Karthikeyan, K.; Senthil Raja, D.; Sundararajan, P. Existence results for abstract fractional integro differential equations. (English) Zbl 07666899 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 2, 109-119 (2023). MSC: 34A08 45J05 26A33 47B25 PDF BibTeX XML Cite \textit{K. Karthikeyan} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 2, 109--119 (2023; Zbl 07666899) Full Text: Link OpenURL
Hamoud, Ahmed A.; Mohammed, Nedal M. Existence and uniqueness results for fractional Volterra-Fredholm integro differential equations with integral boundary conditions 75-86. (English) Zbl 07666897 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75-86 (2023). MSC: 26A33 34A08 34B15 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{N. M. Mohammed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75--86 (2023; Zbl 07666897) Full Text: Link OpenURL
Klimsiak, Tomasz; Komorowski, Tomasz Hopf type lemmas for subsolutions of integro-differential equations. (English) Zbl 07666825 Bernoulli 29, No. 2, 1435-1463 (2023). MSC: 45Kxx 35Jxx 35Rxx PDF BibTeX XML Cite \textit{T. Klimsiak} and \textit{T. Komorowski}, Bernoulli 29, No. 2, 1435--1463 (2023; Zbl 07666825) Full Text: DOI arXiv Link OpenURL
Alipour, Maryam; Soradi, Zeid Samaneh Optimal control of Volterra integro-differential equations based on interpolation polynomials and collocation method. (English) Zbl 07665294 Comput. Methods Differ. Equ. 11, No. 1, 52-64 (2023). MSC: 34K35 49M25 34H05 PDF BibTeX XML Cite \textit{M. Alipour} and \textit{Z. S. Soradi}, Comput. Methods Differ. Equ. 11, No. 1, 52--64 (2023; Zbl 07665294) Full Text: DOI OpenURL
Kaplan, Ayse G. Applications of Laplace transform method to the fractional linear Integro differential equations. (English) Zbl 07663828 J. Contemp. Appl. Math. 13, No. 1, 25-32 (2023). MSC: 26A33 44A10 PDF BibTeX XML Cite \textit{A. G. Kaplan}, J. Contemp. Appl. Math. 13, No. 1, 25--32 (2023; Zbl 07663828) Full Text: Link OpenURL
Cheung, Eric C. K.; Lau, Hayden; Willmot, Gordon E.; Woo, Jae-Kyung Finite-time ruin probabilities using bivariate Laguerre series. (English) Zbl 07662329 Scand. Actuar. J. 2023, No. 2, 153-190 (2023). MSC: 91G05 45K05 62P05 PDF BibTeX XML Cite \textit{E. C. K. Cheung} et al., Scand. Actuar. J. 2023, No. 2, 153--190 (2023; Zbl 07662329) Full Text: DOI OpenURL
Biswas, Anup; Modasiya, Mitesh; Sen, Abhrojyoti Boundary regularity of mixed local-nonlocal operators and its application. (English) Zbl 07660737 Ann. Mat. Pura Appl. (4) 202, No. 2, 679-710 (2023). MSC: 35D40 35B65 35J61 35R45 47G20 PDF BibTeX XML Cite \textit{A. Biswas} et al., Ann. Mat. Pura Appl. (4) 202, No. 2, 679--710 (2023; Zbl 07660737) Full Text: DOI arXiv OpenURL
Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem. (English) Zbl 07660428 Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} et al., Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023; Zbl 07660428) Full Text: DOI OpenURL
Kwaśnicki, Mateusz Boundary traces of shift-invariant diffusions in half-plane. (English. French summary) Zbl 07657658 Ann. Inst. Henri Poincaré, Probab. Stat. 59, No. 1, 411-436 (2023). MSC: 60J60 60J76 60G51 35J25 35J70 35R11 47G20 PDF BibTeX XML Cite \textit{M. Kwaśnicki}, Ann. Inst. Henri Poincaré, Probab. Stat. 59, No. 1, 411--436 (2023; Zbl 07657658) Full Text: DOI arXiv OpenURL
Liu, Li-Bin; Liao, Yige; Long, Guangqing A novel parameter-uniform numerical method for a singularly perturbed Volterra integro-differential equation. (English) Zbl 07655421 Comput. Appl. Math. 42, No. 1, Paper No. 12, 12 p. (2023). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{L.-B. Liu} et al., Comput. Appl. Math. 42, No. 1, Paper No. 12, 12 p. (2023; Zbl 07655421) Full Text: DOI OpenURL
Ghosal, Promit; Silva, Guilherme L. F. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. (English) Zbl 07654968 Commun. Math. Phys. 397, No. 3, 1237-1307 (2023). MSC: 37H10 15B52 60B20 34M55 37J65 PDF BibTeX XML Cite \textit{P. Ghosal} and \textit{G. L. F. Silva}, Commun. Math. Phys. 397, No. 3, 1237--1307 (2023; Zbl 07654968) Full Text: DOI arXiv OpenURL
Rawani, Mukesh Kumar; Verma, Amit Kumar; Cattani, Carlo A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one and two-dimensional partial integro-differential equation. (English) Zbl 07654029 Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 106986, 20 p. (2023). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M06 65N35 65D32 65M12 65M15 65T60 35R09 26A33 35R11 PDF BibTeX XML Cite \textit{M. K. Rawani} et al., Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 106986, 20 p. (2023; Zbl 07654029) Full Text: DOI OpenURL
Fa, Kwok Sau Generalized second Einstein relation in heterogeneous media. (English) Zbl 07642787 Physica A 609, Article ID 128343, 10 p. (2023). MSC: 82-XX PDF BibTeX XML Cite \textit{K. S. Fa}, Physica A 609, Article ID 128343, 10 p. (2023; Zbl 07642787) Full Text: DOI OpenURL
