Mousaab, Bouafia; Adnan, Yassine Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient bi-parameterized kernel function with a trigonometric barrier term. (English) Zbl 07523417 RAIRO, Oper. Res. 56, No. 2, 731-750 (2022). MSC: 90C05 90C31 90C51 PDF BibTeX XML Cite \textit{B. Mousaab} and \textit{Y. Adnan}, RAIRO, Oper. Res. 56, No. 2, 731--750 (2022; Zbl 07523417) Full Text: DOI OpenURL
Kathuria, Tarun; Liu, Yang P.; Sidford, Aaron Unit capacity maxflow in almost \(m^{4/3}\) time. (English) Zbl 07510284 SIAM J. Comput. 51, No. 2, FOCS20-175-FOCS20-204 (2022). MSC: 68Q25 68R10 PDF BibTeX XML Cite \textit{T. Kathuria} et al., SIAM J. Comput. 51, No. 2, FOCS20--175-FOCS20--204 (2022; Zbl 07510284) Full Text: DOI OpenURL
Orlitzky, Michael On the symmetry of induced norm cones. (English) Zbl 07507020 Optimization 71, No. 3, 441-447 (2022). MSC: 17C20 90C51 47L07 PDF BibTeX XML Cite \textit{M. Orlitzky}, Optimization 71, No. 3, 441--447 (2022; Zbl 07507020) Full Text: DOI OpenURL
Gorissen, Bram L. Interior point methods can exploit structure of convex piecewise linear functions with application in radiation therapy. (English) Zbl 07501970 SIAM J. Optim. 32, No. 1, 256-275 (2022). MSC: 90C06 90C51 92C50 PDF BibTeX XML Cite \textit{B. L. Gorissen}, SIAM J. Optim. 32, No. 1, 256--275 (2022; Zbl 07501970) Full Text: DOI OpenURL
Roy, Scott; Xiao, Lin On self-concordant barriers for generalized power cones. (English) Zbl 07490501 Optim. Lett. 16, No. 2, 681-694 (2022). MSC: 90C25 90C51 PDF BibTeX XML Cite \textit{S. Roy} and \textit{L. Xiao}, Optim. Lett. 16, No. 2, 681--694 (2022; Zbl 07490501) Full Text: DOI OpenURL
Touil, Imene; Chikouche, Wided Novel kernel function with a hyperbolic barrier term to primal-dual interior point algorithm for SDP problems. (English) Zbl 07490417 Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 44-67 (2022). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{I. Touil} and \textit{W. Chikouche}, Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 44--67 (2022; Zbl 07490417) Full Text: DOI OpenURL
Hou, Liangshao; Qian, Xun; Liao, Li-Zhi; Sun, Jie An interior point parameterized central path following algorithm for linearly constrained convex programming. (English) Zbl 07488708 J. Sci. Comput. 90, No. 3, Paper No. 95, 31 p. (2022). MSC: 90C25 90C30 90C51 90C60 PDF BibTeX XML Cite \textit{L. Hou} et al., J. Sci. Comput. 90, No. 3, Paper No. 95, 31 p. (2022; Zbl 07488708) Full Text: DOI OpenURL
Puerto, Justo; Valverde, Carlos Routing for unmanned aerial vehicles: touring dimensional sets. (English) Zbl 07478886 Eur. J. Oper. Res. 298, No. 1, 118-136 (2022). MSC: 90Bxx PDF BibTeX XML Cite \textit{J. Puerto} and \textit{C. Valverde}, Eur. J. Oper. Res. 298, No. 1, 118--136 (2022; Zbl 07478886) Full Text: DOI arXiv OpenURL
Darvay, Zsolt; Illés, Tibor; Rigó, Petra Renáta Predictor-corrector interior-point algorithm for \(P_*(\kappa)\)-linear complementarity problems based on a new type of algebraic equivalent transformation technique. (English) Zbl 07478879 Eur. J. Oper. Res. 298, No. 1, 25-35 (2022). MSC: 90Bxx PDF BibTeX XML Cite \textit{Z. Darvay} et al., Eur. J. Oper. Res. 298, No. 1, 25--35 (2022; Zbl 07478879) Full Text: DOI OpenURL
