Barkatou, Moulay; Cluzeau, Thomas On the computation of rational solutions of linear integro-differential equations with polynomial coefficients. (English) Zbl 07740060 J. Symb. Comput. 121, Article ID 102252, 19 p. (2024). MSC: 16Sxx 34Axx 68Wxx PDF BibTeX XML Cite \textit{M. Barkatou} and \textit{T. Cluzeau}, J. Symb. Comput. 121, Article ID 102252, 19 p. (2024; Zbl 07740060) Full Text: DOI
Soradi-Zeid, Samaneh; Alipour, Maryam A collocation method using generalized Laguerre polynomials for solving nonlinear optimal control problems governed by integro-differential equations. (English) Zbl 07738660 J. Comput. Appl. Math. 436, Article ID 115410, 11 p. (2024). MSC: 49J21 49M25 45J05 49M27 65M70 PDF BibTeX XML Cite \textit{S. Soradi-Zeid} and \textit{M. Alipour}, J. Comput. Appl. Math. 436, Article ID 115410, 11 p. (2024; Zbl 07738660) Full Text: DOI
Wen, Jiao; Huang, Chengming Multistep Runge-Kutta methods for Volterra integro-differential equations. (English) Zbl 07738643 J. Comput. Appl. Math. 436, Article ID 115384, 19 p. (2024). MSC: 65Rxx 65Lxx 45Jxx PDF BibTeX XML Cite \textit{J. Wen} and \textit{C. Huang}, J. Comput. Appl. Math. 436, Article ID 115384, 19 p. (2024; Zbl 07738643) Full Text: DOI
Amirali, Ilhame; Acar, Hülya Stability inequalities and numerical solution for neutral Volterra delay integro-differential equation. (English) Zbl 07738626 J. Comput. Appl. Math. 436, Article ID 115343, 11 p. (2024). MSC: 65R20 45D05 45J05 PDF BibTeX XML Cite \textit{I. Amirali} and \textit{H. Acar}, J. Comput. Appl. Math. 436, Article ID 115343, 11 p. (2024; Zbl 07738626) Full Text: DOI
Zheng, Weishan; Chen, Yanping; Zhou, Jianwei A Legendre spectral method for multidimensional partial Volterra integro-differential equations. (English) Zbl 07738623 J. Comput. Appl. Math. 436, Article ID 115302, 17 p. (2024). MSC: 65-XX 35R09 65M12 65M70 PDF BibTeX XML Cite \textit{W. Zheng} et al., J. Comput. Appl. Math. 436, Article ID 115302, 17 p. (2024; Zbl 07738623) Full Text: DOI
Lee, Doo-Sung Eccentric penny-shaped crack in a long circular cylinder. (English) Zbl 07744446 Appl. Anal. 102, No. 13, 3650-3660 (2023). MSC: 74-XX PDF BibTeX XML Cite \textit{D.-S. Lee}, Appl. Anal. 102, No. 13, 3650--3660 (2023; Zbl 07744446) Full Text: DOI
Fahim, K.; Hausenblas, E.; Kovács, M. Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise. (English) Zbl 07742934 Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 3, 1044-1088 (2023). MSC: 45R05 45D05 45L05 60H20 60G22 65R20 PDF BibTeX XML Cite \textit{K. Fahim} et al., Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 3, 1044--1088 (2023; Zbl 07742934) Full Text: DOI arXiv
Elghandouri, Mohammed; Ezzinbi, Khalil Approximation of mild solutions of delay integro-differential equations on Banach spaces. (English) Zbl 07742550 Evol. Equ. Control Theory 12, No. 6, 1629-1657 (2023). MSC: 45J05 45L05 47N20 65R20 PDF BibTeX XML Cite \textit{M. Elghandouri} and \textit{K. Ezzinbi}, Evol. Equ. Control Theory 12, No. 6, 1629--1657 (2023; Zbl 07742550) Full Text: DOI
Bensalem, Abdelhamid; Salim, Abdelkrim; Benchohra, Mouffak; Nieto, Juan J. Controllability results for second-order integro-differential equations with state-dependent delay. (English) Zbl 07742547 Evol. Equ. Control Theory 12, No. 6, 1559-1576 (2023). MSC: 93B05 47H10 45J05 47H08 35D30 47B40 34K45 PDF BibTeX XML Cite \textit{A. Bensalem} et al., Evol. Equ. Control Theory 12, No. 6, 1559--1576 (2023; Zbl 07742547) Full Text: DOI
Kerboua, Mourad; Bouacida, Ichrak; Segni, Sami Null controllability of \(\psi\)-Hilfer implicit fractional integro-differential equations with \(\psi\)-Hilfer fractional nonlocal conditions. (English) Zbl 07742542 Evol. Equ. Control Theory 12, No. 6, 1473-1491 (2023). MSC: 93B05 26A33 34K37 47H10 PDF BibTeX XML Cite \textit{M. Kerboua} et al., Evol. Equ. Control Theory 12, No. 6, 1473--1491 (2023; Zbl 07742542) Full Text: DOI
Fang, Yuzhou; Zhang, Chao Harnack inequality for the nonlocal equations with general growth. (English) Zbl 07741858 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1479-1502 (2023). MSC: 35R11 35B45 35B65 35D30 47G20 46E30 PDF BibTeX XML Cite \textit{Y. Fang} and \textit{C. Zhang}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1479--1502 (2023; Zbl 07741858) Full Text: DOI arXiv
Allahviranloo, T.; Jafarian, A.; Saneifard, R.; Ghalami, N.; Measoomy Nia, S.; Kiani, F.; Fernandez-Gamiz, U.; Noeiaghdam, S. An application of artificial neural networks for solving fractional higher-order linear integro-differential equations. (English) Zbl 07741572 Bound. Value Probl. 2023, Paper No. 74, 14 p. (2023). MSC: 65R20 68T07 45J05 26A33 PDF BibTeX XML Cite \textit{T. Allahviranloo} et al., Bound. Value Probl. 2023, Paper No. 74, 14 p. (2023; Zbl 07741572) Full Text: DOI
Appleby, John A. D.; Lawless, Emmet Solution space characterisation of perturbed linear Volterra integrodifferential convolution equations: the \(L^p\) case. (English) Zbl 07741243 Appl. Math. Lett. 146, Article ID 108825, 7 p. (2023). Reviewer: Leonid Berezansky (Be’er Sheva) MSC: 45D05 45A05 45J05 45M10 PDF BibTeX XML Cite \textit{J. A. D. Appleby} and \textit{E. Lawless}, Appl. Math. Lett. 146, Article ID 108825, 7 p. (2023; Zbl 07741243) Full Text: DOI arXiv