Cao, Nan; Fu, Xianlong Existence and asymptotic properties of solutions of an integro-differential evolution equation with nonlocal conditions on infinite interval. (English) Zbl 07633380 J. Fixed Point Theory Appl. 25, No. 1, Paper No. 14, 27 p. (2023). MSC: 34K25 34K30 45J05 47N20 PDF BibTeX XML Cite \textit{N. Cao} and \textit{X. Fu}, J. Fixed Point Theory Appl. 25, No. 1, Paper No. 14, 27 p. (2023; Zbl 07633380) Full Text: DOI OpenURL
Vabishchevich, P. N. Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory. (English) Zbl 1499.65774 J. Comput. Appl. Math. 422, Article ID 114887, 11 p. (2023). MSC: 65R20 34K30 35R20 47G20 65J08 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Appl. Math. 422, Article ID 114887, 11 p. (2023; Zbl 1499.65774) Full Text: DOI arXiv OpenURL
Zhu, Jianbo; Fu, Xianlong Existence and differentiability of solutions for nondensely defined neutral integro-differential evolution equations. (English) Zbl 07625945 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023). MSC: 37L05 45K05 34B10 35B65 47N20 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{X. Fu}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 30, 24 p. (2023; Zbl 07625945) Full Text: DOI OpenURL
Zhao, Hengzhi; Zhang, Jiwei; Lu, Jing Numerical approximate controllability for unidimensional parabolic integro-differential equations. (English) Zbl 07619074 Math. Comput. Simul. 204, 575-596 (2023). MSC: 65-XX 93-XX PDF BibTeX XML Cite \textit{H. Zhao} et al., Math. Comput. Simul. 204, 575--596 (2023; Zbl 07619074) Full Text: DOI OpenURL
Xing, Yu; Wang, Wei; Su, Xiaonan; Niu, Huawei Equilibrium valuation of currency options with stochastic volatility and systemic co-jumps. (English) Zbl 07616034 J. Ind. Manag. Optim. 19, No. 3, 1869-1892 (2023). MSC: 91G20 60H30 65C30 PDF BibTeX XML Cite \textit{Y. Xing} et al., J. Ind. Manag. Optim. 19, No. 3, 1869--1892 (2023; Zbl 07616034) Full Text: DOI OpenURL
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud; Hosseini, Kamyar A detailed study on 2D Volterra-Fredholm integro-differential equations involving the Caputo fractional derivative. (English) Zbl 07604641 J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023). MSC: 65R20 45D05 45B05 65M70 65L60 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023; Zbl 07604641) Full Text: DOI OpenURL
Rogava, Jemal; Tsiklauri, Mikheil; Vashakidze, Zurab On stability and convergence of a three-layer semi-discrete scheme for an abstract analogue of the Ball integro-differential equation. (English) Zbl 1500.35212 J. Math. Anal. Appl. 518, No. 1, Article ID 126664, 25 p. (2023). MSC: 35L90 35R09 65M12 74K10 PDF BibTeX XML Cite \textit{J. Rogava} et al., J. Math. Anal. Appl. 518, No. 1, Article ID 126664, 25 p. (2023; Zbl 1500.35212) Full Text: DOI arXiv OpenURL
Aliev, Araz Rafig oglu; Gamzaev, Khanlar Mekhvali oglu; Darwish, Adel’ Abdelfattakh; Nofal, Takher Abdekhamed Numerical method for solving the inverse problem of non-stationary flow of viscoelastic fluid in the pipe. (English) Zbl 07666053 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 4, 90-98 (2022). MSC: 65M32 76A10 PDF BibTeX XML Cite \textit{A. R. o. Aliev} et al., Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 4, 90--98 (2022; Zbl 07666053) Full Text: DOI MNR OpenURL
Farshadmoghadam, Farnaz; Azodi, Haman Deilami; Yaghouti, Mohammad Reza An improved radial basis functions method for the high-order Volterra-Fredholm integro-differential equations. (English) Zbl 07663789 Math. Sci., Springer 16, No. 4, 445-458 (2022). MSC: 45J05 65D15 65R20 PDF BibTeX XML Cite \textit{F. Farshadmoghadam} et al., Math. Sci., Springer 16, No. 4, 445--458 (2022; Zbl 07663789) Full Text: DOI OpenURL
Abdellouahab, Naimi; Tellab, Brahim; Zennir, Khaled Existence and stability results of a nonlinear fractional integro-differential equation with integral boundary conditions. (English) Zbl 07661713 Kragujevac J. Math. 46, No. 5, 685-699 (2022). MSC: 34A08 26A33 34B15 34K20 PDF BibTeX XML Cite \textit{N. Abdellouahab} et al., Kragujevac J. Math. 46, No. 5, 685--699 (2022; Zbl 07661713) Full Text: DOI Link OpenURL
Eidinejad, Zahra; Saadati, Reza Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations. (English) Zbl 07657948 Math. Biosci. Eng. 19, No. 7, 6536-6550 (2022). MSC: 45D05 45M10 26A33 33C05 47N20 PDF BibTeX XML Cite \textit{Z. Eidinejad} and \textit{R. Saadati}, Math. Biosci. Eng. 19, No. 7, 6536--6550 (2022; Zbl 07657948) Full Text: DOI OpenURL
Hesameddini, Esmail; Shahbazi, Mehdi Application of Bernstein polynomials for solving Fredholm integro-differential-difference equations. (English) Zbl 07657205 Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 475-493 (2022). MSC: 65R20 65M12 54H25 45E10 PDF BibTeX XML Cite \textit{E. Hesameddini} and \textit{M. Shahbazi}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 4, 475--493 (2022; Zbl 07657205) Full Text: DOI OpenURL
Ilolov, M. I. Fractional linear Volterra integro-differential equations in Banach spaces. (English. Russian original) Zbl 07653476 J. Math. Sci., New York 268, No. 1, 56-62 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 173, 58-64 (2019). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45D05 26A33 47G20 PDF BibTeX XML Cite \textit{M. I. Ilolov}, J. Math. Sci., New York 268, No. 1, 56--62 (2022; Zbl 07653476); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 173, 58--64 (2019) Full Text: DOI OpenURL
