Cao, Nan; Fu, Xianlong Existence and asymptotic properties of solutions of an integro-differential evolution equation with nonlocal conditions on infinite interval. (English) Zbl 07633380 J. Fixed Point Theory Appl. 25, No. 1, Paper No. 14, 27 p. (2023). MSC: 34K25 34K30 45J05 47N20 PDF BibTeX XML Cite \textit{N. Cao} and \textit{X. Fu}, J. Fixed Point Theory Appl. 25, No. 1, Paper No. 14, 27 p. (2023; Zbl 07633380) Full Text: DOI OpenURL
Mohammadi-Firouzjaei, Hadi; Adibi, Hojatollah; Dehghan, Mehdi Study of the backward difference and local discontinuous Galerkin (LDG) methods for solving fourth-order partial integro-differential equations (PIDEs) with memory terms: stability analysis. (English) Zbl 07630351 Appl. Numer. Math. 184, 567-580 (2023). MSC: 65M60 65M06 65N30 65M12 35R09 35B35 45K05 45E10 PDF BibTeX XML Cite \textit{H. Mohammadi-Firouzjaei} et al., Appl. Numer. Math. 184, 567--580 (2023; Zbl 07630351) Full Text: DOI OpenURL
Faheem, Mo; Khan, Arshad A wavelet collocation method based on Gegenbauer scaling function for solving fourth-order time-fractional integro-differential equations with a weakly singular kernel. (English) Zbl 07630330 Appl. Numer. Math. 184, 197-218 (2023). MSC: 65M70 65T60 65M12 35R09 45K05 45E10 26A33 35R11 PDF BibTeX XML Cite \textit{M. Faheem} and \textit{A. Khan}, Appl. Numer. Math. 184, 197--218 (2023; Zbl 07630330) Full Text: DOI OpenURL
Zhu, Jianbo; Fu, Xianlong Existence and differentiability of solutions for nondensely defined neutral integro-differential evolution equations. (English) Zbl 07625945 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023). MSC: 37L05 45K05 34B10 35B65 47N20 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{X. Fu}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023; Zbl 07625945) Full Text: DOI OpenURL
Xing, Yu; Wang, Wei; Su, Xiaonan; Niu, Huawei Equilibrium valuation of currency options with stochastic volatility and systemic co-jumps. (English) Zbl 07616034 J. Ind. Manag. Optim. 19, No. 3, 1869-1892 (2023). MSC: 60G55 60H15 65C30 PDF BibTeX XML Cite \textit{Y. Xing} et al., J. Ind. Manag. Optim. 19, No. 3, 1869--1892 (2023; Zbl 07616034) Full Text: DOI OpenURL
Yang, Yin; Tohidi, Emran; Deng, Guoting A high accurate and convergent numerical framework for solving high-order nonlinear Volterra integro-differential equations. (English) Zbl 1498.65229 J. Comput. Appl. Math. 421, Article ID 114852, 29 p. (2023). MSC: 65R20 45J05 45D05 45G10 65M70 41A55 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Comput. Appl. Math. 421, Article ID 114852, 29 p. (2023; Zbl 1498.65229) Full Text: DOI OpenURL
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud; Hosseini, Kamyar A detailed study on 2D Volterra-Fredholm integro-differential equations involving the Caputo fractional derivative. (English) Zbl 07604641 J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023). MSC: 65R20 45D05 45B05 65M70 65L60 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023; Zbl 07604641) Full Text: DOI OpenURL
Cao, Y.; Nikan, O.; Avazzadeh, Z. A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. (English) Zbl 1500.65082 Appl. Numer. Math. 183, 140-156 (2023). MSC: 65M70 65M06 65N35 65D30 65D12 65M12 65R20 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Cao} et al., Appl. Numer. Math. 183, 140--156 (2023; Zbl 1500.65082) Full Text: DOI OpenURL
Liu, Linna; Deng, Feiqi; Qu, Boyang; Fang, Jianyin General decay stability of backward Euler-Maruyama method for nonlinear stochastic integro-differential equations. (English) Zbl 07599813 Appl. Math. Lett. 135, Article ID 108406, 8 p. (2023). MSC: 65C30 34K50 34K30 35R11 34K40 PDF BibTeX XML Cite \textit{L. Liu} et al., Appl. Math. Lett. 135, Article ID 108406, 8 p. (2023; Zbl 07599813) Full Text: DOI OpenURL
Luo, Ziyang; Zhang, Xingdong; Wang, Shuo; Yao, Lin Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme. (English) Zbl 07641377 Chaos Solitons Fractals 161, Article ID 112395, 8 p. (2022). MSC: 65R20 65M12 35R11 45K05 PDF BibTeX XML Cite \textit{Z. Luo} et al., Chaos Solitons Fractals 161, Article ID 112395, 8 p. (2022; Zbl 07641377) Full Text: DOI OpenURL
Molica Bisci, Giovanni; Servadei, Raffaella; Zhang, Binlin Monotonicity properties of the eigenvalues of nonlocal fractional operators and their applications. (English) Zbl 07640698 Electron. J. Differ. Equ. 2022, Paper No. 85, 21 p. (2022). MSC: 35P05 35A15 35R09 35R11 35S15 45G05 47G20 PDF BibTeX XML Cite \textit{G. Molica Bisci} et al., Electron. J. Differ. Equ. 2022, Paper No. 85, 21 p. (2022; Zbl 07640698) Full Text: Link OpenURL
Vlasov, V. V.; Rautian, N. A. Well-posed solvability of Volterra integro-differential equations in Hilbert spaces. (English. Russian original) Zbl 07637864 Differ. Equ. 58, No. 10, 1410-1426 (2022); translation from Differ. Uravn. 58, No. 10, 1414-1430 (2022). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45P05 47N20 PDF BibTeX XML Cite \textit{V. V. Vlasov} and \textit{N. A. Rautian}, Differ. Equ. 58, No. 10, 1410--1426 (2022; Zbl 07637864); translation from Differ. Uravn. 58, No. 10, 1414--1430 (2022) Full Text: DOI OpenURL