Ebrahimzadeh, Asiyeh; Beik, Samaneh Panjeh Ali Robust bivariate polynomials scheme with convergence analysis for two-dimensional nonlinear optimal control problem. (English) Zbl 07739765 Math. Sci., Springer 17, No. 3, 325-335 (2023). MSC: 49K20 90C30 65Mxx 35Rxx PDF BibTeX XML Cite \textit{A. Ebrahimzadeh} and \textit{S. P. A. Beik}, Math. Sci., Springer 17, No. 3, 325--335 (2023; Zbl 07739765) Full Text: DOI
Mir, Shabir Ahmad; Nisar, K. S.; Akhter, Tawheeda; Araci, Serkan Differential and integrodifferential equations for Gould-Hopper-Frobenius-Euler polynomials. (English) Zbl 07739758 Math. Sci., Springer 17, No. 3, 247-251 (2023). MSC: 33E30 PDF BibTeX XML Cite \textit{S. A. Mir} et al., Math. Sci., Springer 17, No. 3, 247--251 (2023; Zbl 07739758) Full Text: DOI
Qiu, Wenlin; Fairweather, Graeme; Yang, Xuehua; Zhang, Haixiang ADI finite element Galerkin methods for two-dimensional tempered fractional integro-differential equations. (English) Zbl 07739303 Calcolo 60, No. 3, Paper No. 41, 34 p. (2023). MSC: 65M15 65M22 65M60 45K05 PDF BibTeX XML Cite \textit{W. Qiu} et al., Calcolo 60, No. 3, Paper No. 41, 34 p. (2023; Zbl 07739303) Full Text: DOI
Maragh, Fouad On a class of retarded integro-differential Volterra equations. (English) Zbl 07738763 Adv. Oper. Theory 8, No. 2, Paper No. 31, 16 p. (2023). MSC: 45J05 45D05 PDF BibTeX XML Cite \textit{F. Maragh}, Adv. Oper. Theory 8, No. 2, Paper No. 31, 16 p. (2023; Zbl 07738763) Full Text: DOI
Yu, Jiali; Di, Huafei Variable-coefficient viscoelastic wave equation with acoustic boundary conditions: global existence, blowup and energy decay rates. (English) Zbl 07738407 Banach J. Math. Anal. 17, No. 4, Paper No. 68, 37 p. (2023). MSC: 35B40 35L35 35L76 35R09 46B06 47G20 PDF BibTeX XML Cite \textit{J. Yu} and \textit{H. Di}, Banach J. Math. Anal. 17, No. 4, Paper No. 68, 37 p. (2023; Zbl 07738407) Full Text: DOI
Borhanifar, A.; Shahmorad, S.; Feizi, E.; Baleanu, D. Solving 2D-integro-differential problems with nonlocal boundary conditions via a matrix formulated approach. (English) Zbl 07736740 Math. Comput. Simul. 213, 161-176 (2023). MSC: 65-XX 45-XX PDF BibTeX XML Cite \textit{A. Borhanifar} et al., Math. Comput. Simul. 213, 161--176 (2023; Zbl 07736740) Full Text: DOI
Brasseur, Julien; Coville, Jérôme Propagation phenomena with nonlocal diffusion in presence of an obstacle. (English) Zbl 07735762 J. Dyn. Differ. Equations 35, No. 1, 237-301 (2023). MSC: 35K58 35B08 35B40 35K57 47G20 PDF BibTeX XML Cite \textit{J. Brasseur} and \textit{J. Coville}, J. Dyn. Differ. Equations 35, No. 1, 237--301 (2023; Zbl 07735762) Full Text: DOI arXiv
Jaiswal, Aishwarya; Kumar, Shashikant; Kumar, Sunil A priori and a posteriori error analysis for a system of singularly perturbed Volterra integro-differential equations. (English) Zbl 07735394 Comput. Appl. Math. 42, No. 6, Paper No. 278, 16 p. (2023). MSC: 65L11 65L12 65L20 65L70 65R20 PDF BibTeX XML Cite \textit{A. Jaiswal} et al., Comput. Appl. Math. 42, No. 6, Paper No. 278, 16 p. (2023; Zbl 07735394) Full Text: DOI
Gupta, Reema; Saha Ray, S. A new effective coherent numerical technique based on shifted Vieta-Fibonacci polynomials for solving stochastic fractional integro-differential equation. (English) Zbl 07735372 Comput. Appl. Math. 42, No. 6, Paper No. 256, 25 p. (2023). MSC: 60H20 34A08 97N50 65D30 41A15 PDF BibTeX XML Cite \textit{R. Gupta} and \textit{S. Saha Ray}, Comput. Appl. Math. 42, No. 6, Paper No. 256, 25 p. (2023; Zbl 07735372) Full Text: DOI
Chowdhury, Indranil; Ersland, Olav; Jakobsen, Espen R. On numerical approximations of fractional and nonlocal mean field games. (English) Zbl 07735214 Found. Comput. Math. 23, No. 4, 1381-1431 (2023). MSC: 35Q89 35Q84 91A16 47G20 49L12 49L25 45K05 35K61 35F21 65M12 65M22 93B52 93C20 60J65 60G55 26A33 35R11 35R06 PDF BibTeX XML Cite \textit{I. Chowdhury} et al., Found. Comput. Math. 23, No. 4, 1381--1431 (2023; Zbl 07735214) Full Text: DOI arXiv
Byun, Sun-Sig; Kim, Hyojin; Ok, Jihoon Local Hölder continuity for fractional nonlocal equations with general growth. (English) Zbl 07735164 Math. Ann. 387, No. 1-2, 807-846 (2023). MSC: 35R11 35B65 35D30 35J92 47G20 PDF BibTeX XML Cite \textit{S.-S. Byun} et al., Math. Ann. 387, No. 1--2, 807--846 (2023; Zbl 07735164) Full Text: DOI arXiv
Singh, Abhishek Kumar; Mehra, Mani An algorithm to estimate parameter in Müntz-Legendre polynomial approximation for the numerical solution of stochastic fractional integro-differential equation. (English) Zbl 07734348 J. Appl. Math. Comput. 69, No. 3, 2675-2694 (2023). MSC: 65R20 45J05 26A33 41A10 60H35 PDF BibTeX XML Cite \textit{A. K. Singh} and \textit{M. Mehra}, J. Appl. Math. Comput. 69, No. 3, 2675--2694 (2023; Zbl 07734348) Full Text: DOI
Ghosh, Bappa; Mohapatra, Jugal Analysis of finite difference schemes for Volterra integro-differential equations involving arbitrary order derivatives. (English) Zbl 07734309 J. Appl. Math. Comput. 69, No. 2, 1865-1886 (2023). MSC: 65R20 45J05 45D05 26A33 PDF BibTeX XML Cite \textit{B. Ghosh} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 2, 1865--1886 (2023; Zbl 07734309) Full Text: DOI