Pougkakiotis, Spyridon; Gondzio, Jacek An interior point-proximal method of multipliers for linear positive semi-definite programming. (English) Zbl 07465209 J. Optim. Theory Appl. 192, No. 1, 97-129 (2022). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{S. Pougkakiotis} and \textit{J. Gondzio}, J. Optim. Theory Appl. 192, No. 1, 97--129 (2022; Zbl 07465209) Full Text: DOI arXiv OpenURL
Yamashita, Makoto; Iida, Einosuke; Yang, Yaguang An infeasible interior-point arc-search algorithm for nonlinear constrained optimization. (English) Zbl 1483.90180 Numer. Algorithms 89, No. 1, 249-275 (2022). MSC: 90C51 90C30 PDF BibTeX XML Cite \textit{M. Yamashita} et al., Numer. Algorithms 89, No. 1, 249--275 (2022; Zbl 1483.90180) Full Text: DOI arXiv OpenURL
Das, Arup Kumar; Jana, Rwitam; Deepmala On the convergence of an iterative method for solving linear complementarity problem with WGPSBD matrix. (English) Zbl 1482.90245 Thai J. Math. 19, No. 4, 1375-1384 (2021). MSC: 90C51 90C90 PDF BibTeX XML Cite \textit{A. K. Das} et al., Thai J. Math. 19, No. 4, 1375--1384 (2021; Zbl 1482.90245) Full Text: Link OpenURL
Kheirfam, B.; Sangachin, M. Mohamadi An \(\mathcal{O}\sqrt{n}L)\) predictor-corrector interior-point algorithm for semidefinite optimization based on a wide neighbourhood. (English) Zbl 1479.90219 Int. J. Comput. Math. 98, No. 2, 414-433 (2021). MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{M. M. Sangachin}, Int. J. Comput. Math. 98, No. 2, 414--433 (2021; Zbl 1479.90219) Full Text: DOI OpenURL
Argáez, C.; Cánovas, M. J.; Parra, J. Calmness of linear constraint systems under structured perturbations with an application to the path-following scheme. (English) Zbl 07462107 Set-Valued Var. Anal. 29, No. 4, 839-860 (2021). Reviewer: Karel Zimmermann (Praha) MSC: 90C31 49J53 90C05 90C51 PDF BibTeX XML Cite \textit{C. Argáez} et al., Set-Valued Var. Anal. 29, No. 4, 839--860 (2021; Zbl 07462107) Full Text: DOI OpenURL
Hildebrand, Roland Optimal step length for the Newton method: case of self-concordant functions. (English) Zbl 1483.90179 Math. Methods Oper. Res. 94, No. 2, 253-279 (2021). MSC: 90C51 90C60 PDF BibTeX XML Cite \textit{R. Hildebrand}, Math. Methods Oper. Res. 94, No. 2, 253--279 (2021; Zbl 1483.90179) Full Text: DOI arXiv OpenURL
Hazzam, Nadia; Kebbiche, Zakia A primal-dual interior point method for \(P_{\ast}\left(\kappa \right)\)-HLCP based on a class of parametric kernel functions. (English) Zbl 1476.90327 Numer. Algebra Control Optim. 11, No. 4, 513-531 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{N. Hazzam} and \textit{Z. Kebbiche}, Numer. Algebra Control Optim. 11, No. 4, 513--531 (2021; Zbl 1476.90327) Full Text: DOI OpenURL
Tanneau, Mathieu; Anjos, Miguel F.; Lodi, Andrea Design and implementation of a modular interior-point solver for linear optimization. (English) Zbl 1476.90187 Math. Program. Comput. 13, No. 3, 509-551 (2021). MSC: 90C05 90C06 90C51 PDF BibTeX XML Cite \textit{M. Tanneau} et al., Math. Program. Comput. 13, No. 3, 509--551 (2021; Zbl 1476.90187) Full Text: DOI arXiv OpenURL
Zhao, Huali Complexities of homogeneous algorithm with one norm neighborhood for monotone nonlinear complementarity problems over symmetric cones. (Chinese. English summary) Zbl 07448827 Math. Pract. Theory 51, No. 15, 215-224 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Zhao}, Math. Pract. Theory 51, No. 15, 215--224 (2021; Zbl 07448827) OpenURL