Lemita, Samir; Touati, Sami; Derbal, Kheireddine The approximate solution of nonlinear Fredholm implicit integro-differential equation in the complex plane. (English) Zbl 07648881 Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022). MSC: 45B05 45L05 65R20 47G20 PDF BibTeX XML Cite \textit{S. Lemita} et al., Asian-Eur. J. Math. 15, No. 7, Article ID 2250131, 11 p. (2022; Zbl 07648881) Full Text: DOI OpenURL
Wang, Yifei; Huang, Jin; Deng, Ting; Li, Hu An efficient numerical approach for solving variable-order fractional partial integro-differential equations. (English) Zbl 07645490 Comput. Appl. Math. 41, No. 8, Paper No. 411, 25 p. (2022). MSC: 11B68 45K05 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Wang} et al., Comput. Appl. Math. 41, No. 8, Paper No. 411, 25 p. (2022; Zbl 07645490) Full Text: DOI OpenURL
Kulikov, A. N.; Kulikov, D. A. Invariant manifolds and global attractor of the Ginzburg-Landau integro-differential equation. (English. Russian original) Zbl 07642897 Differ. Equ. 58, No. 11, 1499-1513 (2022); translation from Differ. Uravn. 58, No. 11, 1500-1514 (2022). MSC: 35Q56 35R09 35B41 35A01 35R01 PDF BibTeX XML Cite \textit{A. N. Kulikov} and \textit{D. A. Kulikov}, Differ. Equ. 58, No. 11, 1499--1513 (2022; Zbl 07642897); translation from Differ. Uravn. 58, No. 11, 1500--1514 (2022) Full Text: DOI OpenURL
Luo, Ziyang; Zhang, Xingdong; Wang, Shuo; Yao, Lin Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme. (English) Zbl 07641377 Chaos Solitons Fractals 161, Article ID 112395, 8 p. (2022). MSC: 65R20 65M12 35R11 45K05 PDF BibTeX XML Cite \textit{Z. Luo} et al., Chaos Solitons Fractals 161, Article ID 112395, 8 p. (2022; Zbl 07641377) Full Text: DOI OpenURL
Duncan, Dugald B. Positivity of a weakly singular operator and approximation of wave scattering from the sphere. (English) Zbl 07636565 J. Integral Equations Appl. 34, No. 3, 317-333 (2022). MSC: 47Gxx 65R20 42C10 PDF BibTeX XML Cite \textit{D. B. Duncan}, J. Integral Equations Appl. 34, No. 3, 317--333 (2022; Zbl 07636565) Full Text: DOI OpenURL
Phung, Tran Dinh; Duc, Dinh Thanh; Tuan, Vu Kim Multi-term fractional oscillation integro-differential equations. (English) Zbl 1503.45006 Fract. Calc. Appl. Anal. 25, No. 4, 1713-1733 (2022). MSC: 45J05 26A33 34K11 PDF BibTeX XML Cite \textit{T. D. Phung} et al., Fract. Calc. Appl. Anal. 25, No. 4, 1713--1733 (2022; Zbl 1503.45006) Full Text: DOI OpenURL
Ji, Tianfu; Hou, Jianhua; Yang, Changqing The operational matrix of Chebyshev polynomials for solving pantograph-type Volterra integro-differential equations. (English) Zbl 07636103 Adv. Contin. Discrete Models 2022, Paper No. 57, 16 p. (2022). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{T. Ji} et al., Adv. Contin. Discrete Models 2022, Paper No. 57, 16 p. (2022; Zbl 07636103) Full Text: DOI OpenURL
Zhuravl’ov, V. P.; Gongalo, N. V.; Slusarenko, I. P. Controllability of Fredholm’s Integro-differential equations with by a degenerate kernel in Hilbert spaces. (Ukrainian. English summary) Zbl 07633600 Bukovyn. Mat. Zh. 10, No. 1, 51-60 (2022). MSC: 34K30 PDF BibTeX XML Cite \textit{V. P. Zhuravl'ov} et al., Bukovyn. Mat. Zh. 10, No. 1, 51--60 (2022; Zbl 07633600) Full Text: DOI OpenURL
Çakır, Musa; Güneş, Baransel A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. (English) Zbl 07633472 Hacet. J. Math. Stat. 51, No. 3, 787-799 (2022). MSC: 45J05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. Çakır} and \textit{B. Güneş}, Hacet. J. Math. Stat. 51, No. 3, 787--799 (2022; Zbl 07633472) Full Text: DOI OpenURL
Vougalter, Vitali; Volpert, Vitaly On the solvability of some systems of integro-differential equations with concentrated sources. (English) Zbl 07628880 Z. Angew. Math. Phys. 73, No. 6, Paper No. 252, 15 p. (2022). MSC: 35J05 35P30 47G20 PDF BibTeX XML Cite \textit{V. Vougalter} and \textit{V. Volpert}, Z. Angew. Math. Phys. 73, No. 6, Paper No. 252, 15 p. (2022; Zbl 07628880) Full Text: DOI OpenURL
Yuldashev, Tursun Kamaldinovich; Èrgashev, Tukhtasin Gulamzhanovich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlinear system of impulsive integro-differential equations with hilfer fractional operator and mixed maxima. (English) Zbl 1503.45007 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 3, 312-325 (2022). MSC: 45J05 26A33 45G15 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 3, 312--325 (2022; Zbl 1503.45007) Full Text: DOI MNR OpenURL
Safarov, Jurabek Sh. Two-dimensional inverse problem for an integro-differential equation of hyperbolic type. (English) Zbl 07624303 J. Sib. Fed. Univ., Math. Phys. 15, No. 5, 651-662 (2022). MSC: 35Rxx 35Lxx 35Qxx PDF BibTeX XML Cite \textit{J. Sh. Safarov}, J. Sib. Fed. Univ., Math. Phys. 15, No. 5, 651--662 (2022; Zbl 07624303) Full Text: DOI MNR OpenURL