Cao, Y.; Zaky, M. A.; Hendy, A. S.; Qiu, W. Optimal error analysis of space-time second-order difference scheme for semi-linear non-local Sobolev-type equations with weakly singular kernel. (English) Zbl 07733954 J. Comput. Appl. Math. 431, Article ID 115287, 27 p. (2023). MSC: 65Mxx 35Rxx 65Rxx PDF BibTeX XML Cite \textit{Y. Cao} et al., J. Comput. Appl. Math. 431, Article ID 115287, 27 p. (2023; Zbl 07733954) Full Text: DOI
Maqbol, Sahar M. A.; Jain, R. S.; Reddy, B. S. On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps. (English) Zbl 07733398 Cubo 25, No. 2, 211-229 (2023). MSC: 93E15 93C27 93C23 34K45 45J05 93D99 PDF BibTeX XML Cite \textit{S. M. A. Maqbol} et al., Cubo 25, No. 2, 211--229 (2023; Zbl 07733398) Full Text: DOI
Bondar, I. A.; Strakh, O. P. Weakly perturbed impulsive boundary-value problem for integrodifferential systems in the resonance case. (English. Ukrainian original) Zbl 07732824 J. Math. Sci., New York 274, No. 1, 13-24 (2023); translation from Neliniĭni Kolyvannya 25, No. 1, 14-24 (2022). MSC: 45J05 45G15 15A10 34K10 34K27 34K45 47N20 PDF BibTeX XML Cite \textit{I. A. Bondar} and \textit{O. P. Strakh}, J. Math. Sci., New York 274, No. 1, 13--24 (2023; Zbl 07732824); translation from Neliniĭni Kolyvannya 25, No. 1, 14--24 (2022) Full Text: DOI
Muthaiah, Subramanian; Murugesan, Manigandan; Ramasamy, Sivasamy; Thangaraj, Nandha Gopal On fractional integro-differential equation involving Caputo-Hadamard derivative with Hadamard fractional integral boundary conditions. (English) Zbl 07731421 Southeast Asian Bull. Math. 47, No. 3, 367-380 (2023). MSC: 26A33 34A08 34B15 PDF BibTeX XML Cite \textit{S. Muthaiah} et al., Southeast Asian Bull. Math. 47, No. 3, 367--380 (2023; Zbl 07731421) Full Text: Link
De Nitti, Nicola; König, Tobias Stability with explicit constants of the critical points of the fractional Sobolev inequality and applications to fast diffusion. (English) Zbl 07729950 J. Funct. Anal. 285, No. 9, Article ID 110093, 30 p. (2023). MSC: 35R11 35A01 35A15 35A23 35S15 47G20 PDF BibTeX XML Cite \textit{N. De Nitti} and \textit{T. König}, J. Funct. Anal. 285, No. 9, Article ID 110093, 30 p. (2023; Zbl 07729950) Full Text: DOI arXiv
Byun, Sun-Sig; Kim, Hyojin; Kim, Kyeongbae Higher Hölder regularity for nonlocal parabolic equations with irregular kernels. (English) Zbl 07729124 J. Evol. Equ. 23, No. 3, Paper No. 53, 59 p. (2023). MSC: 35B65 35D30 35K10 35R05 35R09 47G20 PDF BibTeX XML Cite \textit{S.-S. Byun} et al., J. Evol. Equ. 23, No. 3, Paper No. 53, 59 p. (2023; Zbl 07729124) Full Text: DOI arXiv
Asadi-Mehregan, Fatemeh; Assari, Pouria; Dehghan, Mehdi On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme. (English) Zbl 07727805 Int. J. Comput. Math. 100, No. 8, 1757-1778 (2023). MSC: 45J05 45L05 92-08 92D25 PDF BibTeX XML Cite \textit{F. Asadi-Mehregan} et al., Int. J. Comput. Math. 100, No. 8, 1757--1778 (2023; Zbl 07727805) Full Text: DOI
Bekkouche, Mohammed Moumen; Ahmed, Abdelaziz Azeb; Yazid, Fares; Djeradi, Fatima Siham Analytical and numerical study of a nonlinear Volterra integro-differential equation with the Caputo-Fabrizio fractional derivative. (English) Zbl 07727703 Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177-2193 (2023). MSC: 26A33 45D05 65L03 47G20 47Gxx PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177--2193 (2023; Zbl 07727703) Full Text: DOI
Sreedhar, Ch. V.; Dhaigude, D. B.; Vasundhara Devi, J. Generalized monotone method for Caputo fractional integro differential equations with nonlinear boundary condition. (English) Zbl 1517.34107 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 4, 287-299 (2023). MSC: 34K37 34K07 34K10 45J05 PDF BibTeX XML Cite \textit{Ch. V. Sreedhar} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 30, No. 4, 287--299 (2023; Zbl 1517.34107) Full Text: Link Link
van Bockstal, K.; Hendy, A. S.; Zaky, M. A. Space-dependent variable-order time-fractional wave equation: existence and uniqueness of its weak solution. (English) Zbl 07727203 Quaest. Math. 46, No. 8, 1695-1715 (2023). MSC: 35R11 35L20 35A15 47G20 65M12 PDF BibTeX XML Cite \textit{K. van Bockstal} et al., Quaest. Math. 46, No. 8, 1695--1715 (2023; Zbl 07727203) Full Text: DOI
Liao, Yige; Liu, Li-Bin; Ye, Limin; Liu, Tangwei Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation. (English) Zbl 07727123 Appl. Math. Lett. 145, Article ID 108755, 7 p. (2023). MSC: 65Lxx 65Mxx 65Rxx PDF BibTeX XML Cite \textit{Y. Liao} et al., Appl. Math. Lett. 145, Article ID 108755, 7 p. (2023; Zbl 07727123) Full Text: DOI
Shi, Dongyang; Zhang, Sihui Unconditional superconvergence analysis of an energy-stable C-N fully discrete scheme for the nonlinear magnetic diffusion model with memory. (English) Zbl 07727104 Appl. Math. Lett. 145, Article ID 108726, 9 p. (2023). MSC: 65Mxx 65Nxx 35Kxx PDF BibTeX XML Cite \textit{D. Shi} and \textit{S. Zhang}, Appl. Math. Lett. 145, Article ID 108726, 9 p. (2023; Zbl 07727104) Full Text: DOI