Duncan, Dugald B. Positivity of a weakly singular operator and approximation of wave scattering from the sphere. (English) Zbl 07636565 J. Integral Equations Appl. 34, No. 3, 317-333 (2022). MSC: 47Gxx 65R20 42C10 PDF BibTeX XML Cite \textit{D. B. Duncan}, J. Integral Equations Appl. 34, No. 3, 317--333 (2022; Zbl 07636565) Full Text: DOI OpenURL
Çakır, Musa; Güneş, Baransel A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. (English) Zbl 07633472 Hacet. J. Math. Stat. 51, No. 3, 787-799 (2022). MSC: 45J05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. Çakır} and \textit{B. Güneş}, Hacet. J. Math. Stat. 51, No. 3, 787--799 (2022; Zbl 07633472) Full Text: DOI OpenURL
Li, Pingrun Holomorphic solutions and solvability theory for a class of linear complete singular integro-differential equations with convolution by Riemann-Hilbert method. (English) Zbl 07624348 Anal. Math. Phys. 12, No. 6, Paper No. 146, 29 p. (2022). MSC: 45E10 45E05 45P05 47G20 30E25 PDF BibTeX XML Cite \textit{P. Li}, Anal. Math. Phys. 12, No. 6, Paper No. 146, 29 p. (2022; Zbl 07624348) Full Text: DOI OpenURL
Safarov, Jurabek Sh. Two-dimensional inverse problem for an integro-differential equation of hyperbolic type. (English) Zbl 07624303 J. Sib. Fed. Univ., Math. Phys. 15, No. 5, 651-662 (2022). MSC: 35Rxx 35Lxx 35Qxx PDF BibTeX XML Cite \textit{J. Sh. Safarov}, J. Sib. Fed. Univ., Math. Phys. 15, No. 5, 651--662 (2022; Zbl 07624303) Full Text: DOI MNR OpenURL
Kostic, M.; Kumar, V.; Pinto, M. Stepanov multi-dimensional almost automorphic type functions and applications. (English) Zbl 07622755 J. Nonlinear Evol. Equ. Appl. 2022, 1-24 (2022). MSC: 42A75 45D05 43A60 34G10 PDF BibTeX XML Cite \textit{M. Kostic} et al., J. Nonlinear Evol. Equ. Appl. 2022, 1--24 (2022; Zbl 07622755) Full Text: Link OpenURL
El-Sayed, Ahmed; Hashem, Hind; Al-Issa, Shorouk Analysis of a hybrid integro-differential inclusion. (English) Zbl 07619598 Bound. Value Probl. 2022, Paper No. 68, 21 p. (2022). MSC: 26A33 34K45 47G10 PDF BibTeX XML Cite \textit{A. El-Sayed} et al., Bound. Value Probl. 2022, Paper No. 68, 21 p. (2022; Zbl 07619598) Full Text: DOI OpenURL
Rozenblum, Grigori; Tashchiyan, Grigory Eigenvalues of the Birman-Schwinger operator for singular measures: the noncritical case. (English) Zbl 07605362 J. Funct. Anal. 283, No. 12, Article ID 109704, 42 p. (2022). MSC: 47Gxx 35Pxx 35Jxx PDF BibTeX XML Cite \textit{G. Rozenblum} and \textit{G. Tashchiyan}, J. Funct. Anal. 283, No. 12, Article ID 109704, 42 p. (2022; Zbl 07605362) Full Text: DOI arXiv OpenURL
Santra, Sudarshan; Panda, Abhilipsa; Mohapatra, Jugal A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations. (English) Zbl 07597412 J. Appl. Math. Comput. 68, No. 5, 3545-3563 (2022). MSC: 26A33 35R09 65R20 PDF BibTeX XML Cite \textit{S. Santra} et al., J. Appl. Math. Comput. 68, No. 5, 3545--3563 (2022; Zbl 07597412) Full Text: DOI OpenURL
Wang, Keyan A two-grid method for finite element solution of parabolic integro-differential equations. (English) Zbl 1496.65172 J. Appl. Math. Comput. 68, No. 5, 3473-3490 (2022). MSC: 65M60 65M15 45K05 65R20 PDF BibTeX XML Cite \textit{K. Wang}, J. Appl. Math. Comput. 68, No. 5, 3473--3490 (2022; Zbl 1496.65172) Full Text: DOI OpenURL
El-Gindy, Taha M.; Ahmed, Hoda F.; Melad, Marina B. Effective numerical technique for solving variable order integro-differential equations. (English) Zbl 1496.65177 J. Appl. Math. Comput. 68, No. 4, 2823-2855 (2022). MSC: 65M70 33C45 34A08 45J05 65R20 PDF BibTeX XML Cite \textit{T. M. El-Gindy} et al., J. Appl. Math. Comput. 68, No. 4, 2823--2855 (2022; Zbl 1496.65177) Full Text: DOI OpenURL
Vanterler da C. Sousa, J.; N’Guerekata, Gaston M. Stepanov type \(\mu\)-pseudo almost automorphic mild solutions of semilinear fractional integrodifferential equations. (English) Zbl 1497.35505 Nonauton. Dyn. Syst. 9, 145-162 (2022). MSC: 35R11 35B15 35K90 35L90 35R09 34K14 45N05 58D25 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} and \textit{G. M. N'Guerekata}, Nonauton. Dyn. Syst. 9, 145--162 (2022; Zbl 1497.35505) Full Text: DOI OpenURL
Cakir, Firat; Cakir, Musa; Cakir, Hayriye Guckir A robust numerical technique for solving non-linear Volterra integro-differential equations with boundary layer. (English) Zbl 07584443 Commun. Korean Math. Soc. 37, No. 3, 939-955 (2022). MSC: 65L03 65L12 65L20 65R20 45D05 PDF BibTeX XML Cite \textit{F. Cakir} et al., Commun. Korean Math. Soc. 37, No. 3, 939--955 (2022; Zbl 07584443) Full Text: DOI OpenURL
Ramdani, Nedjem Eddine; Pinelas, Sandra Solving nonlinear integro-differential equations using numerical method. (English) Zbl 1500.65108 Turk. J. Math. 46, No. 2, SI-1, 675-687 (2022). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{N. E. Ramdani} and \textit{S. Pinelas}, Turk. J. Math. 46, No. 2, 675--687 (2022; Zbl 1500.65108) Full Text: DOI OpenURL
Karthikeyan, Kulandhivel; Murugapandian, Gobi Selvaraj; Ege, Özgür On the solutions of fractional integro-differential equations involving Ulam-Hyers-Rassias stability results via \(\psi\)-fractional derivative with boundary value conditions. (English) Zbl 1501.45009 Turk. J. Math. 46, No. 6, 2500-2512 (2022). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{K. Karthikeyan} et al., Turk. J. Math. 46, No. 6, 2500--2512 (2022; Zbl 1501.45009) Full Text: DOI OpenURL