Durdiev, Durdimurod Kalandarovich; Safarov, Zhurabek Shakarovich The problem of determining the memory of an environment with weak horizontal heterogeneity. (Russian. English summary) Zbl 07623671 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 32, No. 3, 383-402 (2022). MSC: 35L20 35C10 35R09 45Q05 PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{Z. S. Safarov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 32, No. 3, 383--402 (2022; Zbl 07623671) Full Text: DOI MNR OpenURL
Atta, A. G.; Youssri, Y. H. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. (English) Zbl 07622774 Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022). MSC: 65M70 45K05 33C45 PDF BibTeX XML Cite \textit{A. G. Atta} and \textit{Y. H. Youssri}, Comput. Appl. Math. 41, No. 8, Paper No. 381, 19 p. (2022; Zbl 07622774) Full Text: DOI OpenURL
El-Sayed, Ahmed; Hashem, Hind; Al-Issa, Shorouk Analysis of a hybrid integro-differential inclusion. (English) Zbl 07619598 Bound. Value Probl. 2022, Paper No. 68, 21 p. (2022). MSC: 26A33 34K45 47G10 PDF BibTeX XML Cite \textit{A. El-Sayed} et al., Bound. Value Probl. 2022, Paper No. 68, 21 p. (2022; Zbl 07619598) Full Text: DOI OpenURL
Katehakis, Michael N.; Melamed, Benjamin; Shi, Jim Junmin Optimal replenishment rate for inventory systems with compound Poisson demands and lost sales: a direct treatment of time-average cost. (English) Zbl 1501.90005 Ann. Oper. Res. 317, No. 2, 665-691 (2022). MSC: 90B05 PDF BibTeX XML Cite \textit{M. N. Katehakis} et al., Ann. Oper. Res. 317, No. 2, 665--691 (2022; Zbl 1501.90005) Full Text: DOI OpenURL
Pinelas, Sandra; Tunç, Osman Solution estimates and stability tests for nonlinear delay integro-differential equations. (English) Zbl 1498.34193 Electron. J. Differ. Equ. 2022, Paper No. 68, 12 p. (2022). MSC: 34K20 34K25 45J05 PDF BibTeX XML Cite \textit{S. Pinelas} and \textit{O. Tunç}, Electron. J. Differ. Equ. 2022, Paper No. 68, 12 p. (2022; Zbl 1498.34193) Full Text: Link OpenURL
Marchuk, A. V.; Shevchuk, L. O. Free and forced vibrations of functionally graded shallow shells based on the 3D elasticity theory. (English) Zbl 07612101 Acta Mech. 233, No. 11, 4729-4746 (2022). MSC: 74H45 74K25 74E05 PDF BibTeX XML Cite \textit{A. V. Marchuk} and \textit{L. O. Shevchuk}, Acta Mech. 233, No. 11, 4729--4746 (2022; Zbl 07612101) Full Text: DOI OpenURL
Huang, Jian; Cen, Zhongdi; Xu, Aimin An efficient numerical method for a time-fractional telegraph equation. (English) Zbl 07607652 Math. Biosci. Eng. 19, No. 5, 4672-4689 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{J. Huang} et al., Math. Biosci. Eng. 19, No. 5, 4672--4689 (2022; Zbl 07607652) Full Text: DOI OpenURL
Mesk, Mohammed; Moussaoui, Ali On an upper bound for the spreading speed. (English) Zbl 1501.92122 Discrete Contin. Dyn. Syst., Ser. B 27, No. 7, 3897-3912 (2022). MSC: 92D25 92D40 35K57 45K05 PDF BibTeX XML Cite \textit{M. Mesk} and \textit{A. Moussaoui}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 7, 3897--3912 (2022; Zbl 1501.92122) Full Text: DOI OpenURL
Qiao, Leijie; Wang, Zhibo; Xu, Da An ADI finite difference method for the two-dimensional Volterra integro-differential equation with weakly singular kernel. (English) Zbl 07606318 Int. J. Comput. Math. 99, No. 12, 2542-2554 (2022). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{L. Qiao} et al., Int. J. Comput. Math. 99, No. 12, 2542--2554 (2022; Zbl 07606318) Full Text: DOI OpenURL
Kühn, Franziska; Kunze, Markus Feller generators with measurable lower order terms. (English) Zbl 07606117 Positivity 26, No. 5, Paper No. 85, 41 p. (2022). MSC: 60G53 47A55 47G20 60J35 60H10 PDF BibTeX XML Cite \textit{F. Kühn} and \textit{M. Kunze}, Positivity 26, No. 5, Paper No. 85, 41 p. (2022; Zbl 07606117) Full Text: DOI arXiv OpenURL
Malak, M. S. Ba-Ali A two-points nonlocal problem of an implicit delay functional integro-differential equation. (English) Zbl 07604449 Electron. J. Math. Anal. Appl. 10, No. 2, 313-323 (2022). MSC: 34K45 47G10 46C50 PDF BibTeX XML Cite \textit{M. S. B. A. Malak}, Electron. J. Math. Anal. Appl. 10, No. 2, 313--323 (2022; Zbl 07604449) Full Text: Link OpenURL
Dekens, L.; Mirrahimi, S. Dynamics of Dirac concentrations in the evolution of quantitative alleles with sexual reproduction. (English) Zbl 1501.35409 Nonlinearity 35, No. 11, 5781-5812 (2022). MSC: 35Q92 92D15 92D25 35R09 37N25 92-08 PDF BibTeX XML Cite \textit{L. Dekens} and \textit{S. Mirrahimi}, Nonlinearity 35, No. 11, 5781--5812 (2022; Zbl 1501.35409) Full Text: DOI arXiv OpenURL
Bouach, Abderrahim; Haddad, Tahar; Thibault, Lionel Nonconvex integro-differential sweeping process with applications. (English) Zbl 07600095 SIAM J. Control Optim. 60, No. 5, 2971-2995 (2022). MSC: 68Q25 68R10 68U05 PDF BibTeX XML Cite \textit{A. Bouach} et al., SIAM J. Control Optim. 60, No. 5, 2971--2995 (2022; Zbl 07600095) Full Text: DOI arXiv OpenURL
Diop, Mamadou Abdul; Ezzinbi, Khalil; Ly, Mamadou Pathe Nonlocal problems for integrodifferential equations via resolvent operators and optimal controls. (English) Zbl 07599586 Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5-25 (2022). MSC: 49J30 47G20 47J35 93B05 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Discuss. Math., Differ. Incl. Control Optim. 42, No. 1, 5--25 (2022; Zbl 07599586) Full Text: DOI OpenURL