Chiba, Hayato; Medvedev, Georgi S.; Mizuhara, Matthew S. Bifurcations and patterns in the Kuramoto model with inertia. (English) Zbl 07724684 J. Nonlinear Sci. 33, No. 5, Paper No. 78, 21 p. (2023). Reviewer: Carlo Laing (Auckland) MSC: 34C15 35B32 47G20 82B20 92B25 34D06 PDF BibTeX XML Cite \textit{H. Chiba} et al., J. Nonlinear Sci. 33, No. 5, Paper No. 78, 21 p. (2023; Zbl 07724684) Full Text: DOI arXiv
Graef, John R.; Tunç, Cemil; Şengun, Merve; Tunç, Osman The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam. (English) Zbl 07724297 Nonauton. Dyn. Syst. 10, Article ID 20220169, 12 p. (2023). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45J05 45D05 45M10 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Nonauton. Dyn. Syst. 10, Article ID 20220169, 12 p. (2023; Zbl 07724297) Full Text: DOI
Zhuravlev, V. P.; Honhalo, N. V.; Slyusarenko, I. P. Controllability conditions for Fredholm integrodifferential equations with degenerate kernel in Banach spaces. (English. Ukrainian original) Zbl 07723989 J. Math. Sci., New York 273, No. 2, 230-247 (2023); translation from Neliniĭni Kolyvannya 24, No. 4, 482-497 (2021). MSC: 45J05 45P05 47G10 PDF BibTeX XML Cite \textit{V. P. Zhuravlev} et al., J. Math. Sci., New York 273, No. 2, 230--247 (2023; Zbl 07723989); translation from Neliniĭni Kolyvannya 24, No. 4, 482--497 (2021) Full Text: DOI
Giovannardi, Gianmarco; Mugnai, Dimitri; Vecchi, Eugenio An Ahmad-Lazer-Paul-type result for indefinite mixed local-nonlocal problems. (English) Zbl 07723307 J. Math. Anal. Appl. 527, No. 2, Article ID 127442, 16 p. (2023). MSC: 35R11 35B65 35J25 35J92 47G20 PDF BibTeX XML Cite \textit{G. Giovannardi} et al., J. Math. Anal. Appl. 527, No. 2, Article ID 127442, 16 p. (2023; Zbl 07723307) Full Text: DOI arXiv
Bobodzhanov, A. A.; Kalimbetov, B. T.; Safonov, V. F. Singularly perturbed integro-differential systems with kernels depending on solutions of differential equations. (English. Russian original) Zbl 07723238 Differ. Equ. 59, No. 5, 707-719 (2023); translation from Differ. Uravn. 59, No. 5, 693-704 (2023). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45J05 45D05 45M05 PDF BibTeX XML Cite \textit{A. A. Bobodzhanov} et al., Differ. Equ. 59, No. 5, 707--719 (2023; Zbl 07723238); translation from Differ. Uravn. 59, No. 5, 693--704 (2023) Full Text: DOI
Abedin, Farhan; Schwab, Russell W. Regularity for a special case of two-phase Hele-Shaw flow via parabolic integro-differential equations. (English) Zbl 07722279 J. Funct. Anal. 285, No. 8, Article ID 110066, 83 p. (2023). MSC: 35B51 35B65 35R09 35R35 45K05 47G20 49L25 76D27 76S05 PDF BibTeX XML Cite \textit{F. Abedin} and \textit{R. W. Schwab}, J. Funct. Anal. 285, No. 8, Article ID 110066, 83 p. (2023; Zbl 07722279) Full Text: DOI arXiv
Simon, Thomas A note on the \(\alpha\)-sun distribution. (English) Zbl 07721285 Electron. Commun. Probab. 28, Paper No. 19, 13 p. (2023). MSC: 60E07 45J05 60G51 60G70 PDF BibTeX XML Cite \textit{T. Simon}, Electron. Commun. Probab. 28, Paper No. 19, 13 p. (2023; Zbl 07721285) Full Text: DOI arXiv
Tunç, O.; Korkmaz, E. New results on the qualitative analysis of solutions of VIDEs by the Lyapunov-Razumikhin technique. (English) Zbl 07721194 Ukr. Math. J. 74, No. 11, 1764-1779 (2023) and Ukr. Mat. Zh. 74, No. 11, 1544-1557 (2022). MSC: 45J05 45M10 45D05 34K20 PDF BibTeX XML Cite \textit{O. Tunç} and \textit{E. Korkmaz}, Ukr. Math. J. 74, No. 11, 1764--1779 (2023; Zbl 07721194) Full Text: DOI
Safdari, Mohammad Nonlocal equations with gradient constraints. (English) Zbl 07716566 Calc. Var. Partial Differ. Equ. 62, No. 7, Paper No. 193, 30 p. (2023). MSC: 35B65 35J60 35J87 35R35 47G20 PDF BibTeX XML Cite \textit{M. Safdari}, Calc. Var. Partial Differ. Equ. 62, No. 7, Paper No. 193, 30 p. (2023; Zbl 07716566) Full Text: DOI arXiv
Madan, Dilip B.; Schoutens, Wim; Wang, King Option returns. (English) Zbl 07716481 Front. Math. Finance 2, No. 2, 244-264 (2023). MSC: 91G20 35R60 45K05 60G46 PDF BibTeX XML Cite \textit{D. B. Madan} et al., Front. Math. Finance 2, No. 2, 244--264 (2023; Zbl 07716481) Full Text: DOI
Moroşanu, Gheorghe; Petruşel, Adrian On a delay integro-differential equation in Banach space. (English) Zbl 1517.34101 Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1596-1609 (2023). MSC: 34K30 47D06 47H10 47J26 PDF BibTeX XML Cite \textit{G. Moroşanu} and \textit{A. Petruşel}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 6, 1596--1609 (2023; Zbl 1517.34101) Full Text: DOI
Verma, Pratibha; Giri, Ankik Kumar; Da Costa, F. P. The continuous Redner-Ben-Avraham-Kahng coagulation system: well-posedness and asymptotic behaviour. (English) Zbl 07716439 Evol. Equ. Control Theory 12, No. 5, 1247-1267 (2023). Reviewer: Leonid Berezansky (Be’er Sheva) MSC: 45J05 45M05 45G10 47G20 34K30 PDF BibTeX XML Cite \textit{P. Verma} et al., Evol. Equ. Control Theory 12, No. 5, 1247--1267 (2023; Zbl 07716439) Full Text: DOI
Shao, Xinping; Yang, Liupan; Guo, Anqi A feedforward neural network based on Legendre polynomial for solving linear Fredholm integro-differential equations. (English) Zbl 07716404 Int. J. Comput. Math. 100, No. 7, 1480-1499 (2023). MSC: 33C45 65D15 45J05 PDF BibTeX XML Cite \textit{X. Shao} et al., Int. J. Comput. Math. 100, No. 7, 1480--1499 (2023; Zbl 07716404) Full Text: DOI
