hall, P., Martin, M. A., & Patil, P. (1996). On local smoothing of nonparametric curve estimators. Journal of the American Statistical Association, 91, 258-266. · Zbl 0871.62036
[16] Endres, D., Oram, M., Schindelin, J., & Foldiak, P. (2008). Bayesian binning beats approximate alternatives: Estimating peristimulus time histograms. Advances in Neural Information Processing Systems, 20, 393-400.
[17] Gerstein, G. L., & Kiang, N. Y. S. (1960). An approach to the quantitative analysis of electrophysiological data from single neurons. Biophysical Journal, \(1(1), 15-28\).
[18] Kass, R. E., Ventura, V., & Cai, C. (2003). Statistical smoothing of neuronal data. Network-Computation in Neural Systems, 14(1), 5-15.
[19] Kass, R. E., Ventura, V., & Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. Journal of Neurophysiology, 94(1), 8-25.
[20] Koyama, S., & Shinomoto, S. (2005). Empirical Bayes interpretations of random point events. Journal of Physics A-Mathematical and General, 38, 531-537. · Zbl 1077.82015
[21] Loader, C. (1999b). Local regression and likelihood. New York: Springer. · Zbl 0929.62046
[22] Loader, C. (1999a). Bandwidth selection: Classical or plug-in? The Annals of Statistics, 27(2), 415-438. · Zbl 0938.62035
[23] Loftsgaarden, D. O., & Quesenberry, C. P. (1965). A nonparametric estimate of a multivariate density function. The Annals of Mathematical Statistics, 36, 1049-1051. · Zbl 0132.38905
[24] Nawrot, M., Aertsen, A., & Rotter, S. (1999). Single-trial estimation of neuronal firing rates: From single-neuron spike trains to population activity. Journal of Neuroscience Methods, 94(1), 81-92.
[25] Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density-function. The Annals of Mathematical Statistics, 27(3), 832-837. · Zbl 0073.14602
[26] Sain, S. R. (2002). Multivariate locally adaptive density estimation. Computational Statistics & Data Analysis, 39, 165-186. · Zbl 1132.62329
[27] Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, \(9(2), 65-78\). · Zbl 0501.62028
[28] Sain, S., & Scott, D. (2002). Zero-bias locally adaptive density estimators. Scandinavian Journal of Statistics, 29(3), 441-460. · Zbl 1036.62034
[29] Sain, S., & Scott, D. (1996). On locally adaptive density estimation. Journal of the American Statistical Association, 91(436), 1525-1534. · Zbl 0882.62035
[30] Sanderson, A. (1980). Adaptive filtering of neuronal spike train data. IEEE Transactions on Biomedical Engineering, 27, 271-274.
[31] Shimazaki, H., & Shinomoto, S. (2007). A method for selecting the bin size of a time histogram. Neural Computation, 19(6), 1503-1527. · Zbl 1115.92014
[32] Scott, D. W., & Terrell, G. R. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82, 1131-1146. · Zbl 0648.62037
[33] Shimokawa, T., & Shinomoto, S. (2009). Estimating instantaneous irregularity of neuronal firing. Neural Computation, 21(7), 1931-1951. · Zbl 1168.92012
[34] Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., et al. (2009). Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Computational Biology, \(5\), e1000433.
[35] Shinomoto, S., & Koyama, S. (2007). A solution to the controversy between rate and temporal coding. Statistics in Medicine, 26, 4032-4038.
[36] Shinomoto, S., Miyazaki, Y., Tamura, H., & Fujita, I. (2005) Regional and laminar differences in in vivo firing patterns of primate cortical neurons. Journal of Neurophysiology, 94(1), 567-575.
[37] Shinomoto, S., Shima, K., & Tanji, J. (2003). Differences in spiking patterns among cortical neurons. Neural Computation, 15(12), 2823-2842. · Zbl 1052.92020
[38] Watson, G.
[39] Smith, A. C., & Brown, E. N. (2003). Estimating a state-space model from point process observations. Neural Computation, 15(5), 965-991. · Zbl 1085.68651
[40] Richmond, B. J., Optican, L. M., & Spitzer, H. (1990). Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. i. stimulus-response relations. Journal of Neurophysiology, 64(2), 351-369.
[41] Parzen, E. (1962). Estimation of a probability density-function and mode. The Annals of Mathematical Statistics, 33(3), 1065. · Zbl 0116.11302
[42] Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, \(9(1), 141-142\).
[43] Jones, M., Marron, J., & Sheather, S. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91(433), 401-407. · Zbl 0873.62040
[44] Hall, P., & Schucany, W. R. (1989). A local cross-validation algorithm. Statistics & Probability Letters, \(8(2), 109-117\). · Zbl 0676.62038
[45] Breiman, L., Meisel, W., & Purcell, E. (1977). Variable kernel estimates of multivariate densities. Technometrics, 19, 135-144. · Zbl 0379.62023
[46] Adrian, E. (1928). The basis of sensation: The action of the sense organs. New York: W.W. Norton.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.