Kapelevich, Lea; Andersen, Erling D.; Vielma, Juan Pablo Computing conjugate barrier information for nonsymmetric cones. (English) Zbl 07904928 J. Optim. Theory Appl. 202, No. 1, 271-295 (2024). MSC: 90C25 90C51 PDFBibTeX XMLCite \textit{L. Kapelevich} et al., J. Optim. Theory Appl. 202, No. 1, 271--295 (2024; Zbl 07904928) Full Text: DOI arXiv OA License
Castro, Jordi New interior-point approach for one- and two-class linear support vector machines using multiple variable splitting. (English) Zbl 07904927 J. Optim. Theory Appl. 202, No. 1, 237-270 (2024). MSC: 90C51 90C20 90C90 62H30 PDFBibTeX XMLCite \textit{J. Castro}, J. Optim. Theory Appl. 202, No. 1, 237--270 (2024; Zbl 07904927) Full Text: DOI OA License
Mohammadisiahroudi, Mohammadhossein; Fakhimi, Ramin; Terlaky, Tamás Efficient use of quantum linear system algorithms in inexact infeasible IPMs for linear optimization. (English) Zbl 07904924 J. Optim. Theory Appl. 202, No. 1, 146-183 (2024). MSC: 90C51 90C05 81P68 PDFBibTeX XMLCite \textit{M. Mohammadisiahroudi} et al., J. Optim. Theory Appl. 202, No. 1, 146--183 (2024; Zbl 07904924) Full Text: DOI
Kheirfam, Behrouz Complexity analysis of a full-Newton step interior-point method for monotone weighted linear complementarity problems. (English) Zbl 07904923 J. Optim. Theory Appl. 202, No. 1, 133-145 (2024). MSC: 90C33 90C51 PDFBibTeX XMLCite \textit{B. Kheirfam}, J. Optim. Theory Appl. 202, No. 1, 133--145 (2024; Zbl 07904923) Full Text: DOI
Nesterov, Yurii Set-limited functions and polynomial-time interior-point methods. (English) Zbl 07904918 J. Optim. Theory Appl. 202, No. 1, 11-26 (2024). MSC: 90C25 PDFBibTeX XMLCite \textit{Y. Nesterov}, J. Optim. Theory Appl. 202, No. 1, 11--26 (2024; Zbl 07904918) Full Text: DOI OA License
Friedland, Shmuel; Li, Chi-Kwong On semidefinite programming characterizations of the numerical radius and its dual norm. (English) Zbl 07900914 SIAM J. Matrix Anal. Appl. 45, No. 3, 1414-1428 (2024). MSC: 65F35 15A60 47A12 68Q25 68W25 90C22 90C51 PDFBibTeX XMLCite \textit{S. Friedland} and \textit{C.-K. Li}, SIAM J. Matrix Anal. Appl. 45, No. 3, 1414--1428 (2024; Zbl 07900914) Full Text: DOI arXiv
Vu, Duc Thach Son; Ren, Weiqing A deep learning approach for solving the stationary compositional two-phase equilibrium problems. (English) Zbl 07899887 Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 107883, 20 p. (2024). MSC: 76T99 80M25 90C51 92B20 PDFBibTeX XMLCite \textit{D. T. S. Vu} and \textit{W. Ren}, Commun. Nonlinear Sci. Numer. Simul. 138, Article ID 107883, 20 p. (2024; Zbl 07899887) Full Text: DOI
Bouhenache, Youssra; Chikouche, Wided; Touil, Imene A large-update primal-dual interior-point algorithm for convex quadratic optimization based on a new bi-parameterized bi-hyperbolic Kernel function. (English) Zbl 07896193 Lobachevskii J. Math. 45, No. 3, 992-1007 (2024). MSC: 90Cxx 65Kxx 65Yxx PDFBibTeX XMLCite \textit{Y. Bouhenache} et al., Lobachevskii J. Math. 45, No. 3, 992--1007 (2024; Zbl 07896193) Full Text: DOI
Zaoui, Billel; Benterki, Djamel; Yassine, Adnan An efficient primal-dual interior point algorithm for convex quadratic semidefinite optimization. (English) Zbl 07893854 J. Appl. Math. Comput. 70, No. 3, 2129-2148 (2024). MSC: 90C22 90C25 90C51 PDFBibTeX XMLCite \textit{B. Zaoui} et al., J. Appl. Math. Comput. 70, No. 3, 2129--2148 (2024; Zbl 07893854) Full Text: DOI
De Marchi, Alberto; Themelis, Andreas An interior proximal gradient method for nonconvex optimization. (English) Zbl 07893308 OJMO, Open J. Math. Optim. 5, Article No. 3, 22 p. (2024). MSC: 90Cxx 65Kxx 49Jxx PDFBibTeX XMLCite \textit{A. De Marchi} and \textit{A. Themelis}, OJMO, Open J. Math. Optim. 5, Article No. 3, 22 p. (2024; Zbl 07893308) Full Text: DOI arXiv
Bubeck, Sébastien; Mikulincer, Dan How to trap a gradient flow. (English) Zbl 07882243 SIAM J. Comput. 53, No. 4, 803-824 (2024). MSC: 90C26 90C51 PDFBibTeX XMLCite \textit{S. Bubeck} and \textit{D. Mikulincer}, SIAM J. Comput. 53, No. 4, 803--824 (2024; Zbl 07882243) Full Text: DOI arXiv
do Nascimento, Roberto Quirino; de Oliveira Santos, Rubia Mara; Maculan, Nelson A global interior point method for nonconvex geometric programming. (English) Zbl 07881272 Optim. Eng. 25, No. 2, 605-635 (2024). MSC: 90C26 90C30 90C51 PDFBibTeX XMLCite \textit{R. Q. do Nascimento} et al., Optim. Eng. 25, No. 2, 605--635 (2024; Zbl 07881272) Full Text: DOI
Karimi, Mehdi; Tunçel, Levent Domain-Driven Solver (DDS) version 2.1: a MATLAB-based software package for convex optimization problems in domain-driven form. (English) Zbl 1539.90003 Math. Program. Comput. 16, No. 1, 37-92 (2024). MSC: 90-04 90C25 90C51 49N15 90C90 PDFBibTeX XMLCite \textit{M. Karimi} and \textit{L. Tunçel}, Math. Program. Comput. 16, No. 1, 37--92 (2024; Zbl 1539.90003) Full Text: DOI arXiv