Cai, Zhenning; Wang, Geshuo; Yang, Siyao The bold-thin-bold diagrammatic Monte Carlo method for open quantum systems. (English) Zbl 07715402 SIAM J. Sci. Comput. 45, No. 4, A1812-A1843 (2023). MSC: 65C05 81S22 PDF BibTeX XML Cite \textit{Z. Cai} et al., SIAM J. Sci. Comput. 45, No. 4, A1812--A1843 (2023; Zbl 07715402) Full Text: DOI arXiv
Bailo, Rafael; Carrillo, José A.; Hu, Jingwei Bound-preserving finite-volume schemes for systems of continuity equations with saturation. (English) Zbl 07715220 SIAM J. Appl. Math. 83, No. 3, 1315-1339 (2023). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 92D25 35Q92 45K05 35R09 35B09 PDF BibTeX XML Cite \textit{R. Bailo} et al., SIAM J. Appl. Math. 83, No. 3, 1315--1339 (2023; Zbl 07715220) Full Text: DOI arXiv
Yadav, Poonam; Singh, B. P.; Alikhanov, Anatoly A.; Singh, Vineet Kumar Numerical scheme with convergence analysis and error estimate for variable order weakly singular integro-differential equation. (English) Zbl 07714950 Int. J. Comput. Methods 20, No. 2, Article ID 2250046, 39 p. (2023). MSC: 65-XX 45-XX PDF BibTeX XML Cite \textit{P. Yadav} et al., Int. J. Comput. Methods 20, No. 2, Article ID 2250046, 39 p. (2023; Zbl 07714950) Full Text: DOI
Afiatdoust, F.; Heydari, M. H.; Hosseini, M. M. A block-by-block strategy for fractional systems of nonlinear weakly singular integro-differential equations. (English) Zbl 07714810 Comput. Appl. Math. 42, No. 6, Paper No. 252, 17 p. (2023). MSC: 26A33 PDF BibTeX XML Cite \textit{F. Afiatdoust} et al., Comput. Appl. Math. 42, No. 6, Paper No. 252, 17 p. (2023; Zbl 07714810) Full Text: DOI
Zou, Feng Zhen; Chen, Xu A Markov-modulated risk model with transaction costs and threshold dividend strategy. (English) Zbl 07713882 Commun. Stat., Simulation Comput. 52, No. 4, 1577-1590 (2023). MSC: 62-XX PDF BibTeX XML Cite \textit{F. Z. Zou} and \textit{X. Chen}, Commun. Stat., Simulation Comput. 52, No. 4, 1577--1590 (2023; Zbl 07713882) Full Text: DOI
Agachev, Yu. R.; Pershagin, M. Yu. Well-posedness of boundary-value problems for conditionally well-posed integro-differential equations and polynomial approximations of their solutions. (English. Russian original) Zbl 07712810 J. Math. Sci., New York 272, No. 6, 816-825 (2023); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 175, 69-78 (2020). MSC: 45J05 45L05 65R20 PDF BibTeX XML Cite \textit{Yu. R. Agachev} and \textit{M. Yu. Pershagin}, J. Math. Sci., New York 272, No. 6, 816--825 (2023; Zbl 07712810); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 175, 69--78 (2020) Full Text: DOI
Glushak, A. V. Operator hypergeometric functions. (English. Russian original) Zbl 07712798 J. Math. Sci., New York 272, No. 5, 658-666 (2023); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 174, 37-45 (2020). MSC: 47-XX 33C05 34G10 45J05 PDF BibTeX XML Cite \textit{A. V. Glushak}, J. Math. Sci., New York 272, No. 5, 658--666 (2023; Zbl 07712798); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 174, 37--45 (2020) Full Text: DOI
Zhou, Xiuxiang Perturbations of time optimal control problems for parabolic integro-differential equations. (English) Zbl 07712215 SIAM J. Control Optim. 61, No. 4, 2069-2087 (2023). MSC: 35K20 35R09 49J20 93C20 93C73 PDF BibTeX XML Cite \textit{X. Zhou}, SIAM J. Control Optim. 61, No. 4, 2069--2087 (2023; Zbl 07712215) Full Text: DOI
Zhang, Zhongyi; Repovš, Dušan D. On degenerate fractional Schrödinger-Kirchhoff-Poisson equations with upper critical nonlinearity and electromagnetic fields. (English) Zbl 07711697 Complex Var. Elliptic Equ. 68, No. 7, 1219-1238 (2023). MSC: 35R11 35A15 35B33 35J62 47G20 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{D. D. Repovš}, Complex Var. Elliptic Equ. 68, No. 7, 1219--1238 (2023; Zbl 07711697) Full Text: DOI arXiv
Leitão, Raimundo \(L_p\)-estimates for solutions of equations governed by operators like the anisotropic fractional Laplacian. (English) Zbl 07711680 Bull. Braz. Math. Soc. (N.S.) 54, No. 3, Paper No. 34, 38 p. (2023). MSC: 26A33 35J70 47G20 PDF BibTeX XML Cite \textit{R. Leitão}, Bull. Braz. Math. Soc. (N.S.) 54, No. 3, Paper No. 34, 38 p. (2023; Zbl 07711680) Full Text: DOI
Duque, José C. M.; Almeida, Rui M. P.; Mário, Belchior C. X. Numerical solution for a class of evolution differential equations with \(p\)-Laplacian and memory. (English) Zbl 07711005 J. Comput. Appl. Math. 428, Article ID 115144, 16 p. (2023). MSC: 65-XX 35Kxx 65Mxx 65Nxx PDF BibTeX XML Cite \textit{J. C. M. Duque} et al., J. Comput. Appl. Math. 428, Article ID 115144, 16 p. (2023; Zbl 07711005) Full Text: DOI arXiv
Assanova, A. T.; Bakirova, E. A.; Kadirbayeva, Zh. M. Two-point boundary value problem for Volterra-Fredholm integro-differential equations and its numerical analysis. (English) Zbl 07710945 Lobachevskii J. Math. 44, No. 3, 1100-1110 (2023). MSC: 45J05 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{A. T. Assanova} et al., Lobachevskii J. Math. 44, No. 3, 1100--1110 (2023; Zbl 07710945) Full Text: DOI