Yuldashev, Tursun K. On a nonlocal boundary value problem for a partial integro-differential equations with degenerate kernel. (English) Zbl 07598655 Vladikavkaz. Mat. Zh. 24, No. 2, 130-141 (2022). MSC: 35A02 35M10 35S05 PDF BibTeX XML Cite \textit{T. K. Yuldashev}, Vladikavkaz. Mat. Zh. 24, No. 2, 130--141 (2022; Zbl 07598655) Full Text: DOI MNR OpenURL
Santra, Sudarshan; Panda, Abhilipsa; Mohapatra, Jugal A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations. (English) Zbl 07597412 J. Appl. Math. Comput. 68, No. 5, 3545-3563 (2022). MSC: 65-XX 26A33 35R09 65R20 PDF BibTeX XML Cite \textit{S. Santra} et al., J. Appl. Math. Comput. 68, No. 5, 3545--3563 (2022; Zbl 07597412) Full Text: DOI OpenURL
Al Horani, Mohammed; Favini, Angelo; Tanabe, Hiroki Singular integro-differential equations with applications. (English) Zbl 1498.35559 Evol. Equ. Control Theory 11, No. 5, 1489-1518 (2022). MSC: 35R09 45J05 47G20 PDF BibTeX XML Cite \textit{M. Al Horani} et al., Evol. Equ. Control Theory 11, No. 5, 1489--1518 (2022; Zbl 1498.35559) Full Text: DOI OpenURL
Chernov, Andreĭ V. On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games. (Russian. English summary) Zbl 1500.91042 Mat. Teor. Igr Prilozh. 14, No. 2, 99-122 (2022); translation in Autom. Remote Control 83, No. 11, 1843-1856 (2022). MSC: 91A65 47G99 PDF BibTeX XML Cite \textit{A. V. Chernov}, Mat. Teor. Igr Prilozh. 14, No. 2, 99--122 (2022; Zbl 1500.91042); translation in Autom. Remote Control 83, No. 11, 1843--1856 (2022) Full Text: MNR OpenURL
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V. Optimal control of investment in a collective pension insurance model: study of singular nonlinear problems for integro-differential equations. (English. Russian original) Zbl 1500.91110 Comput. Math. Math. Phys. 62, No. 9, 1438-1454 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 9, 1473-1490 (2022). MSC: 91G05 93E20 49L25 45K05 PDF BibTeX XML Cite \textit{T. A. Belkina} et al., Comput. Math. Math. Phys. 62, No. 9, 1438--1454 (2022; Zbl 1500.91110); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 9, 1473--1490 (2022) Full Text: DOI OpenURL
Gu, Guangze; Yang, Xianyong; Yang, Zhipeng Infinitely many sign-changing solutions for nonlinear fractional Kirchhoff equations. (English) Zbl 1498.35573 Appl. Anal. 101, No. 16, 5850-5871 (2022). MSC: 35R11 35A15 35J62 47G20 PDF BibTeX XML Cite \textit{G. Gu} et al., Appl. Anal. 101, No. 16, 5850--5871 (2022; Zbl 1498.35573) Full Text: DOI OpenURL
Chen, Zhenrong; Chen, Yanping; Huang, Yunqing Piecewise spectral collocation method for second order Volterra integro-differential equations with nonvanishing delay. (English) Zbl 07589265 Adv. Appl. Math. Mech. 14, No. 6, 1333-1356 (2022). MSC: 78A48 PDF BibTeX XML Cite \textit{Z. Chen} et al., Adv. Appl. Math. Mech. 14, No. 6, 1333--1356 (2022; Zbl 07589265) Full Text: DOI OpenURL
Bouriah, Soufyane; Foukrach, Djamal; Benchohra, Mouffak; Zhou, Yong On the periodic solutions for nonlinear Volterra-Fredholm integro-differential equations with \(\psi\)-Hilfer fractional derivative. (English) Zbl 07588228 Differ. Equ. Appl. 14, No. 3, 447-467 (2022). MSC: 34A08 34A12 34B40 45J05 PDF BibTeX XML Cite \textit{S. Bouriah} et al., Differ. Equ. Appl. 14, No. 3, 447--467 (2022; Zbl 07588228) Full Text: DOI OpenURL
Naimi, Abdellouahab; Brahim, Tellab; Zennir, Khaled Existence and stability results for the solution of neutral fractional integro-differential equation with nonlocal conditions. (English) Zbl 1495.34010 Tamkang J. Math. 53, No. 3, 239-257 (2022). MSC: 34A08 45J05 PDF BibTeX XML Cite \textit{A. Naimi} et al., Tamkang J. Math. 53, No. 3, 239--257 (2022; Zbl 1495.34010) Full Text: DOI OpenURL
Amanbaev, T. R. Solution of the problem of the motion of a disperse inclusion in a fluid with account for the “hereditary” Basset force. (English. Russian original) Zbl 1497.76106 Fluid Dyn. 57, No. 3, 295-303 (2022); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2022, No. 3, 79-87 (2022). MSC: 76T10 76T20 76D99 PDF BibTeX XML Cite \textit{T. R. Amanbaev}, Fluid Dyn. 57, No. 3, 295--303 (2022; Zbl 1497.76106); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2022, No. 3, 79--87 (2022) Full Text: DOI OpenURL
Tikhonov, Yu. A. On the spectrum localization of an operator-function arising at studying oscillations of a viscoelastic pipeline with Kelvin-Voigt friction. (English. Russian original) Zbl 07584504 Mosc. Univ. Math. Bull. 77, No. 2, 73-85 (2022); translation from Vestn. Mosk. Univ., Ser. I 77, No. 2, 23-34 (2022). MSC: 47Axx 34Kxx 74Dxx PDF BibTeX XML Cite \textit{Yu. A. Tikhonov}, Mosc. Univ. Math. Bull. 77, No. 2, 73--85 (2022; Zbl 07584504); translation from Vestn. Mosk. Univ., Ser. I 77, No. 2, 23--34 (2022) Full Text: DOI OpenURL
Chen, Bosheng; Liu, Changchun Asymptotic dynamics of a sixth-order integro-differential equation. (English) Zbl 1497.35057 Appl. Anal. 101, No. 15, 5537-5556 (2022). MSC: 35B41 35B65 35R09 45K05 PDF BibTeX XML Cite \textit{B. Chen} and \textit{C. Liu}, Appl. Anal. 101, No. 15, 5537--5556 (2022; Zbl 1497.35057) Full Text: DOI OpenURL