Huang, Mengcheng; Liu, Chang; Du, Zongliang; Tang, Shan; Guo, Xu A sequential linear programming (SLP) approach for uncertainty analysis-based data-driven computational mechanics. (English) Zbl 1539.74552 Comput. Mech. 73, No. 4, 943-965 (2024). MSC: 74S99 74K10 90C90 PDFBibTeX XMLCite \textit{M. Huang} et al., Comput. Mech. 73, No. 4, 943--965 (2024; Zbl 1539.74552) Full Text: DOI arXiv
Zhang, Lipu; Xu, Yinghong A full-Newton step infeasible interior point algorithm and its parameters analysis. (English) Zbl 07846706 J. Ind. Manag. Optim. 20, No. 5, 1916-1933 (2024). MSC: 90C05 90C51 PDFBibTeX XMLCite \textit{L. Zhang} and \textit{Y. Xu}, J. Ind. Manag. Optim. 20, No. 5, 1916--1933 (2024; Zbl 07846706) Full Text: DOI
Facca, Enrico; Todeschi, Gabriele; Natale, Andrea; Benzi, Michele Efficient preconditioners for solving dynamical optimal transport via interior point methods. (English) Zbl 07843966 SIAM J. Sci. Comput. 46, No. 3, A1397-A1422 (2024). Reviewer: Mária Lukácová-Medvidová (Mainz) MSC: 35Q93 49M41 65K10 65M08 65M06 65N08 65F08 65F10 65F50 65N50 65N55 PDFBibTeX XMLCite \textit{E. Facca} et al., SIAM J. Sci. Comput. 46, No. 3, A1397--A1422 (2024; Zbl 07843966) Full Text: DOI arXiv
Liu, Liying; Hua, Tao A polynomial interior-point algorithm with improved iteration bounds for linear optimization. (English) Zbl 07843795 Japan J. Ind. Appl. Math. 41, No. 2, 739-756 (2024). MSC: 90C05 90C51 90C33 PDFBibTeX XMLCite \textit{L. Liu} and \textit{T. Hua}, Japan J. Ind. Appl. Math. 41, No. 2, 739--756 (2024; Zbl 07843795) Full Text: DOI
Gill, Philip E.; Zhang, Minxin A projected-search interior-point method for nonlinearly constrained optimization. (English) Zbl 07843785 Comput. Optim. Appl. 88, No. 1, 37-70 (2024). MSC: 90C30 90C51 PDFBibTeX XMLCite \textit{P. E. Gill} and \textit{M. Zhang}, Comput. Optim. Appl. 88, No. 1, 37--70 (2024; Zbl 07843785) Full Text: DOI OA License
Zhang, Rui-Jin; Liu, Xin-Wei; Dai, Yu-Hong IPRSDP: a primal-dual interior-point relaxation algorithm for semidefinite programming. (English) Zbl 07843784 Comput. Optim. Appl. 88, No. 1, 1-36 (2024). MSC: 90C22 90C51 PDFBibTeX XMLCite \textit{R.-J. Zhang} et al., Comput. Optim. Appl. 88, No. 1, 1--36 (2024; Zbl 07843784) Full Text: DOI
Lai, Zhijian; Yoshise, Akiko Riemannian interior point methods for constrained optimization on manifolds. (English) Zbl 1537.65067 J. Optim. Theory Appl. 201, No. 1, 433-469 (2024). MSC: 65K05 90C48 90C51 PDFBibTeX XMLCite \textit{Z. Lai} and \textit{A. Yoshise}, J. Optim. Theory Appl. 201, No. 1, 433--469 (2024; Zbl 1537.65067) Full Text: DOI arXiv
Boudjellal, Nawel; Benterki, Djamel A new full-Newton step feasible interior point method for convex quadratic programming. (English) Zbl 07838133 Optimization 73, No. 5, 1571-1588 (2024). MSC: 90C25 90C20 90C51 PDFBibTeX XMLCite \textit{N. Boudjellal} and \textit{D. Benterki}, Optimization 73, No. 5, 1571--1588 (2024; Zbl 07838133) Full Text: DOI
Lee, Jong-Kyu; Cho, You-Young; Jin, Jin-Hee; Cho, Gyeong-Mi A new full-Newton step infeasible interior-point method for \(P_*(\kappa )\)-linear complementarity problem. (English) Zbl 07838116 Optim. Lett. 18, No. 4, 943-964 (2024). MSC: 90C33 90C51 PDFBibTeX XMLCite \textit{J.-K. Lee} et al., Optim. Lett. 18, No. 4, 943--964 (2024; Zbl 07838116) Full Text: DOI OA License
Dreves, Axel Linear and superlinear convergence of a potential reduction algorithm for generalized Nash equilibrium problems. (English) Zbl 07833220 Minimax Theory Appl. 9, No. 1, 55-84 (2024). MSC: 90C30 90C51 91A10 65B99 PDFBibTeX XMLCite \textit{A. Dreves}, Minimax Theory Appl. 9, No. 1, 55--84 (2024; Zbl 07833220) Full Text: Link
Alzalg, Baha Barrier methods based on Jordan-Hilbert algebras for stochastic optimization in spin factors. (English) Zbl 07831950 RAIRO, Oper. Res. 58, No. 1, 1011-1044 (2024). MSC: 90C15 90C25 90C48 90C51 93E20 17C65 PDFBibTeX XMLCite \textit{B. Alzalg}, RAIRO, Oper. Res. 58, No. 1, 1011--1044 (2024; Zbl 07831950) Full Text: DOI
Helmberg, Christoph A preconditioned iterative interior point approach to the conic bundle subproblem. (English) Zbl 07829612 Math. Program. 205, No. 1-2 (A), 559-615 (2024). MSC: 90C22 90C20 65F08 90C25 65K05 90C51 PDFBibTeX XMLCite \textit{C. Helmberg}, Math. Program. 205, No. 1--2 (A), 559--615 (2024; Zbl 07829612) Full Text: DOI arXiv OA License