Rautian, N. A.; Vlasov, V. V. Spectral analysis of the generators for semigroups associated with Volterra integro-differential equations. (English) Zbl 07710930 Lobachevskii J. Math. 44, No. 3, 926-935 (2023). MSC: 47Axx 76Dxx 45Nxx PDF BibTeX XML Cite \textit{N. A. Rautian} and \textit{V. V. Vlasov}, Lobachevskii J. Math. 44, No. 3, 926--935 (2023; Zbl 07710930) Full Text: DOI
Durmaz, Muhammet Enes; Amirali, Ilhame; Mohapatra, Jugal; Amiraliyev, Gabil M. A second-order numerical approximation of a singularly perturbed nonlinear Fredholm integro-differential equation. (English) Zbl 07710423 Appl. Numer. Math. 191, 17-28 (2023). MSC: 65Lxx 65Mxx 65Rxx PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., Appl. Numer. Math. 191, 17--28 (2023; Zbl 07710423) Full Text: DOI
Vlasov, V. V.; Rautian, N. A. Spectral properties of the generator of a semigroup generated by the Volterra integro-differential equation. (English. Russian original) Zbl 07710220 Differ. Equ. 59, No. 2, 283-288 (2023); translation from Differ. Uravn. 59, No. 2, 275-279 (2023). MSC: 45C05 45J05 45D05 47A11 PDF BibTeX XML Cite \textit{V. V. Vlasov} and \textit{N. A. Rautian}, Differ. Equ. 59, No. 2, 283--288 (2023; Zbl 07710220); translation from Differ. Uravn. 59, No. 2, 275--279 (2023) Full Text: DOI
Durdiev, D. K.; Safarov, J. Sh. Finding the two-dimensional relaxation kernel of an integro-differential wave equation. (English. Russian original) Zbl 07710214 Differ. Equ. 59, No. 2, 214-229 (2023); translation from Differ. Uravn. 59, No. 2, 208-222 (2023). MSC: 45Q05 45K05 PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{J. Sh. Safarov}, Differ. Equ. 59, No. 2, 214--229 (2023; Zbl 07710214); translation from Differ. Uravn. 59, No. 2, 208--222 (2023) Full Text: DOI
Ndambomve, Patrice; Kpoumie, Moussa El-Khalil; Ezzinbi, Khalil Approximate controllability results in \(\alpha \)-norm for some partial functional integrodifferential equations with nonlocal initial conditions in Banach spaces. (English) Zbl 07709534 J. Appl. Anal. 29, No. 1, 127-142 (2023). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 93C20 35R10 45K05 93B28 47H10 47D06 PDF BibTeX XML Cite \textit{P. Ndambomve} et al., J. Appl. Anal. 29, No. 1, 127--142 (2023; Zbl 07709534) Full Text: DOI
Denisov, A. M. Approximate solution of an inverse problem for a singularly perturbed integro-differential heat equation. (English. Russian original) Zbl 07709485 Comput. Math. Math. Phys. 63, No. 5, 837-844 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 5, 795-802 (2023). MSC: 35R30 35B25 35K20 35R09 PDF BibTeX XML Cite \textit{A. M. Denisov}, Comput. Math. Math. Phys. 63, No. 5, 837--844 (2023; Zbl 07709485); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 5, 795--802 (2023) Full Text: DOI
Gabbasov, N. S. A special version of the collocation method for one class of integro-differential equations. (English. Russian original) Zbl 07709456 Differ. Equ. 59, No. 4, 521-528 (2023); translation from Differ. Uravn. 59, No. 4, 512-519 (2023). MSC: 65R20 PDF BibTeX XML Cite \textit{N. S. Gabbasov}, Differ. Equ. 59, No. 4, 521--528 (2023; Zbl 07709456); translation from Differ. Uravn. 59, No. 4, 512--519 (2023) Full Text: DOI
Kumar, Lalit; Sista, Sivaji Ganesh; Sreenadh, Konijeti A linearized L1-Galerkin FEM for non-smooth solutions of Kirchhoff type quasilinear time-fractional integro-differential equation. (English) Zbl 07708337 J. Sci. Comput. 96, No. 2, Paper No. 36, 39 p. (2023). MSC: 65-XX 35-XX 26A33 65R10 60K50 PDF BibTeX XML Cite \textit{L. Kumar} et al., J. Sci. Comput. 96, No. 2, Paper No. 36, 39 p. (2023; Zbl 07708337) Full Text: DOI arXiv
Kasinathan, Ravikumar; Kasinathan, Ramkumar; Chalishajar, Dimplekumar; Sandrasekaran, Varshini; Jain, Sonal Trajectory control and \(p\)th moment exponential stability of neutral functional stochastic systems driven by Rosenblatt process. (English) Zbl 07707599 Results Appl. Math. 18, Article ID 100366, 16 p. (2023). MSC: 35A02 35B35 47D06 60G15 93C25 PDF BibTeX XML Cite \textit{R. Kasinathan} et al., Results Appl. Math. 18, Article ID 100366, 16 p. (2023; Zbl 07707599) Full Text: DOI
Soots, Hanna Britt; Lätt, Kaido; Pedas, Arvet Collocation based approximations for a class of fractional boundary value problems. (English) Zbl 1514.65204 Math. Model. Anal. 28, No. 2, 218-236 (2023). MSC: 65R20 34K37 45J05 PDF BibTeX XML Cite \textit{H. B. Soots} et al., Math. Model. Anal. 28, No. 2, 218--236 (2023; Zbl 1514.65204) Full Text: DOI
Rostami, Yaser An effective computational approach based on Hermite wavelet Galerkin for solving parabolic Volterra partial integro differential equations and its convergence analysis. (English) Zbl 1514.65203 Math. Model. Anal. 28, No. 1, 163-179 (2023). MSC: 65R20 35R09 45D05 45K05 65T60 PDF BibTeX XML Cite \textit{Y. Rostami}, Math. Model. Anal. 28, No. 1, 163--179 (2023; Zbl 1514.65203) Full Text: DOI