Mansouri, Bouzid; Ardjouni, Abdelouaheb; Djoudi, Ahcene Analysis of periodic solutions for nonlinear coupled integro-differential systems with variable delays. (English) Zbl 07584113 Commentat. Math. Univ. Carol. 63, No. 1, 51-68 (2022). MSC: 34K20 45J05 45D05 PDF BibTeX XML Cite \textit{B. Mansouri} et al., Commentat. Math. Univ. Carol. 63, No. 1, 51--68 (2022; Zbl 07584113) Full Text: DOI OpenURL
Ramdani, Nedjem Eddine; Pinelas, Sandra Solving nonlinear integro-differential equations using numerical method. (English) Zbl 1500.65108 Turk. J. Math. 46, No. 2, SI-1, 675-687 (2022). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{N. E. Ramdani} and \textit{S. Pinelas}, Turk. J. Math. 46, No. 2, 675--687 (2022; Zbl 1500.65108) Full Text: DOI OpenURL
Karthikeyan, Kulandhivel; Murugapandian, Gobi Selvaraj; Ege, Özgür On the solutions of fractional integro-differential equations involving Ulam-Hyers-Rassias stability results via \(\psi\)-fractional derivative with boundary value conditions. (English) Zbl 1501.45009 Turk. J. Math. 46, No. 6, 2500-2512 (2022). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{K. Karthikeyan} et al., Turk. J. Math. 46, No. 6, 2500--2512 (2022; Zbl 1501.45009) Full Text: DOI OpenURL
Alam, Mehboob; Zada, Akbar Implementation of \(q\)-calculus on \(q\)-integro-differential equation involving anti-periodic boundary conditions with three criteria. (English) Zbl 1498.39004 Chaos Solitons Fractals 154, Article ID 111625, 32 p. (2022). MSC: 39A13 05A30 26A33 26E70 34K37 PDF BibTeX XML Cite \textit{M. Alam} and \textit{A. Zada}, Chaos Solitons Fractals 154, Article ID 111625, 32 p. (2022; Zbl 1498.39004) Full Text: DOI OpenURL
Tikhonov, Yu. A. On the properties of a semigroup of operators generated by a Volterra integro-differential equation arising in the theory of viscoelasticity. (English. Russian original) Zbl 1496.45011 Differ. Equ. 58, No. 5, 662-679 (2022); translation from Differ. Uravn. 58, No. 5, 669-685 (2022). MSC: 45K05 45D05 74K10 PDF BibTeX XML Cite \textit{Yu. A. Tikhonov}, Differ. Equ. 58, No. 5, 662--679 (2022; Zbl 1496.45011); translation from Differ. Uravn. 58, No. 5, 669--685 (2022) Full Text: DOI OpenURL
Choudhary, Kapil Kumar; Kumar, Rajiv; Kumar, Rajesh Global classical and weak solutions of the prion proliferation model in the presence of chaperone in a Banach space. (English) Zbl 1496.35408 Evol. Equ. Control Theory 11, No. 4, 1175-1190 (2022). MSC: 35R09 35D30 35Q92 47D06 PDF BibTeX XML Cite \textit{K. K. Choudhary} et al., Evol. Equ. Control Theory 11, No. 4, 1175--1190 (2022; Zbl 1496.35408) Full Text: DOI OpenURL
Durmaz, Muhammet Enes; Amirali, Gabil; Kudu, Mustafa Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition. (English) Zbl 1493.65121 Turk. J. Math. 46, No. 1, 207-224 (2022). MSC: 65L11 65L12 65L20 65R20 45J05 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., Turk. J. Math. 46, No. 1, 207--224 (2022; Zbl 1493.65121) Full Text: DOI OpenURL
Moussai, Miloud Application of the Bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with Caputo fractional derivatives. (English) Zbl 1496.65239 Numer. Algebra Control Optim. 12, No. 3, 551-568 (2022). MSC: 65R20 45J05 45D05 PDF BibTeX XML Cite \textit{M. Moussai}, Numer. Algebra Control Optim. 12, No. 3, 551--568 (2022; Zbl 1496.65239) Full Text: DOI OpenURL
Beshtokov, M. Kh. Numerical methods for solving the second boundary value problem for a multidimensional Sobolev type equation. (Russian. English summary) Zbl 1496.65144 Differ. Uravn. Protsessy Upr. 2022, No. 1, 114-139 (2022). MSC: 65M22 65M12 65M15 35R09 76A10 35Q35 PDF BibTeX XML Cite \textit{M. Kh. Beshtokov}, Differ. Uravn. Protsessy Upr. 2022, No. 1, 114--139 (2022; Zbl 1496.65144) Full Text: Link OpenURL
Blatt, Simon Analyticity for solution of fractional integro-differential equations. (English) Zbl 1496.35013 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 224, Article ID 113071, 12 p. (2022). MSC: 35A20 35D40 35R09 35R11 PDF BibTeX XML Cite \textit{S. Blatt}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 224, Article ID 113071, 12 p. (2022; Zbl 1496.35013) Full Text: DOI OpenURL
Cakir, Musa; Ekinci, Yilmaz; Cimen, Erkan A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer. (English) Zbl 07575617 Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022). MSC: 65L05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. Cakir} et al., Comput. Appl. Math. 41, No. 6, Paper No. 259, 14 p. (2022; Zbl 07575617) Full Text: DOI OpenURL
Almeida, Rui M. P.; Duque, José C. M.; Mário, Belchior C. X. A mixed finite element method for a class of evolution differential equations with \(p\)-Laplacian and memory. (English) Zbl 07574217 Appl. Numer. Math. 181, 534-551 (2022). MSC: 65-XX 35Kxx 45Kxx 65Rxx PDF BibTeX XML Cite \textit{R. M. P. Almeida} et al., Appl. Numer. Math. 181, 534--551 (2022; Zbl 07574217) Full Text: DOI arXiv OpenURL