Durmaz, Muhammet Enes; Amirali, Gabil; Kudu, Mustafa Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. (English) Zbl 1493.65121 Turk. J. Math. 46, No. 1, 207-224 (2022). MSC: 65L11 65L12 65L20 65R20 45J05 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., Turk. J. Math. 46, No. 1, 207--224 (2022; Zbl 1493.65121) Full Text: DOI OpenURL
Aida-Zade, Kamil R.; Abdullayev, Vagif M. To the solution of integro-differential equations with nonlocal conditions. (English) Zbl 1493.34058 Turk. J. Math. 46, No. 1, 177-188 (2022). MSC: 34B10 65L10 34A12 PDF BibTeX XML Cite \textit{K. R. Aida-Zade} and \textit{V. M. Abdullayev}, Turk. J. Math. 46, No. 1, 177--188 (2022; Zbl 1493.34058) Full Text: DOI OpenURL
Kostic, Marko Multi-dimensional \(c\)-almost periodic type functions and applications. (English) Zbl 1496.42009 Electron. J. Differ. Equ. 2022, Paper No. 45, 21 p. (2022). MSC: 42A75 43A60 47D99 45D05 45N05 PDF BibTeX XML Cite \textit{M. Kostic}, Electron. J. Differ. Equ. 2022, Paper No. 45, 21 p. (2022; Zbl 1496.42009) Full Text: Link OpenURL
Cakir, Musa; Ekinci, Yilmaz; Cimen, Erkan A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer. (English) Zbl 07575617 Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022). MSC: 65L05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. Cakir} et al., Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022; Zbl 07575617) Full Text: DOI OpenURL
Almeida, Rui M. P.; Duque, José C. M.; Mário, Belchior C. X. A mixed finite element method for a class of evolution differential equations with \(p\)-Laplacian and memory. (English) Zbl 07574217 Appl. Numer. Math. 181, 534-551 (2022). MSC: 65-XX 35Kxx 45Kxx 65Rxx PDF BibTeX XML Cite \textit{R. M. P. Almeida} et al., Appl. Numer. Math. 181, 534--551 (2022; Zbl 07574217) Full Text: DOI arXiv OpenURL
Rezazadeh, Tohid; Najafi, Esmaeil Jacobi collocation method and smoothing transformation for numerical solution of neutral nonlinear weakly singular Fredholm integro-differential equations. (English) Zbl 07574196 Appl. Numer. Math. 181, 135-150 (2022). MSC: 65L03 65L60 45B05 PDF BibTeX XML Cite \textit{T. Rezazadeh} and \textit{E. Najafi}, Appl. Numer. Math. 181, 135--150 (2022; Zbl 07574196) Full Text: DOI OpenURL
Sequeira, Tiago F.; Lima, Pedro M. Numerical simulations of one- and two-dimensional stochastic neural field equations with delay. (English) Zbl 1494.65084 J. Comput. Neurosci. 50, No. 3, 299-311 (2022). MSC: 65M60 65M06 65N30 65T50 65R20 65M12 65Z05 35R09 92B20 92-08 35Q92 35R07 PDF BibTeX XML Cite \textit{T. F. Sequeira} and \textit{P. M. Lima}, J. Comput. Neurosci. 50, No. 3, 299--311 (2022; Zbl 1494.65084) Full Text: DOI OpenURL
Kheiryan, Alireza; Rezapour, Shahram Study of Hyers-Ulam stability for a class of multi-singular fractional integro-differential equation with boundary conditions. (English) Zbl 1496.45012 J. Math. Ext. 16, No. 11, Paper No. 3, 19 p. (2022). MSC: 45M10 45J05 26A33 PDF BibTeX XML Cite \textit{A. Kheiryan} and \textit{S. Rezapour}, J. Math. Ext. 16, No. 11, Paper No. 3, 19 p. (2022; Zbl 1496.45012) Full Text: DOI OpenURL
Shen, Yansheng Multiplicity of positive solutions to a critical fractional equation with Hardy potential and concave-convex nonlinearities. (English) Zbl 1495.35203 Complex Var. Elliptic Equ. 67, No. 9, 2152-2180 (2022). MSC: 35R11 35A15 35J25 35J61 45G05 47G20 49J35 PDF BibTeX XML Cite \textit{Y. Shen}, Complex Var. Elliptic Equ. 67, No. 9, 2152--2180 (2022; Zbl 1495.35203) Full Text: DOI OpenURL
Herdman, Terry; Chiang, Shihchung On the infinite field of a class of weakly singular integral equations. (English) Zbl 07565103 Far East J. Dyn. Syst. 34, 11-23 (2022). MSC: 45E10 68W25 PDF BibTeX XML Cite \textit{T. Herdman} and \textit{S. Chiang}, Far East J. Dyn. Syst. 34, 11--23 (2022; Zbl 07565103) Full Text: DOI OpenURL
Qiao, Leijie; Tang, Bo; Xu, Da; Qiu, Wenlin High-order orthogonal spline collocation method with graded meshes for two-dimensional fractional evolution integro-differential equation. (English) Zbl 07563020 Int. J. Comput. Math. 99, No. 7, 1305-1324 (2022). MSC: 35R11 45E10 65M70 65M15 PDF BibTeX XML Cite \textit{L. Qiao} et al., Int. J. Comput. Math. 99, No. 7, 1305--1324 (2022; Zbl 07563020) Full Text: DOI OpenURL
Lillemäe, Margus; Pedas, Arvet; Vikerpuur, Mikk Central part interpolation schemes for a class of fractional initial value problems. (English) Zbl 1491.65173 Acta Comment. Univ. Tartu. Math. 26, No. 1, 161-178 (2022). MSC: 65R20 34A08 45J05 45E10 65L05 65L60 PDF BibTeX XML Cite \textit{M. Lillemäe} et al., Acta Comment. Univ. Tartu. Math. 26, No. 1, 161--178 (2022; Zbl 1491.65173) Full Text: DOI OpenURL
Yuldashev, Tursun Kamaldinovich; Saburov, Khikmat Khazhibaevich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations with maxima. (English) Zbl 1493.45009 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113-122 (2022). MSC: 45J05 34A37 47N20 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113--122 (2022; Zbl 1493.45009) Full Text: DOI MNR OpenURL