Ismaael, Fawzi Muttar An investigation on the existence and uniqueness analysis of the fractional nonlinear integro-differential equations. (English) Zbl 07706120 Nonlinear Funct. Anal. Appl. 28, No. 1, 237-249 (2023). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 45B05 45D05 47H10 47N20 PDF BibTeX XML Cite \textit{F. M. Ismaael}, Nonlinear Funct. Anal. Appl. 28, No. 1, 237--249 (2023; Zbl 07706120) Full Text: Link
Ostaszewska, Urszula; Schmeidel, Ewa; Zdanowicz, Małgorzata Exponential stability of integro-differential Volterra equation on time scales. (English) Zbl 07705866 Tatra Mt. Math. Publ. 84, 77-86 (2023). MSC: 45D05 45J05 34N05 PDF BibTeX XML Cite \textit{U. Ostaszewska} et al., Tatra Mt. Math. Publ. 84, 77--86 (2023; Zbl 07705866) Full Text: DOI
Chen, Yong; Hu, Ruizi \(L^\infty\)-norm convergence rates of an IMEX scheme for solving a partial integro-differential equation system arising from regime-switching jump-diffusion Asian option pricing. (English) Zbl 07705626 Int. J. Comput. Math. 100, No. 6, 1373-1394 (2023). MSC: 45K05 65N12 91G60 91G20 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{R. Hu}, Int. J. Comput. Math. 100, No. 6, 1373--1394 (2023; Zbl 07705626) Full Text: DOI
Johnson, Murugesan; Raja, Marimuthu Mohan; Vijayakumar, Velusamy; Shukla, Anurag; Nisar, Kottakkaran Sooppy; Jahanshahi, Hadi Optimal control results for impulsive fractional delay integrodifferential equations of order \(1 < r < 2\) via sectorial operator. (English) Zbl 07705289 Nonlinear Anal., Model. Control 28, No. 3, 468-490 (2023). MSC: 45J05 34K37 34K45 49N25 PDF BibTeX XML Cite \textit{M. Johnson} et al., Nonlinear Anal., Model. Control 28, No. 3, 468--490 (2023; Zbl 07705289) Full Text: DOI
Ghasemi, Mohammad; Mohammadi, Keivan; Alipanah, Amjad Numerical solution of system of second-order integro-differential equations using nonclassical sinc collocation method. (English) Zbl 07703181 Bound. Value Probl. 2023, Paper No. 38, 24 p. (2023). MSC: 65Lxx 65Rxx 45Jxx PDF BibTeX XML Cite \textit{M. Ghasemi} et al., Bound. Value Probl. 2023, Paper No. 38, 24 p. (2023; Zbl 07703181) Full Text: DOI
Li, Chenkuan Uniqueness of a nonlinear integro-differential equation with nonlocal boundary condition and variable coefficients. (English) Zbl 1514.34050 Bound. Value Probl. 2023, Paper No. 26, 10 p. (2023). MSC: 34B15 34A12 26A33 PDF BibTeX XML Cite \textit{C. Li}, Bound. Value Probl. 2023, Paper No. 26, 10 p. (2023; Zbl 1514.34050) Full Text: DOI
Li, Xiushuai; Jiang, Jiao Stability of neutral Volterra integro-differential equations with infinite delay. (English) Zbl 1514.34125 SN Partial Differ. Equ. Appl. 4, No. 2, Paper No. 10, 7 p. (2023). MSC: 34K20 34K05 45J05 PDF BibTeX XML Cite \textit{X. Li} and \textit{J. Jiang}, SN Partial Differ. Equ. Appl. 4, No. 2, Paper No. 10, 7 p. (2023; Zbl 1514.34125) Full Text: DOI
Zhou, Xiuxiang; Cheng, Lijuan; Wang, Xin On the null controllability of integer order integro-differential equations. (English) Zbl 07702823 IMA J. Math. Control Inf. 40, No. 2, 285-305 (2023). MSC: 93B05 93C15 45J05 93C20 45K05 PDF BibTeX XML Cite \textit{X. Zhou} et al., IMA J. Math. Control Inf. 40, No. 2, 285--305 (2023; Zbl 07702823) Full Text: DOI
Kadankova, Tetyana; Leonenko, Nikolai; Scalas, Enrico Fractional non-homogeneous Poisson and Pólya-Aeppli processes of order \(k\) and beyond. (English) Zbl 07702530 Commun. Stat., Theory Methods 52, No. 8, 2682-2701 (2023). MSC: 60G55 26A33 60G05 60G51 PDF BibTeX XML Cite \textit{T. Kadankova} et al., Commun. Stat., Theory Methods 52, No. 8, 2682--2701 (2023; Zbl 07702530) Full Text: DOI arXiv
Heydari, M. H.; Razzaghi, M.; Cattani, C. Fractional Chebyshev cardinal wavelets: application for fractional quadratic integro-differential equations. (English) Zbl 07701394 Int. J. Comput. Math. 100, No. 3, 479-496 (2023). MSC: 26A33 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Int. J. Comput. Math. 100, No. 3, 479--496 (2023; Zbl 07701394) Full Text: DOI
Du, Hong; Yang, Xinyue; Chen, Zhong Meshless method of solving multi-term time-fractional integro-differential equation. (English) Zbl 1514.65201 Appl. Math. Lett. 141, Article ID 108619, 8 p. (2023). MSC: 65R20 35R11 45K05 65M12 65M22 PDF BibTeX XML Cite \textit{H. Du} et al., Appl. Math. Lett. 141, Article ID 108619, 8 p. (2023; Zbl 1514.65201) Full Text: DOI
Jain, Riya; Pani, Amiya K.; Yadav, Sangita HDG method for linear parabolic integro-differential equations. (English) Zbl 07701072 Appl. Math. Comput. 450, Article ID 127987, 15 p. (2023). MSC: 65Rxx 65Mxx 45Kxx PDF BibTeX XML Cite \textit{R. Jain} et al., Appl. Math. Comput. 450, Article ID 127987, 15 p. (2023; Zbl 07701072) Full Text: DOI
Hadi, Fazli; Amin, Rohul; Khan, Ilyas; Alzahrani, J.; Nisar, K. S.; Al-Johani, Amnah S.; Eldin, Elsayed Tag Numerical solutions of nonlinear delay integro-differential equations using Haar wavelet collocation method. (English) Zbl 07700485 Fractals 31, No. 2, Article ID 2340039, 12 p. (2023). MSC: 65Rxx 45Jxx 65Lxx PDF BibTeX XML Cite \textit{F. Hadi} et al., Fractals 31, No. 2, Article ID 2340039, 12 p. (2023; Zbl 07700485) Full Text: DOI
Durmaz, Muhammet Enes; Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. An efficient numerical method for a singularly perturbed Volterra-Fredholm integro-differential equation. (English) Zbl 07700114 Hacet. J. Math. Stat. 52, No. 2, 326-339 (2023). MSC: 45J05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., Hacet. J. Math. Stat. 52, No. 2, 326--339 (2023; Zbl 07700114) Full Text: DOI