Yang, Huaijun; Shi, Dongyang Optimal error estimates of Galerkin method for a nonlinear parabolic integro-differential equation. (English) Zbl 1502.65151 Appl. Numer. Math. 181, 403-416 (2022). MSC: 65M60 65M06 65N30 65M15 65M12 35R09 45K05 78A25 78M10 PDF BibTeX XML Cite \textit{H. Yang} and \textit{D. Shi}, Appl. Numer. Math. 181, 403--416 (2022; Zbl 1502.65151) Full Text: DOI OpenURL
Rezazadeh, Tohid; Najafi, Esmaeil Jacobi collocation method and smoothing transformation for numerical solution of neutral nonlinear weakly singular Fredholm integro-differential equations. (English) Zbl 1502.65279 Appl. Numer. Math. 181, 135-150 (2022). MSC: 65R20 45J05 45E10 45B05 65L60 PDF BibTeX XML Cite \textit{T. Rezazadeh} and \textit{E. Najafi}, Appl. Numer. Math. 181, 135--150 (2022; Zbl 1502.65279) Full Text: DOI OpenURL
Efendiev, Messoud; Vougalter, Vitali Existence of solutions for some systems of integro-differential equations with transport and superdiffusion. (English) Zbl 1497.35102 Anal. Math. Phys. 12, No. 5, Paper No. 110, 29 p. (2022). MSC: 35J05 47G20 35A01 PDF BibTeX XML Cite \textit{M. Efendiev} and \textit{V. Vougalter}, Anal. Math. Phys. 12, No. 5, Paper No. 110, 29 p. (2022; Zbl 1497.35102) Full Text: DOI OpenURL
Sequeira, Tiago F.; Lima, Pedro M. Numerical simulations of one- and two-dimensional stochastic neural field equations with delay. (English) Zbl 1494.65084 J. Comput. Neurosci. 50, No. 3, 299-311 (2022). MSC: 65M60 65M06 65N30 65T50 65R20 65M12 65Z05 35R09 92B20 92-08 35Q92 35R07 PDF BibTeX XML Cite \textit{T. F. Sequeira} and \textit{P. M. Lima}, J. Comput. Neurosci. 50, No. 3, 299--311 (2022; Zbl 1494.65084) Full Text: DOI OpenURL
Tang, Quan; Luo, Ziyang; Zhang, Xindong; Liu, Juan Analysis of two-level mesh method for partial integro-differential equation. (English) Zbl 1497.65135 J. Funct. Spaces 2022, Article ID 4557844, 10 p. (2022). MSC: 65M06 65N06 65D12 65M12 65N12 35R09 PDF BibTeX XML Cite \textit{Q. Tang} et al., J. Funct. Spaces 2022, Article ID 4557844, 10 p. (2022; Zbl 1497.65135) Full Text: DOI OpenURL
Kheiryan, Alireza; Rezapour, Shahram Study of Hyers-Ulam stability for a class of multi-singular fractional integro-differential equation with boundary conditions. (English) Zbl 1496.45012 J. Math. Ext. 16, No. 11, Paper No. 3, 19 p. (2022). MSC: 45M10 45J05 26A33 PDF BibTeX XML Cite \textit{A. Kheiryan} and \textit{S. Rezapour}, J. Math. Ext. 16, No. 11, Paper No. 3, 19 p. (2022; Zbl 1496.45012) Full Text: DOI OpenURL
Schenk, Christina; Schulz, Volker H. Existence, uniqueness, and numerical modeling of wine fermentation based on integro-differential equations. (English) Zbl 07566726 SIAM J. Appl. Math. 82, No. 4, 1220-1245 (2022). MSC: 35Q92 92D25 35R09 45J05 46K05 65M08 65M06 65N08 PDF BibTeX XML Cite \textit{C. Schenk} and \textit{V. H. Schulz}, SIAM J. Appl. Math. 82, No. 4, 1220--1245 (2022; Zbl 07566726) Full Text: DOI arXiv OpenURL
Hengamian Asl, Elias; Saberi-Nadjafi, Jafar; Gachpazan, Morteza Numerical solution of fractional-order population growth model using fractional-order Muntz-Legendre collocation method and Pade-approximants. (English) Zbl 07565714 Jordan J. Math. Stat. 15, No. 2, 157-175 (2022). MSC: 26A33 34A08 74G10 PDF BibTeX XML Cite \textit{E. Hengamian Asl} et al., Jordan J. Math. Stat. 15, No. 2, 157--175 (2022; Zbl 07565714) Full Text: DOI OpenURL
Palatucci, Giampiero; Piccinini, Mirco Nonlocal Harnack inequalities in the Heisenberg group. (English) Zbl 1495.35055 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 185, 30 p. (2022). MSC: 35B45 35H20 35R03 35R09 35R11 47G20 PDF BibTeX XML Cite \textit{G. Palatucci} and \textit{M. Piccinini}, Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 185, 30 p. (2022; Zbl 1495.35055) Full Text: DOI arXiv OpenURL
Hu, Shufang; Qiu, Wenlin; Chen, Hongbin A predictor-corrector compact finite difference scheme for a nonlinear partial integro-differential equation. (English) Zbl 07565165 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3-4, 553-563 (2022). MSC: 45K05 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{S. Hu} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3--4, 553--563 (2022; Zbl 07565165) Full Text: DOI OpenURL
Zhai, Fangman; Cao, Liqun A multiscale parallel algorithm for parabolic integro-differential equation in composite media. (English) Zbl 07565084 Int. J. Numer. Anal. Model. 19, No. 4, 542-562 (2022). MSC: 65M60 35B25 35B40 65F10 PDF BibTeX XML Cite \textit{F. Zhai} and \textit{L. Cao}, Int. J. Numer. Anal. Model. 19, No. 4, 542--562 (2022; Zbl 07565084) Full Text: Link OpenURL
Adama, Kamate; Mbaiguesse, Djibet; Yiyureboula, Bationo Jeremie; Abbo, Bakari; Pare, Youssouf Analytical solution of some nonlinear fractional integro-differential equations of the Fredholm second kind by a new approximation technique of the numerical sba method. (English) Zbl 07564765 Int. J. Numer. Methods Appl. 21, 37-58 (2022). MSC: 65Rxx 97N40 97I50 44Axx 40C10 PDF BibTeX XML Cite \textit{K. Adama} et al., Int. J. Numer. Methods Appl. 21, 37--58 (2022; Zbl 07564765) Full Text: DOI OpenURL