Tismane, M.; Bounit, H.; Fadili, A. On the inversion and admissibility for a class of Volterra integro-differential problems. (English) Zbl 07554850 IMA J. Math. Control Inf. 39, No. 2, 643-674 (2022). Reviewer: Ti-Jun Xiao (Fudan) MSC: 45J05 45D05 47N20 PDF BibTeX XML Cite \textit{M. Tismane} et al., IMA J. Math. Control Inf. 39, No. 2, 643--674 (2022; Zbl 07554850) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Mohammed, Nedal M. Existence and uniqueness of solutions for the neutral fractional integro differential equations. (English) Zbl 1495.45005 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 1, 49-61 (2022). MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{N. M. Mohammed}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 1, 49--61 (2022; Zbl 1495.45005) Full Text: Link Link OpenURL
Benkhettou, Nadia; Aissani, Khalida; Salim, Abdelkrim; Benchohra, Mouffak; Tunç, Cemil Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses. (English) Zbl 1501.34064 Appl. Anal. Optim. 6, No. 1, 79-94 (2022). MSC: 34K30 34K37 34K35 34K45 47N20 45J05 93B05 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., Appl. Anal. Optim. 6, No. 1, 79--94 (2022; Zbl 1501.34064) Full Text: Link OpenURL
Diop, Amadou; Dieye, Moustapha; Diop, Mamadou Abdoul; Ezzinbi, Khalil Integrodifferential equations of Volterra type with nonlocal and impulsive conditions. (English) Zbl 1493.45013 J. Integral Equations Appl. 34, No. 1, 19-37 (2022). MSC: 45N05 45D05 47N20 PDF BibTeX XML Cite \textit{A. Diop} et al., J. Integral Equations Appl. 34, No. 1, 19--37 (2022; Zbl 1493.45013) Full Text: DOI OpenURL
Vlasov, V. V.; Rautian, N. A. Investigation of operator models arising in viscoelasticity theory. (English. Russian original) Zbl 1494.45014 J. Math. Sci., New York 260, No. 4, 456-468 (2022); translation from Sovrem. Mat., Fundam. Napravl. 64, No. 1, 60-73 (2018). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45N05 45K05 76A10 PDF BibTeX XML Cite \textit{V. V. Vlasov} and \textit{N. A. Rautian}, J. Math. Sci., New York 260, No. 4, 456--468 (2022; Zbl 1494.45014); translation from Sovrem. Mat., Fundam. Napravl. 64, No. 1, 60--73 (2018) Full Text: DOI OpenURL
Askhabov, S. N. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type. (English. Russian original) Zbl 1491.45007 J. Math. Sci., New York 260, No. 3, 275-285 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 3-13 (2019). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G10 47J05 47N20 PDF BibTeX XML Cite \textit{S. N. Askhabov}, J. Math. Sci., New York 260, No. 3, 275--285 (2022; Zbl 1491.45007); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 3--13 (2019) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations. (English) Zbl 1501.45008 Iran. J. Math. Sci. Inform. 17, No. 1, 135-144 (2022). MSC: 45J05 45D05 45B05 26A33 26D10 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Iran. J. Math. Sci. Inform. 17, No. 1, 135--144 (2022; Zbl 1501.45008) Full Text: Link OpenURL
Jeelani, Mdi Begum; Alnahdi, Abeer S.; Almalahi, Mohammed A.; Abdo, Mohammed S.; Wahash, Hanan A.; Alharthi, Nadiyah Hussain Qualitative analyses of fractional integrodifferential equations with a variable order under the Mittag-Leffler power law. (English) Zbl 1491.45011 J. Funct. Spaces 2022, Article ID 6387351, 12 p. (2022). MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{M. B. Jeelani} et al., J. Funct. Spaces 2022, Article ID 6387351, 12 p. (2022; Zbl 1491.45011) Full Text: DOI OpenURL
Alshbool, M. H. T.; Mohammad, Mutaz; Isik, Osman; Hashim, Ishak Fractional Bernstein operational matrices for solving integro-differential equations involved by Caputo fractional derivative. (English) Zbl 1491.65053 Results Appl. Math. 14, Article ID 100258, 16 p. (2022). MSC: 65L03 65L60 34K37 45J05 65R20 PDF BibTeX XML Cite \textit{M. H. T. Alshbool} et al., Results Appl. Math. 14, Article ID 100258, 16 p. (2022; Zbl 1491.65053) Full Text: DOI OpenURL
Yuan, Haiyan Convergence and mean-square stability of exponential Euler method for semi-linear stochastic delay integro-differential equations. (English) Zbl 07533093 J. Comput. Math. 40, No. 2, 177-204 (2022). MSC: 65C20 60H35 65C30 65L20 PDF BibTeX XML Cite \textit{H. Yuan}, J. Comput. Math. 40, No. 2, 177--204 (2022; Zbl 07533093) Full Text: DOI OpenURL
Wu, Longbin; Chen, Zhong; Ding, Xiaohua A minimal search method for solving fractional integro-differential equations based on modified Legendre multiwavelets. (English) Zbl 1486.65300 J. Appl. Math. Comput. 68, No. 2, 1467-1483 (2022). MSC: 65R20 45J05 34K07 34K37 65J10 65L60 PDF BibTeX XML Cite \textit{L. Wu} et al., J. Appl. Math. Comput. 68, No. 2, 1467--1483 (2022; Zbl 1486.65300) Full Text: DOI OpenURL
Haar, Andrew; Radu, Petronela A new nonlocal calculus framework. Helmholtz decompositions, properties, and convergence for nonlocal operators in the limit of the vanishing horizon. (English) Zbl 07532101 SN Partial Differ. Equ. Appl. 3, No. 3, Paper No. 43, 20 p. (2022). MSC: 47Gxx 26A33 35S30 41A35 45A05 45P05 46F12 46N20 PDF BibTeX XML Cite \textit{A. Haar} and \textit{P. Radu}, SN Partial Differ. Equ. Appl. 3, No. 3, Paper No. 43, 20 p. (2022; Zbl 07532101) Full Text: DOI OpenURL