Wang, Juanbin; Yuan, Jianhua; Ai, Wenbao A class of wide neighborhood interior-point algorithms based on the algebraic equivalent transformation technique with specific functions. (English) Zbl 07829383 Period. Math. Hung. 88, No. 1, 172-189 (2024). Reviewer: I. M. Stancu-Minasian (Bucureşti) MSC: 90C05 90C51 90C25 PDFBibTeX XMLCite \textit{J. Wang} et al., Period. Math. Hung. 88, No. 1, 172--189 (2024; Zbl 07829383) Full Text: DOI
Leulmi, F.; Leulmia, A. A new efficient step-size in Karmarkar’s projective interior point method for optimization problems. (English) Zbl 07828110 Nonlinear Dyn. Syst. Theory 24, No. 1, 65-79 (2024). MSC: 90C51 90C05 PDFBibTeX XMLCite \textit{F. Leulmi} and \textit{A. Leulmia}, Nonlinear Dyn. Syst. Theory 24, No. 1, 65--79 (2024; Zbl 07828110) Full Text: Link
Basu, Saugata; Mohammad-Nezhad, Ali On the complexity of analyticity in semi-definite optimization. (English) Zbl 07822010 Adv. Appl. Math. 156, Article ID 102670, 35 p. (2024). MSC: 14P10 13Jxx 90C22 90C51 PDFBibTeX XMLCite \textit{S. Basu} and \textit{A. Mohammad-Nezhad}, Adv. Appl. Math. 156, Article ID 102670, 35 p. (2024; Zbl 07822010) Full Text: DOI arXiv
Yang, Chong; Duan, Fujian; Li, Xiangli A wide neighbourhood primal-dual second-order corrector interior point algorithm for semidefinite optimization. (English) Zbl 07814982 Optimization 73, No. 3, 875-895 (2024). MSC: 90C22 90C51 PDFBibTeX XMLCite \textit{C. Yang} et al., Optimization 73, No. 3, 875--895 (2024; Zbl 07814982) Full Text: DOI
Lara, F.; Marcavillaca, R. T. Bregman proximal point type algorithms for quasiconvex minimization. (English) Zbl 07814969 Optimization 73, No. 3, 497-515 (2024). MSC: 90C26 90C51 PDFBibTeX XMLCite \textit{F. Lara} and \textit{R. T. Marcavillaca}, Optimization 73, No. 3, 497--515 (2024; Zbl 07814969) Full Text: DOI
Darvay, Zsolt; Rigó, Petra Renáta Interior-point algorithm for symmetric cone horizontal linear complementarity problems based on a new class of algebraically equivalent transformations. (English) Zbl 07814903 Optim. Lett. 18, No. 2, 615-634 (2024). MSC: 90C33 90C51 PDFBibTeX XMLCite \textit{Z. Darvay} and \textit{P. R. Rigó}, Optim. Lett. 18, No. 2, 615--634 (2024; Zbl 07814903) Full Text: DOI OA License
Oulha, Amira Achouak; Alzalg, Baha A path-following slgorithm for stochastic quadratically constrained convex quadratic programming in a Hilbert space. (English) Zbl 07814396 Commun. Comb. Optim. 9, No. 2, 353-387 (2024). MSC: 90C15 90C20 90C25 90C51 PDFBibTeX XMLCite \textit{A. A. Oulha} and \textit{B. Alzalg}, Commun. Comb. Optim. 9, No. 2, 353--387 (2024; Zbl 07814396) Full Text: DOI
Dadush, Daniel; Huiberts, Sophie; Natura, Bento; Végh, László A. A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix. (English) Zbl 07807808 Math. Program. 204, No. 1-2 (A), 135-206 (2024). MSC: 90C05 90C51 PDFBibTeX XMLCite \textit{D. Dadush} et al., Math. Program. 204, No. 1--2 (A), 135--206 (2024; Zbl 07807808) Full Text: DOI OA License
Al-Homidan, Suliman Semidefinite programming for the nearest Hurwitz semidefinite matrix problem. (English) Zbl 1539.90053 J. Nonlinear Convex Anal. 25, No. 1, 1-10 (2024). MSC: 90C22 90C51 90C46 65F35 65K05 PDFBibTeX XMLCite \textit{S. Al-Homidan}, J. Nonlinear Convex Anal. 25, No. 1, 1--10 (2024; Zbl 1539.90053) Full Text: Link
Jauny; Ghosh, Debdas; Upadhayay, Ashutosh A Newton-type globally convergent interior-point method to solve multi-objective optimization problems. (English) Zbl 07803021 J. Comput. Math. 42, No. 1, 24-48 (2024). MSC: 65N06 65B99 PDFBibTeX XMLCite \textit{Jauny} et al., J. Comput. Math. 42, No. 1, 24--48 (2024; Zbl 07803021) Full Text: DOI
Keshtkar, Mahdi; Shivanian, Elyas To study the hyperbolic annular fin with temperature dependent thermal conductivity via optimized Chebyshev polynomials with interior point algorithm. (English) Zbl 1538.65645 Afr. Mat. 35, No. 1, Paper No. 8, 13 p. (2024). MSC: 65Z05 90C51 PDFBibTeX XMLCite \textit{M. Keshtkar} and \textit{E. Shivanian}, Afr. Mat. 35, No. 1, Paper No. 8, 13 p. (2024; Zbl 1538.65645) Full Text: DOI
Ohara, Atsumi; Ishi, Hideyuki; Tsuchiya, Takashi Doubly autoparallel structure and curvature integrals. Applications to iteration complexity for solving convex programs. (English) Zbl 1536.90242 Inf. Geom. 7, Suppl. 1, 555-586 (2024). MSC: 90C51 PDFBibTeX XMLCite \textit{A. Ohara} et al., Inf. Geom. 7, 555--586 (2024; Zbl 1536.90242) Full Text: DOI OA License
Zhao, Huali; Yang, Jun A Mehrotra-type second-order predictor-corrector algorithm for nonlinear complementarity problems over symmetric cones. (English) Zbl 1538.90177 Optimization 73, No. 1, 189-204 (2024). MSC: 90C33 90C30 90C51 90C25 PDFBibTeX XMLCite \textit{H. Zhao} and \textit{J. Yang}, Optimization 73, No. 1, 189--204 (2024; Zbl 1538.90177) Full Text: DOI