Foukrach, Djamal; Bouriah, Soufyane; Benchohra, Mouffak; Henderson, Johnny Periodic solutions for nonlinear Volterra-Fredholm integro-differential equations with \(\psi \)-Caputo fractional derivative. (English) Zbl 1491.45010 Mem. Differ. Equ. Math. Phys. 86, 51-68 (2022). MSC: 45J05 34A08 34A12 34B40 PDF BibTeX XML Cite \textit{D. Foukrach} et al., Mem. Differ. Equ. Math. Phys. 86, 51--68 (2022; Zbl 1491.45010) Full Text: Link OpenURL
Lillemäe, Margus; Pedas, Arvet; Vikerpuur, Mikk Central part interpolation schemes for a class of fractional initial value problems. (English) Zbl 1491.65173 Acta Comment. Univ. Tartu. Math. 26, No. 1, 161-178 (2022). MSC: 65R20 34A08 45J05 45E10 65L05 65L60 PDF BibTeX XML Cite \textit{M. Lillemäe} et al., Acta Comment. Univ. Tartu. Math. 26, No. 1, 161--178 (2022; Zbl 1491.65173) Full Text: DOI OpenURL
Taghipour, M.; Aminikhah, H. Pell collocation method for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. (English) Zbl 1502.65145 J. Funct. Spaces 2022, Article ID 8063888, 15 p. (2022). MSC: 65M60 65H10 65M12 35R09 45K05 26A33 35R11 PDF BibTeX XML Cite \textit{M. Taghipour} and \textit{H. Aminikhah}, J. Funct. Spaces 2022, Article ID 8063888, 15 p. (2022; Zbl 1502.65145) Full Text: DOI OpenURL
Xiang, Mingqi; Rădulescu, Vicenţiu D.; Zhang, Binlin Existence results for singular fractional \(p\)-Kirchhoff problems. (English) Zbl 07562303 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 3, 1209-1224 (2022). MSC: 35R11 35A15 47G20 PDF BibTeX XML Cite \textit{M. Xiang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 3, 1209--1224 (2022; Zbl 07562303) Full Text: DOI OpenURL
Zheng, Weishan; Chen, Yanping A spectral method for a weakly singular Volterra integro-differential equation with pantograph delay. (English) Zbl 07560254 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 387-402 (2022). MSC: 65R20 45E05 PDF BibTeX XML Cite \textit{W. Zheng} and \textit{Y. Chen}, Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 387--402 (2022; Zbl 07560254) Full Text: DOI OpenURL
Cen, Da-kang; Wang, Zhi-bo; Mo, Yan A compact difference scheme on graded meshes for the nonlinear fractional integro-differential equation with non-smooth solutions. (English) Zbl 1492.65232 Acta Math. Appl. Sin., Engl. Ser. 38, No. 3, 601-613 (2022). MSC: 65M06 65N06 65K10 65M12 65M15 35R09 45K05 26A33 35R11 PDF BibTeX XML Cite \textit{D.-k. Cen} et al., Acta Math. Appl. Sin., Engl. Ser. 38, No. 3, 601--613 (2022; Zbl 1492.65232) Full Text: DOI OpenURL
Litvinov, V. L.; Litvinova, K. V. An approximate method for solving boundary value problems with moving boundaries by reduction to integro-differential equations. (English. Russian original) Zbl 1493.74038 Comput. Math. Math. Phys. 62, No. 6, 945-954 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 6, 977-986 (2022). MSC: 74H45 74H10 74K10 PDF BibTeX XML Cite \textit{V. L. Litvinov} and \textit{K. V. Litvinova}, Comput. Math. Math. Phys. 62, No. 6, 945--954 (2022; Zbl 1493.74038); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 6, 977--986 (2022) Full Text: DOI OpenURL
Yuldashev, Tursun Kamaldinovich; Saburov, Khikmat Khazhibaevich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations with maxima. (English) Zbl 1493.45009 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113-122 (2022). MSC: 45J05 34A37 47N20 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113--122 (2022; Zbl 1493.45009) Full Text: DOI MNR OpenURL
Guo, Boling; Ding, Hang; Wang, Renhai; Zhou, Jun Blowup for a Kirchhoff-type parabolic equation with logarithmic nonlinearity. (English) Zbl 1494.35048 Anal. Appl., Singap. 20, No. 5, 1089-1101 (2022). MSC: 35B44 35K20 35K59 35R09 35R11 47G20 35Q91 PDF BibTeX XML Cite \textit{B. Guo} et al., Anal. Appl., Singap. 20, No. 5, 1089--1101 (2022; Zbl 1494.35048) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Mohammed, Nedal M. Existence and uniqueness of solutions for the neutral fractional integro differential equations. (English) Zbl 1495.45005 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 1, 49-61 (2022). MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{N. M. Mohammed}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 1, 49--61 (2022; Zbl 1495.45005) Full Text: Link Link OpenURL
Sartabanov, Zhaishylyk Almaganbetovich; Aitenova, Gulsezim Muratovna; Abdikalikova, Galiya Amirgalievna Multiperiodic solutions of quasilinear systems of integro-differential equations with \(D_c\)-operator and \(\epsilon \)-period of hereditarity. (English) Zbl 1491.45015 Eurasian Math. J. 13, No. 1, 86-100 (2022). MSC: 45K05 47G20 35B10 65M80 PDF BibTeX XML Cite \textit{Z. A. Sartabanov} et al., Eurasian Math. J. 13, No. 1, 86--100 (2022; Zbl 1491.45015) Full Text: DOI MNR OpenURL
Zakora, D. A. Representation of solutions of a certain integro-differential equation and applications. (English. Russian original) Zbl 1492.45009 J. Math. Sci., New York 263, No. 5, 675-690 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 171, 78-93 (2019). MSC: 45J05 45N05 PDF BibTeX XML Cite \textit{D. A. Zakora}, J. Math. Sci., New York 263, No. 5, 675--690 (2022; Zbl 1492.45009); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 171, 78--93 (2019) Full Text: DOI OpenURL