Durmaz, Muhammet Enes; Cakir, Musa; Amirali, Ilhame; Amiraliyev, Gabil M. Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method. (English) Zbl 1486.65291 J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022). MSC: 65R20 45J05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022; Zbl 1486.65291) Full Text: DOI OpenURL
Bouach, Abderrahim; Haddad, Tahar; Thibault, Lionel On the discretization of truncated integro-differential sweeping process and optimal control. (English) Zbl 1489.49008 J. Optim. Theory Appl. 193, No. 1-3, 785-830 (2022). MSC: 49J40 47J20 47J22 45D05 58E35 74M15 74M10 PDF BibTeX XML Cite \textit{A. Bouach} et al., J. Optim. Theory Appl. 193, No. 1--3, 785--830 (2022; Zbl 1489.49008) Full Text: DOI OpenURL
Dang Quang Long; Dang Quang A Existence results and numerical method for solving a fourth-order nonlinear integro-differential equation. (English) Zbl 1491.65168 Numer. Algorithms 90, No. 2, 563-576 (2022). MSC: 65R20 45J05 65L03 65L10 PDF BibTeX XML Cite \textit{Dang Quang Long} and \textit{Dang Quang A}, Numer. Algorithms 90, No. 2, 563--576 (2022; Zbl 1491.65168) Full Text: DOI arXiv OpenURL
Davydov, A. V. On the asymptotics of the nonreal spectrum of the integro-differential Gurtin-Pipkin equation with relaxation kernels representable in the form of the Stielties integral. (English. Russian original) Zbl 1490.45013 Differ. Equ. 58, No. 2, 242-255 (2022); translation from Differ. Uravn. 58, No. 2, 238-251 (2022). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 45N05 45J05 45M05 47N20 PDF BibTeX XML Cite \textit{A. V. Davydov}, Differ. Equ. 58, No. 2, 242--255 (2022; Zbl 1490.45013); translation from Differ. Uravn. 58, No. 2, 238--251 (2022) Full Text: DOI OpenURL
Laib, Hafida; Bellour, Azzeddine; Boulmerka, Aissa Taylor collocation method for a system of nonlinear Volterra delay integro-differential equations with application to COVID-19 epidemic. (English) Zbl 1499.65753 Int. J. Comput. Math. 99, No. 4, 852-876 (2022). MSC: 65R20 65L60 45J05 45D05 45G15 45L05 92D30 92D25 PDF BibTeX XML Cite \textit{H. Laib} et al., Int. J. Comput. Math. 99, No. 4, 852--876 (2022; Zbl 1499.65753) Full Text: DOI OpenURL
Marasi, H. R.; Derakhshan, M. H. Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis. (English) Zbl 07507659 Comput. Appl. Math. 41, No. 3, Paper No. 106, 19 p. (2022). MSC: 34-XX 26A33 34A08 65L05 45J99 65R20 PDF BibTeX XML Cite \textit{H. R. Marasi} and \textit{M. H. Derakhshan}, Comput. Appl. Math. 41, No. 3, Paper No. 106, 19 p. (2022; Zbl 07507659) Full Text: DOI OpenURL
Du, Qiang; Tian, Xiaochuan; Wright, Cory; Yu, Yue Nonlocal trace spaces and extension results for nonlocal calculus. (English) Zbl 1496.46031 J. Funct. Anal. 282, No. 12, Article ID 109453, 63 p. (2022). MSC: 46E35 47G20 35A23 35R11 PDF BibTeX XML Cite \textit{Q. Du} et al., J. Funct. Anal. 282, No. 12, Article ID 109453, 63 p. (2022; Zbl 1496.46031) Full Text: DOI arXiv OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Gawish, Fatma A.; Abdalla, Mostafa H. On the behaviour solutions of fractional and partial integro differential heat equations and its numerical solutions. (English) Zbl 1486.35440 Math. Slovaca 72, No. 2, 397-410 (2022). MSC: 35R11 35R09 35K20 47D06 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., Math. Slovaca 72, No. 2, 397--410 (2022; Zbl 1486.35440) Full Text: DOI OpenURL
Cakir, Musa; Gunes, Baransel Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations. (English) Zbl 1491.65167 Georgian Math. J. 29, No. 2, 193-203 (2022). MSC: 65R20 45J05 65L05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. Cakir} and \textit{B. Gunes}, Georgian Math. J. 29, No. 2, 193--203 (2022; Zbl 1491.65167) Full Text: DOI OpenURL
Hernandez, Eduardo; Rolnik, Vanessa; Ferrari, Thauana M. Existence and uniqueness of solutions for abstract integro-differential equations with state-dependent delay and applications. (English) Zbl 1496.34113 Mediterr. J. Math. 19, No. 3, Paper No. 101, 13 p. (2022). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K30 34K43 47N20 91B62 92D25 PDF BibTeX XML Cite \textit{E. Hernandez} et al., Mediterr. J. Math. 19, No. 3, Paper No. 101, 13 p. (2022; Zbl 1496.34113) Full Text: DOI OpenURL
Vougalter, Vitali Solvability of some integro-differential equations with concentrated sources. (English) Zbl 1487.45012 Complex Var. Elliptic Equ. 67, No. 4, 975-987 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 45K05 45P05 35P30 47N20 47F05 92D25 92C37 92C17 PDF BibTeX XML Cite \textit{V. Vougalter}, Complex Var. Elliptic Equ. 67, No. 4, 975--987 (2022; Zbl 1487.45012) Full Text: DOI OpenURL
Boudjerida, A.; Seba, D.; N’Guérékata, G. M. Controllability of coupled systems for impulsive \(\phi\)-Hilfer fractional integro-differential inclusions. (English) Zbl 1497.45009 Appl. Anal. 101, No. 2, 383-400 (2022). MSC: 45J05 26A33 34A60 34B15 93B05 47N20 PDF BibTeX XML Cite \textit{A. Boudjerida} et al., Appl. Anal. 101, No. 2, 383--400 (2022; Zbl 1497.45009) Full Text: DOI OpenURL