Vanaret, Charlie; Leyffer, Sven Unifying nonlinearly constrained nonconvex optimization. arXiv:2406.13454 Preprint, arXiv:2406.13454 [math.OC] (2024). MSC: 49M15 65K05 90C30 90C51 90C55 BibTeX Cite \textit{C. Vanaret} and \textit{S. Leyffer}, ``Unifying nonlinearly constrained nonconvex optimization'', Preprint, arXiv:2406.13454 [math.OC] (2024) Full Text: arXiv OA License
Yang, Yaguang A computationally efficient arc-search interior-point algorithm for nonlinear constrained optimization. arXiv:2406.00436 Preprint, arXiv:2406.00436 [math.OC] (2024). MSC: 90C30 90C51 BibTeX Cite \textit{Y. Yang}, ``A computationally efficient arc-search interior-point algorithm for nonlinear constrained optimization'', Preprint, arXiv:2406.00436 [math.OC] (2024) Full Text: arXiv OA License
Dezfulian, Shima; Wächter, Andreas On the Convergence of Interior-Point Methods for Bound-Constrained Nonlinear Optimization Problems with Noise. arXiv:2405.11400 Preprint, arXiv:2405.11400 [math.OC] (2024). MSC: 65K05 49M37 90C53 90C30 90C51 BibTeX Cite \textit{S. Dezfulian} and \textit{A. Wächter}, ``On the Convergence of Interior-Point Methods for Bound-Constrained Nonlinear Optimization Problems with Noise'', Preprint, arXiv:2405.11400 [math.OC] (2024) Full Text: arXiv OA License
Chu, Ya-Chi; Santos, Luiz-Rafael; Udell, Madeleine Randomized Nyström Preconditioned Interior Point-Proximal Method of Multipliers. arXiv:2404.14524 Preprint, arXiv:2404.14524 [math.OC] (2024). MSC: 90C06 90C20 90C51 65F08 BibTeX Cite \textit{Y.-C. Chu} et al., ``Randomized Nyström Preconditioned Interior Point-Proximal Method of Multipliers'', Preprint, arXiv:2404.14524 [math.OC] (2024) Full Text: arXiv OA License
Iida, Einosuke; Yamashita, Makoto An inexact infeasible arc-search interior-point method for linear programming problems. arXiv:2403.18155 Preprint, arXiv:2403.18155 [math.OC] (2024). MSC: 90C51 65K05 90C05 BibTeX Cite \textit{E. Iida} and \textit{M. Yamashita}, ``An inexact infeasible arc-search interior-point method for linear programming problems'', Preprint, arXiv:2403.18155 [math.OC] (2024) Full Text: arXiv OA License
Friedland, Shmuel; Vinzant, Cynthia A semidefinite programming characterization of the Crawford number. arXiv:2403.08617 Preprint, arXiv:2403.08617 [math.NA] (2024). MSC: 15A60 15A69 68Q25 68W25 90C22 90C51 BibTeX Cite \textit{S. Friedland} and \textit{C. Vinzant}, ``A semidefinite programming characterization of the Crawford number'', Preprint, arXiv:2403.08617 [math.NA] (2024) Full Text: arXiv OA License
Wright, Stephen E. Direct solution of the normal equations in interior point methods for convex transportation problems. (English) Zbl 07865889 Oper. Res. Lett. 51, No. 5, 469-472 (2023). MSC: 90-XX PDFBibTeX XMLCite \textit{S. E. Wright}, Oper. Res. Lett. 51, No. 5, 469--472 (2023; Zbl 07865889) Full Text: DOI
Vladu, Adrian Interior point methods with a gradient oracle. (English) Zbl 07844718 Saha, Barna (ed.) et al., Proceedings of the 55th annual ACM SIGACT symposium on theory of computing, STOC ’23, Orlando, FL, USA, June 20–23, 2023. New York, NY: Association for Computing Machinery (ACM). 1876-1889 (2023). MSC: 68Qxx PDFBibTeX XMLCite \textit{A. Vladu}, in: Proceedings of the 55th annual ACM SIGACT symposium on theory of computing, STOC '23, Orlando, FL, USA, June 20--23, 2023. New York, NY: Association for Computing Machinery (ACM). 1876--1889 (2023; Zbl 07844718) Full Text: DOI arXiv
Illés, Tibor; Rigó, Petra Renáta; Török, Roland Large-step predictor-corrector interior point method for sufficient linear complementarity problems based on the algebraic equivalent transformation. (English) Zbl 07836967 EURO J. Comput. Optim. 11, Article ID 100072, 29 p. (2023). MSC: 90C33 90C51 PDFBibTeX XMLCite \textit{T. Illés} et al., EURO J. Comput. Optim. 11, Article ID 100072, 29 p. (2023; Zbl 07836967) Full Text: DOI
Guerdouh, Safa; Chikouche, Wided; Touil, Imene; Yassine, Adnan Complexity of primal-dual interior-point algorithm for linear programming based on a new class of kernel functions. (English) Zbl 07830567 Kybernetika 59, No. 6, 827-860 (2023). MSC: 90C05 90C51 PDFBibTeX XMLCite \textit{S. Guerdouh} et al., Kybernetika 59, No. 6, 827--860 (2023; Zbl 07830567) Full Text: DOI
Kheirfam, Behrouz A new search direction for full-Newton step infeasible Interior-point method in linear optimization. (English) Zbl 07824399 Croat. Oper. Res. Rev. (CRORR) 14, No. 2, 193-202 (2023). MSC: 90C05 90C51 PDFBibTeX XMLCite \textit{B. Kheirfam}, Croat. Oper. Res. Rev. (CRORR) 14, No. 2, 193--202 (2023; Zbl 07824399) Full Text: DOI arXiv OA License