Bu, Shangquan; Cai, Gang The well-posedness of fractional integro-differential equations in complex Banach spaces. (English) Zbl 07699593 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 4, 1603-1617 (2023). MSC: 34K30 34K13 34G10 47A10 47D06 PDF BibTeX XML Cite \textit{S. Bu} and \textit{G. Cai}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 4, 1603--1617 (2023; Zbl 07699593) Full Text: DOI
Zhou, Jue-liang; He, Yu-bo; Zhang, Shu-qin; Deng, Hai-yun; Lin, Xiao-yan Existence and stability results for nonlinear fractional integrodifferential coupled systems. (English) Zbl 07699532 Bound. Value Probl. 2023, Paper No. 10, 14 p. (2023). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45M10 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{J.-l. Zhou} et al., Bound. Value Probl. 2023, Paper No. 10, 14 p. (2023; Zbl 07699532) Full Text: DOI
Zhao, Lin; Cheng, Meiyu; Zhang, Wei; Li, Rui Stability of the analytic solution and the partially truncated Euler-Maruyama method for a class of stochastic Volterra integro-differential equations with non-globally Lipschitz continuous coefficients. (English) Zbl 07699197 Int. J. Comput. Math. 100, No. 2, 383-404 (2023). MSC: 65C30 65L07 PDF BibTeX XML Cite \textit{L. Zhao} et al., Int. J. Comput. Math. 100, No. 2, 383--404 (2023; Zbl 07699197) Full Text: DOI
Wang, Yu Ping; Yilmaz, Emrah; Akbarpoor, Shahrbanoo The numerical solution of inverse nodal problem for integro-differential operator by Legendre wavelet method. (English) Zbl 07699189 Int. J. Comput. Math. 100, No. 1, 219-232 (2023). MSC: 34A55 34B99 PDF BibTeX XML Cite \textit{Y. P. Wang} et al., Int. J. Comput. Math. 100, No. 1, 219--232 (2023; Zbl 07699189) Full Text: DOI
Rathore, Ajay Singh; Shanthi, Vembu; Ramos, Higinio A fitted numerical method for a singularly perturbed Fredholm integro-differential equation with discontinuous source term. (English) Zbl 07699000 Appl. Numer. Math. 185, 88-100 (2023). MSC: 65L11 65R20 45B05 PDF BibTeX XML Cite \textit{A. S. Rathore} et al., Appl. Numer. Math. 185, 88--100 (2023; Zbl 07699000) Full Text: DOI
Yi, Lijun; Zhang, Mingzhu; Mao, Xinyu Superconvergent postprocessing of the discontinuous Galerkin time stepping method for nonlinear Volterra integro-differential equations. (English) Zbl 07698181 J. Comput. Appl. Math. 427, Article ID 115140, 20 p. (2023). MSC: 65R20 45D05 45J05 PDF BibTeX XML Cite \textit{L. Yi} et al., J. Comput. Appl. Math. 427, Article ID 115140, 20 p. (2023; Zbl 07698181) Full Text: DOI
Onyido, Maria Amarakristi; Shen, Wenxian Non-local dispersal equations with almost periodic dependence. II: Asymptotic dynamics of Fisher-KPP equations. (English) Zbl 1517.45008 Discrete Contin. Dyn. Syst., Ser. S 16, No. 3-4, 548-572 (2023). Reviewer: Vincenzo Vespri (Firenze) MSC: 45K05 45M05 45M20 45M15 47G20 PDF BibTeX XML Cite \textit{M. A. Onyido} and \textit{W. Shen}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 3--4, 548--572 (2023; Zbl 1517.45008) Full Text: DOI arXiv
Ostermann, Alexander; Saedpanah, Fardin; Vaisi, Nasrin Explicit exponential Runge-Kutta methods for semilinear integro-differential equations. (English) Zbl 1516.65154 SIAM J. Numer. Anal. 61, No. 3, 1405-1425 (2023). MSC: 65R20 65M15 65L06 45K05 PDF BibTeX XML Cite \textit{A. Ostermann} et al., SIAM J. Numer. Anal. 61, No. 3, 1405--1425 (2023; Zbl 1516.65154) Full Text: DOI arXiv
Rasouli, Mansoureh; Fariborzi Araghi, Mohammad Ali; Damercheli, Tayebe Approximate techniques to solve the partial integro-differential equation arising in operational risk: Adomian decomposition method. (English) Zbl 07695258 Math. Sci., Springer 17, No. 1, 43-49 (2023). MSC: 65-XX 41Axx 60Hxx 45Kxx PDF BibTeX XML Cite \textit{M. Rasouli} et al., Math. Sci., Springer 17, No. 1, 43--49 (2023; Zbl 07695258) Full Text: DOI
Shivanian, Elyas; Ghoncheh, Seyed Jalal Hosseini; Goudarzi, Hojjatollah A unique weak solution for the fractional integro-differential Schrödinger equations. (English) Zbl 07695255 Math. Sci., Springer 17, No. 1, 15-19 (2023). MSC: 35J05 35R11 47G20 35A01 35A02 PDF BibTeX XML Cite \textit{E. Shivanian} et al., Math. Sci., Springer 17, No. 1, 15--19 (2023; Zbl 07695255) Full Text: DOI
Ziyaee, Fahimeh; Tari, Abolfazl An LN-stable method to solve the fractional partial integro-differential equations. (English) Zbl 07695073 J. Math. Model. 11, No. 1, 133-156 (2023). MSC: 26A33 65R20 35R11 45D05 PDF BibTeX XML Cite \textit{F. Ziyaee} and \textit{A. Tari}, J. Math. Model. 11, No. 1, 133--156 (2023; Zbl 07695073) Full Text: DOI
De Bonis, Maria Carmela; Mennouni, Abdelaziz; Occorsio, Donatella A numerical method for solving systems of hypersingular integro-differential equations. (English) Zbl 07693756 ETNA, Electron. Trans. Numer. Anal. 58, 378-393 (2023). MSC: 41A10 65D05 33C45 45J05 PDF BibTeX XML Cite \textit{M. C. De Bonis} et al., ETNA, Electron. Trans. Numer. Anal. 58, 378--393 (2023; Zbl 07693756) Full Text: DOI Link