Khajehnasiri, A. A.; Ezzati, R. Boubaker polynomials and their applications for solving fractional two-dimensional nonlinear partial integro-differential Volterra integral equations. (English) Zbl 1499.65750 Comput. Appl. Math. 41, No. 2, Paper No. 82, 18 p. (2022). MSC: 65R20 45K05 45D05 45G10 65N35 35R11 65N12 65N15 PDF BibTeX XML Cite \textit{A. A. Khajehnasiri} and \textit{R. Ezzati}, Comput. Appl. Math. 41, No. 2, Paper No. 82, 18 p. (2022; Zbl 1499.65750) Full Text: DOI OpenURL
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link OpenURL
Rezapour, Shahram; Boulfoul, Ali; Tellab, Brahim; Samei, Mohammad Esmael; Etemad, Sina; George, Reny Fixed point theory and the Liouville-Caputo integro-differential FBVP with multiple nonlinear terms. (English) Zbl 1490.45009 J. Funct. Spaces 2022, Article ID 6713533, 18 p. (2022). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 34A08 47N20 PDF BibTeX XML Cite \textit{S. Rezapour} et al., J. Funct. Spaces 2022, Article ID 6713533, 18 p. (2022; Zbl 1490.45009) Full Text: DOI OpenURL
Yüzbaşı, Şuayip; Yıldırım, Gamze A collocation method to solve the parabolic-type partial integro-differential equations via Pell-Lucas polynomials. (English) Zbl 07484260 Appl. Math. Comput. 421, Article ID 126956, 19 p. (2022). MSC: 65Rxx 65Lxx 65Mxx PDF BibTeX XML Cite \textit{Ş. Yüzbaşı} and \textit{G. Yıldırım}, Appl. Math. Comput. 421, Article ID 126956, 19 p. (2022; Zbl 07484260) Full Text: DOI OpenURL
Yang, Huaijun Superconvergence analysis of Galerkin method for semilinear parabolic integro-differential equation. (English) Zbl 07479007 Appl. Math. Lett. 128, Article ID 107872, 8 p. (2022). MSC: 65R20 45K05 65M60 65M12 65N30 PDF BibTeX XML Cite \textit{H. Yang}, Appl. Math. Lett. 128, Article ID 107872, 8 p. (2022; Zbl 07479007) Full Text: DOI OpenURL
Zhu, Jianbo; Fu, Xianlong Existence and asymptotic periodicity of solutions for neutral integro-differential evolution equations with infinite delay. (English) Zbl 1490.34089 Math. Slovaca 72, No. 1, 121-140 (2022). MSC: 34K30 34K40 34K13 45K05 47N20 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{X. Fu}, Math. Slovaca 72, No. 1, 121--140 (2022; Zbl 1490.34089) Full Text: DOI OpenURL
Wang, Mengjie; Dai, Xinjie; Xiao, Aiguo Optimal convergence rate of \(\theta\)-Maruyama method for stochastic Volterra integro-differential equations with Riemann-Liouville fractional Brownian motion. (English) Zbl 1499.65024 Adv. Appl. Math. Mech. 14, No. 1, 202-217 (2022). MSC: 65C30 45R05 45D05 60G22 60H20 60H35 65R20 65L20 PDF BibTeX XML Cite \textit{M. Wang} et al., Adv. Appl. Math. Mech. 14, No. 1, 202--217 (2022; Zbl 1499.65024) Full Text: DOI OpenURL
Behera, S.; Saha Ray, S. An efficient numerical method based on Euler wavelets for solving fractional order pantograph Volterra delay-integro-differential equations. (English) Zbl 1491.65054 J. Comput. Appl. Math. 406, Article ID 113825, 23 p. (2022). MSC: 65L03 45D05 65L60 65R20 45J05 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. Saha Ray}, J. Comput. Appl. Math. 406, Article ID 113825, 23 p. (2022; Zbl 1491.65054) Full Text: DOI OpenURL
Abdelkawy, M. A.; Amin, A. Z. M.; Lopes, António M. Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations. (English) Zbl 1499.65734 Comput. Appl. Math. 41, No. 1, Paper No. 2, 21 p. (2022). MSC: 65R20 45B05 26A33 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., Comput. Appl. Math. 41, No. 1, Paper No. 2, 21 p. (2022; Zbl 1499.65734) Full Text: DOI OpenURL
Sumit; Kumar, Sunil; Vigo-Aguiar, Jesus Analysis of a nonlinear singularly perturbed Volterra integro-differential equation. (English) Zbl 1481.65271 J. Comput. Appl. Math. 404, Article ID 113410, 13 p. (2022). MSC: 65R20 45J05 45D05 65L11 65L50 PDF BibTeX XML Cite \textit{Sumit} et al., J. Comput. Appl. Math. 404, Article ID 113410, 13 p. (2022; Zbl 1481.65271) Full Text: DOI OpenURL
Das, Pratibhamoy; Rana, Subrata; Ramos, Higinio On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. (English) Zbl 1481.65265 J. Comput. Appl. Math. 404, Article ID 113116, 15 p. (2022). MSC: 65R20 45J05 45D05 26A33 PDF BibTeX XML Cite \textit{P. Das} et al., J. Comput. Appl. Math. 404, Article ID 113116, 15 p. (2022; Zbl 1481.65265) Full Text: DOI OpenURL
Wang, Yuan-Ming; Zhang, Yu-Jia A Crank-Nicolson-type compact difference method with the uniform time step for a class of weakly singular parabolic integro-differential equations. (English) Zbl 1484.65346 Appl. Numer. Math. 172, 566-590 (2022). MSC: 65R20 45K05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{Y.-M. Wang} and \textit{Y.-J. Zhang}, Appl. Numer. Math. 172, 566--590 (2022; Zbl 1484.65346) Full Text: DOI OpenURL
Lan, Guangqiang; Zhao, Mei; Qi, Siyuan Exponential stability of \(\theta\)-EM method for nonlinear stochastic Volterra integro-differential equations. (English) Zbl 1483.65017 Appl. Numer. Math. 172, 279-291 (2022). MSC: 65C30 60H10 60H20 45D05 45J05 65R20 PDF BibTeX XML Cite \textit{G. Lan} et al., Appl. Numer. Math. 172, 279--291 (2022; Zbl 1483.65017) Full Text: DOI OpenURL