Dai, Yu-Hong An overview of nonlinear optimization. (English) Zbl 07822594 Beliaev, Dmitry (ed.) et al., International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 7. Sections 15–20. Berlin: European Mathematical Society (EMS). 5290-5313 (2023). MSC: 90C30 65K05 90C06 PDFBibTeX XMLCite \textit{Y.-H. Dai}, in: International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6--14, 2022. Volume 7. Sections 15--20. Berlin: European Mathematical Society (EMS). 5290--5313 (2023; Zbl 07822594) Full Text: DOI OA License
Jauny; Ghosh, Debdas; Upadhayay, Ashutosh Solving multiobjective environmentally friendly and economically feasible electric power distribution problem by primal-dual interior-point method. (English) Zbl 1532.90148 Som, Tanmoy (ed.) et al., Applied analysis, optimization and soft computing. ICNAAO-2021, Varanasi, India, December 21–23, 2021. Singapore: Springer. Springer Proc. Math. Stat. 419, 259-269 (2023). MSC: 90C90 90C29 90C51 PDFBibTeX XMLCite \textit{Jauny} et al., Springer Proc. Math. Stat. 419, 259--269 (2023; Zbl 1532.90148) Full Text: DOI
Souli, C.; Leulmi, A. Study of a penalty method for nonlinear optimization based on a new approximate function. (English) Zbl 07814874 Nonlinear Dyn. Syst. Theory 23, No. 5, 561-570 (2023). MSC: 90C30 90C25 90C20 90C51 PDFBibTeX XMLCite \textit{C. Souli} and \textit{A. Leulmi}, Nonlinear Dyn. Syst. Theory 23, No. 5, 561--570 (2023; Zbl 07814874) Full Text: Link
Leulmi, S.; Leulmi, A. A novel adaptive method based on new minorant-majorant functions without line search for semidefinite optimization. (English) Zbl 07814853 Nonlinear Dyn. Syst. Theory 23, No. 3, 310-322 (2023). MSC: 90C22 90C05 90C51 70K60 93C73 PDFBibTeX XMLCite \textit{S. Leulmi} and \textit{A. Leulmi}, Nonlinear Dyn. Syst. Theory 23, No. 3, 310--322 (2023; Zbl 07814853) Full Text: Link
Derbal, L. Implementation of infeasible interior-point methods based on a new search direction. (English) Zbl 07814840 Nonlinear Dyn. Syst. Theory 23, No. 2, 157-166 (2023). MSC: 90C51 90C05 90C30 65K05 PDFBibTeX XMLCite \textit{L. Derbal}, Nonlinear Dyn. Syst. Theory 23, No. 2, 157--166 (2023; Zbl 07814840) Full Text: Link
Alzalg, Baha; Alabedalhadi, Mohammad A homogeneous predictor-corrector algorithm for stochastic nonsymmetric convex conic optimization with discrete support. (English) Zbl 07812867 Commun. Comb. Optim. 8, No. 3, 531-559 (2023). MSC: 90C15 90C25 90C51 PDFBibTeX XMLCite \textit{B. Alzalg} and \textit{M. Alabedalhadi}, Commun. Comb. Optim. 8, No. 3, 531--559 (2023; Zbl 07812867) Full Text: DOI
Coey, Chris; Kapelevich, Lea; Vielma, Juan Pablo Conic optimization with spectral functions on Euclidean Jordan algebras. (English) Zbl 07811847 Math. Oper. Res. 48, No. 4, 1906-1933 (2023). MSC: 90C51 PDFBibTeX XMLCite \textit{C. Coey} et al., Math. Oper. Res. 48, No. 4, 1906--1933 (2023; Zbl 07811847) Full Text: DOI arXiv
Wada, Toshihiro; Ohtsuka, Toshiyuki A Riemannian-geometrical approach to strictly convex quadratic programming with convexity-preserving metric parameterization. (English) Zbl 07804214 J. Oper. Res. Soc. Japan 66, No. 4, 219-242 (2023). MSC: 90C25 90C20 90C51 PDFBibTeX XMLCite \textit{T. Wada} and \textit{T. Ohtsuka}, J. Oper. Res. Soc. Japan 66, No. 4, 219--242 (2023; Zbl 07804214)
Billel, Zaoui; Djamel, Benterki; Aicha, Kraria; Hadjer, Raouache Interior-point algorithm for linear programming based on a new descent direction. (English) Zbl 1536.90110 RAIRO, Oper. Res. 57, No. 5, 2473-2491 (2023). MSC: 90C05 90C51 PDFBibTeX XMLCite \textit{Z. Billel} et al., RAIRO, Oper. Res. 57, No. 5, 2473--2491 (2023; Zbl 1536.90110) Full Text: DOI OA License
Rockafellar, R. Tyrrell Generic linear convergence through metric subregularity in a variable-metric extension of the proximal point algorithm. (English) Zbl 1539.90138 Comput. Optim. Appl. 86, No. 3, 1327-1346 (2023). Reviewer: Haydar Akca (Abu Dhabi) MSC: 90C51 PDFBibTeX XMLCite \textit{R. T. Rockafellar}, Comput. Optim. Appl. 86, No. 3, 1327--1346 (2023; Zbl 1539.90138) Full Text: DOI
Zhang, Rui; Xiao, Yao A nonlinear programming algorithm for finite element limit analysis using feasible arc searching technique. (English) Zbl 1531.74087 Int. J. Numer. Methods Eng. 124, No. 22, 5102-5119 (2023). MSC: 74S99 74S05 74R20 74L10 90C30 PDFBibTeX XMLCite \textit{R. Zhang} and \textit{Y. Xiao}, Int. J. Numer. Methods Eng. 124, No. 22, 5102--5119 (2023; Zbl 1531.74087) Full Text: DOI
Malisani, Paul Interior point methods in optimal control problems of affine systems: convergence results and solving algorithms. (English) Zbl 1527.49011 SIAM J. Control Optim. 61, No. 6, 3390-3414 (2023). MSC: 49J45 49N15 49M05 49M29 PDFBibTeX XMLCite \textit{P. Malisani}, SIAM J. Control Optim. 61, No. 6, 3390--3414 (2023; Zbl 1527.49011) Full Text: DOI arXiv