Alam, Mehboob; Zada, Akbar; Riaz, Usman On a coupled impulsive fractional integrodifferential system with Hadamard derivatives. (English) Zbl 1483.45006 Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 8, 31 p. (2022). MSC: 45J05 45M10 26A33 PDF BibTeX XML Cite \textit{M. Alam} et al., Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 8, 31 p. (2022; Zbl 1483.45006) Full Text: DOI OpenURL
Liang, Jin; Mu, Yunyi; Xiao, Ti-Jun Nonlocal integro-differential equations of Sobolev type in Banach spaces involving \(\psi\)-Caputo fractional derivative. (English) Zbl 1494.34176 Banach J. Math. Anal. 16, No. 1, Paper No. 3, 29 p. (2022). Reviewer: Syed Abbas (Mandi) MSC: 34K37 34K30 44A10 26D15 45J99 47N20 PDF BibTeX XML Cite \textit{J. Liang} et al., Banach J. Math. Anal. 16, No. 1, Paper No. 3, 29 p. (2022; Zbl 1494.34176) Full Text: DOI OpenURL
Mittal, Avinash Kumar Error analysis and approximation of Jacobi pseudospectral method for the integer and fractional order integro-differential equation. (English) Zbl 1482.65241 Appl. Numer. Math. 171, 249-268 (2022). MSC: 65R20 65M70 34K37 45D05 45K05 65M12 65M15 PDF BibTeX XML Cite \textit{A. K. Mittal}, Appl. Numer. Math. 171, 249--268 (2022; Zbl 1482.65241) Full Text: DOI OpenURL
Kostić, Marko Selected topics in almost periodicity. (English) Zbl 07407732 De Gruyter Studies in Mathematics 84. Berlin: De Gruyter (ISBN 978-3-11-076322-5/hbk; 978-3-11-076352-2/ebook). xlviii, 684 p. (2022). MSC: 45-02 45D05 45M15 45N05 43A60 PDF BibTeX XML Cite \textit{M. Kostić}, Selected topics in almost periodicity. Berlin: De Gruyter (2022; Zbl 07407732) Full Text: DOI OpenURL
Zhou, Yongtao; Stynes, Martin Block boundary value methods for solving linear neutral Volterra integro-differential equations with weakly singular kernels. (English) Zbl 1492.65371 J. Comput. Appl. Math. 401, Article ID 113747, 22 p. (2022). MSC: 65R20 45J05 45D05 65L05 65L12 65L20 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{M. Stynes}, J. Comput. Appl. Math. 401, Article ID 113747, 22 p. (2022; Zbl 1492.65371) Full Text: DOI OpenURL
Santra, S.; Mohapatra, J. A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. (English) Zbl 1496.65128 J. Comput. Appl. Math. 400, Article ID 113746, 13 p. (2022). MSC: 65M06 65N06 65M15 65M12 35R09 65R20 45K05 45D05 35R11 PDF BibTeX XML Cite \textit{S. Santra} and \textit{J. Mohapatra}, J. Comput. Appl. Math. 400, Article ID 113746, 13 p. (2022; Zbl 1496.65128) Full Text: DOI OpenURL
Guemar, S.; Guebbai, H.; Lemita, S. On an integro-differential fractional nonlinear Volterra-Caputo equation. (Russian. English summary) Zbl 07617344 Sib. Zh. Vychisl. Mat. 24, No. 4, 365-382 (2021). MSC: 45D05 45J05 26A33 PDF BibTeX XML Cite \textit{S. Guemar} et al., Sib. Zh. Vychisl. Mat. 24, No. 4, 365--382 (2021; Zbl 07617344) Full Text: DOI MNR OpenURL
Roy, Bandita; Bora, Swaroop Nandan On integral solutions for a class of mixed Volterra-Fredholm integro differential equations with Caputo fractional derivatives. (English) Zbl 1497.45013 Chadli, Ouayl (ed.) et al., Mathematical analysis and applications, MAA 2020. Selected papers based on the presentations at the conference, Jamshedpur, India, November 2–4, 2020. Singapore: Springer. Springer Proc. Math. Stat. 381, 81-94 (2021). MSC: 45J05 26A33 45D05 45B05 47H10 PDF BibTeX XML Cite \textit{B. Roy} and \textit{S. N. Bora}, Springer Proc. Math. Stat. 381, 81--94 (2021; Zbl 1497.45013) Full Text: DOI OpenURL
Shu, Felix Che; Ndambomve, Patrice On existence and controllability results for some cylindrical stochastic integro-differential equations in Fréchet spaces. (English) Zbl 07599582 Discuss. Math., Differ. Incl. Control Optim. 41, No. 1, 19-38 (2021). MSC: 60B11 65C30 28C20 93B05 47H10 93B05 93C23 PDF BibTeX XML Cite \textit{F. C. Shu} and \textit{P. Ndambomve}, Discuss. Math., Differ. Incl. Control Optim. 41, No. 1, 19--38 (2021; Zbl 07599582) Full Text: DOI OpenURL
Vijayakumar, Velusamy; Shukla, Anurag; Nisar, Kottakkaran Sooppy; Jamshed, Wasim; Rezapour, Shahram A note on the approximate controllability of second-order integro-differential evolution control systems via resolvent operators. (English) Zbl 1494.34168 Adv. Difference Equ. 2021, Paper No. 484, 13 p. (2021). MSC: 34K30 47N20 47A10 93B05 PDF BibTeX XML Cite \textit{V. Vijayakumar} et al., Adv. Difference Equ. 2021, Paper No. 484, 13 p. (2021; Zbl 1494.34168) Full Text: DOI OpenURL
Sadri, Khadijeh; Hosseini, Kamyar; Baleanu, Dumitru; Ahmadian, Ali; Salahshour, Soheil Bivariate Chebyshev polynomials of the fifth kind for variable-order time-fractional partial integro-differential equations with weakly singular kernel. (English) Zbl 1494.65104 Adv. Difference Equ. 2021, Paper No. 348, 26 p. (2021). MSC: 65R20 35R11 45K05 26A33 PDF BibTeX XML Cite \textit{K. Sadri} et al., Adv. Difference Equ. 2021, Paper No. 348, 26 p. (2021; Zbl 1494.65104) Full Text: DOI OpenURL
Rezaei Aderyani, Safoura; Saadati, Reza Best approximations of the \(\varphi \)-Hadamard fractional Volterra integro-differential equation by matrix valued fuzzy control functions. (English) Zbl 1494.45012 Adv. Difference Equ. 2021, Paper No. 154, 21 p. (2021). MSC: 45L05 26A33 93C42 47N20 PDF BibTeX XML Cite \textit{S. Rezaei Aderyani} and \textit{R. Saadati}, Adv. Difference Equ. 2021, Paper No. 154, 21 p. (2021; Zbl 1494.45012) Full Text: DOI OpenURL