Wang, Liang; Zhang, Xue; Tinti, Stefano Formulation for wave propagation in dissipative media and its application to absorbing layers in elastoplastic analysis using mathematical programming. (English) Zbl 1527.74043 Int. J. Numer. Methods Eng. 124, No. 15, 3387-3405 (2023). MSC: 74J10 74S05 74C05 90C90 PDFBibTeX XMLCite \textit{L. Wang} et al., Int. J. Numer. Methods Eng. 124, No. 15, 3387--3405 (2023; Zbl 1527.74043) Full Text: DOI OA License
Zhang, Xue; Li, Xifan; Zhang, Yujia A framework for plasticity-based topology optimization of continuum structures. (English) Zbl 1532.74109 Int. J. Numer. Methods Eng. 124, No. 7, 1493-1509 (2023). MSC: 74P15 74C05 74S99 PDFBibTeX XMLCite \textit{X. Zhang} et al., Int. J. Numer. Methods Eng. 124, No. 7, 1493--1509 (2023; Zbl 1532.74109) Full Text: DOI OA License
Zhang, Rui-Jin; Liu, Xin-Wei; Dai, Yu-Hong IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming. (English) Zbl 1528.90178 J. Glob. Optim. 87, No. 2-4, 1027-1053 (2023). MSC: 90C20 90C51 90C56 PDFBibTeX XMLCite \textit{R.-J. Zhang} et al., J. Glob. Optim. 87, No. 2--4, 1027--1053 (2023; Zbl 1528.90178) Full Text: DOI
Fawzi, Hamza; Saunderson, James Optimal self-concordant barriers for quantum relative entropies. (English) Zbl 1538.90104 SIAM J. Optim. 33, No. 4, 2858-2884 (2023). MSC: 90C25 52A20 26B25 81P17 PDFBibTeX XMLCite \textit{H. Fawzi} and \textit{J. Saunderson}, SIAM J. Optim. 33, No. 4, 2858--2884 (2023; Zbl 1538.90104) Full Text: DOI arXiv
Baena, Daniel; Castro, Jordi The Chebyshev center as an alternative to the analytic center in the feasibility pump. (English) Zbl 1534.90090 Optim. Lett. 17, No. 8, 1757-1790 (2023). MSC: 90C11 90C59 PDFBibTeX XMLCite \textit{D. Baena} and \textit{J. Castro}, Optim. Lett. 17, No. 8, 1757--1790 (2023; Zbl 1534.90090) Full Text: DOI OA License
Arahata, Shun; Okuno, Takayuki; Takeda, Akiko Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems. (English) Zbl 1522.90073 Comput. Optim. Appl. 86, No. 2, 555-598 (2023). MSC: 90C22 90C26 90C51 PDFBibTeX XMLCite \textit{S. Arahata} et al., Comput. Optim. Appl. 86, No. 2, 555--598 (2023; Zbl 1522.90073) Full Text: DOI arXiv
Guerdouh, Safa; Chikouche, Wided; Kheirfam, Behrouz A full-Newton step infeasible interior-point algorithm based on a kernel function with a new barrier term. (English) Zbl 1522.90028 J. Appl. Math. Comput. 69, No. 4, 2935-2953 (2023). MSC: 90C05 90C51 PDFBibTeX XMLCite \textit{S. Guerdouh} et al., J. Appl. Math. Comput. 69, No. 4, 2935--2953 (2023; Zbl 1522.90028) Full Text: DOI
Jiang, Shunhua; Natura, Bento; Weinstein, Omri A faster interior-point method for sum-of-squares optimization. (English) Zbl 07742472 Algorithmica 85, No. 9, 2843-2884 (2023). MSC: 68Wxx 05Cxx PDFBibTeX XMLCite \textit{S. Jiang} et al., Algorithmica 85, No. 9, 2843--2884 (2023; Zbl 07742472) Full Text: DOI arXiv Link
Xue, Feng Some extensions of the operator splitting schemes based on Lagrangian and primal-dual: a unified proximal point analysis. (English) Zbl 1533.90125 Optimization 72, No. 9, 2223-2250 (2023). MSC: 90C30 90C51 PDFBibTeX XMLCite \textit{F. Xue}, Optimization 72, No. 9, 2223--2250 (2023; Zbl 1533.90125) Full Text: DOI
Mousaab, Bouafia; Adnan, Yassine An efficient multi parametric kernel function for large and small-update methods interior point algorithm for \(P_*(\kappa)\)-horizontal linear complementarity problem. (English) Zbl 1538.90172 RAIRO, Oper. Res. 57, No. 3, 1599-1616 (2023). MSC: 90C33 90C05 90C51 PDFBibTeX XMLCite \textit{B. Mousaab} and \textit{Y. Adnan}, RAIRO, Oper. Res. 57, No. 3, 1599--1616 (2023; Zbl 1538.90172) Full Text: DOI OA License
Grimes, Welid; Achache, Mohamed A path-following interior-point algorithm for monotone LCP based on a modified Newton search direction. (English) Zbl 1522.90227 RAIRO, Oper. Res. 57, No. 3, 1059-1073 (2023). MSC: 90C33 90C51 PDFBibTeX XMLCite \textit{W. Grimes} and \textit{M. Achache}, RAIRO, Oper. Res. 57, No. 3, 1059--1073 (2023; Zbl 1522.90227) Full Text: DOI OA License
Tunçel, Levent; Vandenberghe, Lieven Linear optimization over homogeneous matrix cones. (English) Zbl 07736660 Acta Numerica 32, 675-747 (2023). MSC: 65-XX 90-02 90C25 15B48 65K05 90C22 90C51 PDFBibTeX XMLCite \textit{L. Tunçel} and \textit{L. Vandenberghe}, Acta Numerica 32, 675--747 (2023; Zbl 07736660) Full Text: DOI arXiv
Wijesinghe, Janith; Chen, Pengwen Matrix balancing based interior point methods for point set matching problems. (English) Zbl 1519.49034 SIAM J. Imaging Sci. 16, No. 3, 1068-1105 (2023). MSC: 49Q22 68U10 90C05 90C51 PDFBibTeX XMLCite \textit{J. Wijesinghe} and \textit{P. Chen}, SIAM J. Imaging Sci. 16, No. 3, 1068--1105 (2023; Zbl 1519.49034) Full Text: DOI arXiv