Chaharpashlou, Reza; Saadati, Reza Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space. (English) Zbl 1494.45004 Adv. Difference Equ. 2021, Paper No. 118, 12 p. (2021). MSC: 45D05 26A33 65R20 45J05 PDF BibTeX XML Cite \textit{R. Chaharpashlou} and \textit{R. Saadati}, Adv. Difference Equ. 2021, Paper No. 118, 12 p. (2021; Zbl 1494.45004) Full Text: DOI OpenURL
Providas, Efthinios; Pulkina, Ludmila Stepanovna; Parasidis, Ioannis Nestorios Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space. (English) Zbl 07557333 Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 1, 29-43 (2021). MSC: 47J05 65Mxx 35Axx PDF BibTeX XML Cite \textit{E. Providas} et al., Vestn. Samar. Univ., Estestvennonauchn. Ser. 27, No. 1, 29--43 (2021; Zbl 07557333) Full Text: DOI MNR OpenURL
Dineshkumar, C.; Udhayakumar, R. A note on existence of global solutions for impulsive functional integrodifferential systems. (English) Zbl 1492.45006 Discontin. Nonlinearity Complex. 10, No. 3, 397-407 (2021). MSC: 45J05 34K30 34K45 45N05 47N20 93B05 PDF BibTeX XML Cite \textit{C. Dineshkumar} and \textit{R. Udhayakumar}, Discontin. Nonlinearity Complex. 10, No. 3, 397--407 (2021; Zbl 1492.45006) Full Text: DOI OpenURL
Madhuri, S.; Deekshitulu, G. V. S. R. Approximate controllability of second order neutral stochastic integro differential equations with impulses driven by fractional Brownian motion. (English) Zbl 1492.45010 Discontin. Nonlinearity Complex. 10, No. 2, 333-345 (2021). MSC: 45R05 45J05 34K50 60H15 47N20 93B05 PDF BibTeX XML Cite \textit{S. Madhuri} and \textit{G. V. S. R. Deekshitulu}, Discontin. Nonlinearity Complex. 10, No. 2, 333--345 (2021; Zbl 1492.45010) Full Text: DOI OpenURL
Yapman, Ömer; Amiraliyev, Gabil M. Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation. (English) Zbl 1498.65127 Chaos Solitons Fractals 150, Article ID 111100, 11 p. (2021). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} and \textit{G. M. Amiraliyev}, Chaos Solitons Fractals 150, Article ID 111100, 11 p. (2021; Zbl 1498.65127) Full Text: DOI OpenURL
Yu, Yang-Yang; Ma, Zhong-Xin Global solvability for nonlinear nonautonomous evolution inclusions of Volterra-type and its applications. (English) Zbl 07543111 J. Integral Equations Appl. 33, No. 3, 381-401 (2021). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 34K30 34K09 45K05 47H10 47N20 PDF BibTeX XML Cite \textit{Y.-Y. Yu} and \textit{Z.-X. Ma}, J. Integral Equations Appl. 33, No. 3, 381--401 (2021; Zbl 07543111) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Sharif, Abdulrahman A.; Ghadle, Kirtiwant P. Existence and stability of solutions for a nonlinear fractional Volterra-Fredholm integro-differential equation in Banach spaces. (English) Zbl 07527971 J. Mahani Math. Res. Cent. 10, No. 1, 79-93 (2021). MSC: 45J05 58C30 26A33 45D05 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Mahani Math. Res. Cent. 10, No. 1, 79--93 (2021; Zbl 07527971) Full Text: DOI OpenURL
Aryani, Elnaz; Babaei, Afshin; Valinejad, Ali An accurate approach based on modified hat functions for solving a system of fractional stochastic integro-differential equations. (English) Zbl 1492.60199 J. Math. Ext. 15, No. 5, Paper No. 2, 28 p. (2021). MSC: 60H20 45J05 65C30 PDF BibTeX XML Cite \textit{E. Aryani} et al., J. Math. Ext. 15, No. 5, Paper No. 2, 28 p. (2021; Zbl 1492.60199) Full Text: DOI OpenURL
Zada, Mian Bahadur; Sarwar, Muhammad; George, Reny; Mitrović, Zoran D. Darbo-type \(\mathcal{Z}_{\mathrm{m}}\) and \(\mathcal{L}_{\mathrm{m}}\) contractions and its applications to Caputo fractional integro-differential equations. (English) Zbl 1484.54057 AIMS Math. 6, No. 6, 6340-6355 (2021). MSC: 54H25 34K37 45G10 45J05 47H09 47H10 PDF BibTeX XML Cite \textit{M. B. Zada} et al., AIMS Math. 6, No. 6, 6340--6355 (2021; Zbl 1484.54057) Full Text: DOI OpenURL
Özel, Mustafa; Tarakçi, Mehmet; Sezer, Mehmet Morgan-Voyce polynomial approach for ordinary linear delay integro-differential equations with variable delays and variable bounds. (English) Zbl 07512855 Hacet. J. Math. Stat. 50, No. 5, 1434-1447 (2021). MSC: 45-XX 45A05 65L60 PDF BibTeX XML Cite \textit{M. Özel} et al., Hacet. J. Math. Stat. 50, No. 5, 1434--1447 (2021; Zbl 07512855) Full Text: DOI OpenURL
Rautian, Nadezhda Aleksandrovna Exponential stability of semigroups generated by Volterra integro-differential equations. (Russian. English summary) Zbl 1497.47059 Ufim. Mat. Zh. 13, No. 4, 65-81 (2021); translation in Ufa Math. J. 13, No. 4, 63-79 (2021). MSC: 47D06 47G20 45K05 45D05 35R09 PDF BibTeX XML Cite \textit{N. A. Rautian}, Ufim. Mat. Zh. 13, No. 4, 65--81 (2021; Zbl 1497.47059); translation in Ufa Math. J. 13, No. 4, 63--79 (2021) Full Text: DOI MNR OpenURL
Barazandeh, Y. Approximate solution for a system of fractional integro-differential equations by Müntz Legendre wavelets. (English) Zbl 1492.65355 Iran. J. Numer. Anal. Optim. 11, No. 1, 55-72 (2021). MSC: 65R20 65T60 45J05 26A33 42C10 PDF BibTeX XML Cite \textit{Y. Barazandeh}, Iran. J. Numer. Anal. Optim. 11, No. 1, 55--72 (2021; Zbl 1492.65355) Full Text: DOI OpenURL