Castro, Cecilia Orellana; Heredia, Manolo Rodriguez; Oliveira, Aurelio R. L. Recycling basic columns of the splitting preconditioner in interior point methods. (English) Zbl 1532.90143 Comput. Optim. Appl. 86, No. 1, 49-78 (2023). MSC: 90C51 PDFBibTeX XMLCite \textit{C. O. Castro} et al., Comput. Optim. Appl. 86, No. 1, 49--78 (2023; Zbl 1532.90143) Full Text: DOI
Ek, David; Forsgren, Anders A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming. (English) Zbl 1532.90066 Comput. Optim. Appl. 86, No. 1, 1-48 (2023). MSC: 90C20 90C51 PDFBibTeX XMLCite \textit{D. Ek} and \textit{A. Forsgren}, Comput. Optim. Appl. 86, No. 1, 1--48 (2023; Zbl 1532.90066) Full Text: DOI arXiv OA License
Permenter, Frank Log-domain interior-point methods for convex quadratic programming. (English) Zbl 1532.90068 Optim. Lett. 17, No. 7, 1613-1631 (2023). MSC: 90C20 90C25 90C51 PDFBibTeX XMLCite \textit{F. Permenter}, Optim. Lett. 17, No. 7, 1613--1631 (2023; Zbl 1532.90068) Full Text: DOI arXiv
Kan, Nahomi; Aoyama, Takuma; Shiraishi, Kiyoshi Spinorial Wheeler-DeWitt wave functions inside black hole horizons. (English) Zbl 1529.83097 Classical Quantum Gravity 40, No. 16, Article ID 165006, 11 p. (2023). MSC: 83F05 83C45 83C57 90C51 81R25 81R20 81U90 PDFBibTeX XMLCite \textit{N. Kan} et al., Classical Quantum Gravity 40, No. 16, Article ID 165006, 11 p. (2023; Zbl 1529.83097) Full Text: DOI arXiv
Adly, Samir; Haddou, Mounir; Le, Manh Hung Interior point methods for solving Pareto eigenvalue complementarity problems. (English) Zbl 1518.65070 Optim. Methods Softw. 38, No. 3, 543-569 (2023). MSC: 65K10 65F15 90C33 90C51 15A22 PDFBibTeX XMLCite \textit{S. Adly} et al., Optim. Methods Softw. 38, No. 3, 543--569 (2023; Zbl 1518.65070) Full Text: DOI
Yang, Yaguang A polynomial time infeasible interior-point arc-search algorithm for convex optimization. (English) Zbl 1516.90116 Optim. Eng. 24, No. 2, 885-914 (2023). MSC: 90C51 90C25 PDFBibTeX XMLCite \textit{Y. Yang}, Optim. Eng. 24, No. 2, 885--914 (2023; Zbl 1516.90116) Full Text: DOI arXiv
Bomze, Immanuel M.; Gabl, Markus Optimization under uncertainty and risk: quadratic and copositive approaches. (English) Zbl 07709828 Eur. J. Oper. Res. 310, No. 2, 449-476 (2023). MSC: 90Bxx PDFBibTeX XMLCite \textit{I. M. Bomze} and \textit{M. Gabl}, Eur. J. Oper. Res. 310, No. 2, 449--476 (2023; Zbl 07709828) Full Text: DOI OA License
Castro, Jordi; Escudero, Laureano F.; Monge, Juan F. On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach. (English) Zbl 07709816 Eur. J. Oper. Res. 310, No. 1, 268-285 (2023). MSC: 90Bxx PDFBibTeX XMLCite \textit{J. Castro} et al., Eur. J. Oper. Res. 310, No. 1, 268--285 (2023; Zbl 07709816) Full Text: DOI OA License
Cipolla, Stefano; Gondzio, Jacek Proximal stabilized interior point methods and low-frequency-update preconditioning techniques. (English) Zbl 1515.65150 J. Optim. Theory Appl. 197, No. 3, 1061-1103 (2023). MSC: 65K05 90C51 90C06 PDFBibTeX XMLCite \textit{S. Cipolla} and \textit{J. Gondzio}, J. Optim. Theory Appl. 197, No. 3, 1061--1103 (2023; Zbl 1515.65150) Full Text: DOI arXiv OA License
Wang, Jianbin; Yuan, Jianhua; Ai, Wenbao A step-truncated method in a wide neighborhood interior-point algorithm for linear programming. (English) Zbl 1527.90259 Optim. Lett. 17, No. 6, 1455-1468 (2023). MSC: 90C51 90C05 PDFBibTeX XMLCite \textit{J. Wang} et al., Optim. Lett. 17, No. 6, 1455--1468 (2023; Zbl 1527.90259) Full Text: DOI
Jauny; Ghosh, Debdas; Ansari, Qamrul Hasan; Ehrgott, Matthias; Upadhayay, Ashutosh An infeasible interior-point technique to generate the nondominated set for multiobjective optimization problems. (English) Zbl 07706739 Comput. Oper. Res. 155, Article ID 106236, 20 p. (2023). MSC: 90C29 65K05 90C51 PDFBibTeX XMLCite \textit{Jauny} et al., Comput. Oper. Res. 155, Article ID 106236, 20 p. (2023; Zbl 07706739) Full Text: DOI OA License
Benhadid, Ayache; Merahi, Fateh Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel function with a double barrier term. (English) Zbl 1514.90158 Numer. Algebra Control Optim. 13, No. 2, 224-238 (2023). MSC: 90C05 90C51 90C31 PDFBibTeX XMLCite \textit{A. Benhadid} and \textit{F. Merahi}, Numer. Algebra Control Optim. 13, No. 2, 224--238 (2023; Zbl 1514.90158) Full Text: DOI
Permenter, Frank A geodesic interior-point method for linear optimization over symmetric cones. (English) Zbl 1519.90158 SIAM J. Optim. 33, No. 2, 1006-1034 (2023). MSC: 90C22 90C25 90C05 90C20 90C51 49M15 65K05 PDFBibTeX XMLCite \textit{F. Permenter}, SIAM J. Optim. 33, No. 2, 1006--1034 (2023; Zbl 1519.90158) Full Text: DOI arXiv
Coey, Chris; Kapelevich, Lea; Vielma, Juan Pablo Performance enhancements for a generic conic interior point algorithm. (English) Zbl 1519.90166 Math. Program. Comput. 15, No. 1, 53-101 (2023). MSC: 90C25 90C51 90-08 PDFBibTeX XMLCite \textit{C. Coey} et al., Math. Program. Comput. 15, No. 1, 53--101 (2023; Zbl 1519.90166) Full Text: DOI arXiv OA License
Kheirfam, B. Corrector-predictor interior-point method with new search direction for semidefinite optimization. (English) Zbl 1519.90154 J. Sci. Comput. 95, No. 1, Paper No. 10, 18 p. (2023). MSC: 90C22 90C51 PDFBibTeX XMLCite \textit{B. Kheirfam}, J. Sci. Comput. 95, No. 1, Paper No. 10, 18 p. (2023; Zbl 1519.90154) Full Text: DOI
Tsuchiya, Takashi; Lourenço, Bruno F.; Muramatsu, Masakazu; Okuno, Takayuki A limiting analysis on regularization of singular SDP and its implication to infeasible interior-point algorithms. (English) Zbl 1519.90159 Math. Program. 200, No. 1 (A), 531-568 (2023). MSC: 90C22 90C25 90C51 90C31 65K05 PDFBibTeX XMLCite \textit{T. Tsuchiya} et al., Math. Program. 200, No. 1 (A), 531--568 (2023; Zbl 1519.90159) Full Text: DOI arXiv OA License
Zanetti, Filippo; Gondzio, Jacek A new stopping criterion for Krylov solvers applied in interior point methods. (English) Zbl 1512.65056 SIAM J. Sci. Comput. 45, No. 2, A703-A728 (2023). MSC: 65F10 90C20 90C51 PDFBibTeX XMLCite \textit{F. Zanetti} and \textit{J. Gondzio}, SIAM J. Sci. Comput. 45, No. 2, A703--A728 (2023; Zbl 1512.65056) Full Text: DOI arXiv
Adly, Samir; Le, Manh Hung Solving inverse Pareto eigenvalue problems. (English) Zbl 1518.90113 Optim. Lett. 17, No. 4, 829-849 (2023). MSC: 90C33 PDFBibTeX XMLCite \textit{S. Adly} and \textit{M. H. Le}, Optim. Lett. 17, No. 4, 829--849 (2023; Zbl 1518.90113) Full Text: DOI
Kapelevich, Lea; Coey, Chris; Vielma, Juan Pablo Sum of squares generalizations for conic sets. (English) Zbl 1518.90063 Math. Program. 199, No. 1-2 (A), 1417-1429 (2023). MSC: 90C23 90C51 PDFBibTeX XMLCite \textit{L. Kapelevich} et al., Math. Program. 199, No. 1--2 (A), 1417--1429 (2023; Zbl 1518.90063) Full Text: DOI arXiv OA License
Chi, Xiaoni; Yang, Qili; Wan, Zhongping; Zhang, Suobin The new full-Newton step interior-point algorithm for the Fisher market equilibrium problems based on a kernel function. (English) Zbl 1524.90311 J. Ind. Manag. Optim. 19, No. 9, 7018-7035 (2023). MSC: 90C33 90C51 PDFBibTeX XMLCite \textit{X. Chi} et al., J. Ind. Manag. Optim. 19, No. 9, 7018--7035 (2023; Zbl 1524.90311) Full Text: DOI
Alzalg, Baha; Gafour, Asma Convergence of a weighted barrier algorithm for stochastic convex quadratic semidefinite optimization. (English) Zbl 1517.90086 J. Optim. Theory Appl. 196, No. 2, 490-515 (2023). MSC: 90C15 90C20 90C22 90C25 90C51 PDFBibTeX XMLCite \textit{B. Alzalg} and \textit{A. Gafour}, J. Optim. Theory Appl. 196, No. 2, 490--515 (2023; Zbl 1517.90086) Full Text: DOI
Amina, Zerari; Djamel, Benterki; Adnan, Yassine An efficient parameterized logarithmic kernel function for semidefinite optimization. (English) Zbl 1507.90122 Pac. J. Optim. 19, No. 1, 1-20 (2023). MSC: 90C22 30C40 90C51 PDFBibTeX XMLCite \textit{Z. Amina} et al., Pac. J. Optim. 19, No. 1, 1--20 (2023; Zbl 1507.90122) Full Text: Link
Leulmi, Assma Logarithmic barrier method via minorant function for linear semidefinite programming. (English) Zbl 1515.90094 Ann. Math. Sil. 37, No. 1, 95-116 (2023). MSC: 90C22 90C51 PDFBibTeX XMLCite \textit{A. Leulmi}, Ann. Math. Sil. 37, No. 1, 95--116 (2023; Zbl 1515.90094) Full Text: DOI OA License
Regev, Shaked; Chiang, Nai-Yuan; Darve, Eric; Petra, Cosmin G.; Saunders, Michael A.; Świrydowicz, Kasia; Peleš, Slaven HyKKT: a hybrid direct-iterative method for solving KKT linear systems. (English) Zbl 1515.90133 Optim. Methods Softw. 38, No. 2, 332-355 (2023). MSC: 90C30 90C51 PDFBibTeX XMLCite \textit{S. Regev} et al., Optim. Methods Softw. 38, No. 2, 332--355 (2023; Zbl 1515.90133) Full Text: DOI arXiv
Petra, Cosmin G.; Salazar De Troya, Miguel; Petra, Noemi; Choi, Youngsoo; Oxberry, Geoffrey M.; Tortorelli, Daniel On the implementation of a quasi-Newton interior-point method for PDE-constrained optimization using finite element discretizations. (English) Zbl 1505.49024 Optim. Methods Softw. 38, No. 1, 59-90 (2023). MSC: 49M41 49M15 65K10 65M60 PDFBibTeX XMLCite \textit{C. G. Petra} et al., Optim. Methods Softw. 38, No. 1, 59--90 (2023; Zbl 1505.49024) Full Text: DOI
Grad, S.-M.; Lara, F.; Marcavillaca, R. T. Relaxed-inertial proximal point type algorithms for quasiconvex minimization. (English) Zbl 1515.90099 J. Glob. Optim. 85, No. 3, 615-635 (2023). MSC: 90C25 90C51 PDFBibTeX XMLCite \textit{S. M. Grad} et al., J. Glob. Optim. 85, No. 3, 615--635 (2023; Zbl 1515.90099) Full Text: DOI HAL