Yang, Ya-Guang An interior-point algorithm for linear programming with optimal selection of centering parameter and step size. (English) Zbl 07443750 J. Oper. Res. Soc. China 9, No. 3, 659-671 (2021). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{Y.-G. Yang}, J. Oper. Res. Soc. China 9, No. 3, 659--671 (2021; Zbl 07443750) Full Text: DOI arXiv OpenURL
Cho, You-Young; Cho, Gyeong-Mi New interior-point methods for \(P_\ast(\kappa)\)-nonlinear complementarity problems. (English) Zbl 1475.90129 J. Nonlinear Convex Anal. 22, No. 5, 901-917 (2021). MSC: 90C51 90C33 90C30 PDF BibTeX XML Cite \textit{Y.-Y. Cho} and \textit{G.-M. Cho}, J. Nonlinear Convex Anal. 22, No. 5, 901--917 (2021; Zbl 1475.90129) Full Text: Link OpenURL
Dai, Yu-Hong; Wang, Zhouhong; Xu, Fengmin A primal-dual algorithm for unfolding neutron energy spectrum from multiple activation foils. (English) Zbl 1476.65095 J. Ind. Manag. Optim. 17, No. 5, 2367-2387 (2021). MSC: 65K05 90C51 65F22 PDF BibTeX XML Cite \textit{Y.-H. Dai} et al., J. Ind. Manag. Optim. 17, No. 5, 2367--2387 (2021; Zbl 1476.65095) Full Text: DOI OpenURL
Duc Thach Son Vu; Ben Gharbia, Ibtihel; Haddou, Mounir; Quang Huy Tran A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems. (English) Zbl 07431569 Math. Comput. Simul. 190, 1243-1274 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Duc Thach Son Vu} et al., Math. Comput. Simul. 190, 1243--1274 (2021; Zbl 07431569) Full Text: DOI OpenURL
Li, Mengmeng; Zhang, Mingwang; Huang, Kun; Huang, Zhengwei A new primal-dual interior-point method for semidefinite optimization based on a parameterized kernel function. (English) Zbl 1474.90516 Optim. Eng. 22, No. 1, 293-319 (2021). MSC: 90C51 90C05 90C30 PDF BibTeX XML Cite \textit{M. Li} et al., Optim. Eng. 22, No. 1, 293--319 (2021; Zbl 1474.90516) Full Text: DOI OpenURL
Fathi-Hafshejani, S.; Moaberfard, Z. A generic kernel function for interior point methods. (English) Zbl 1474.65164 Optim. Eng. 22, No. 1, 261-291 (2021). MSC: 65K05 90C05 90C51 65Y20 PDF BibTeX XML Cite \textit{S. Fathi-Hafshejani} and \textit{Z. Moaberfard}, Optim. Eng. 22, No. 1, 261--291 (2021; Zbl 1474.65164) Full Text: DOI OpenURL
Silva, Lino M.; Oliveira, Aurelio R. L. Modified controlled Cholesky factorization for preconditioning linear systems from the interior-point method. (English) Zbl 1476.90186 Comput. Appl. Math. 40, No. 4, Paper No. 154, 13 p. (2021). MSC: 90C05 90C51 65F08 15A23 PDF BibTeX XML Cite \textit{L. M. Silva} and \textit{A. R. L. Oliveira}, Comput. Appl. Math. 40, No. 4, Paper No. 154, 13 p. (2021; Zbl 1476.90186) Full Text: DOI OpenURL
Natale, Andrea; Todeschi, Gabriele Computation of optimal transport with finite volumes. (English) Zbl 1477.65177 ESAIM, Math. Model. Numer. Anal. 55, No. 5, 1847-1871 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65N08 65N50 35A15 65K10 49M29 90C51 PDF BibTeX XML Cite \textit{A. Natale} and \textit{G. Todeschi}, ESAIM, Math. Model. Numer. Anal. 55, No. 5, 1847--1871 (2021; Zbl 1477.65177) Full Text: DOI arXiv OpenURL
Bellavia, Stefania; Gondzio, Jacek; Porcelli, Margherita A relaxed interior point method for low-rank semidefinite programming problems with applications to matrix completion. (English) Zbl 1479.90152 J. Sci. Comput. 89, No. 2, Paper No. 46, 36 p. (2021). MSC: 90C22 90C51 65F10 65F50 PDF BibTeX XML Cite \textit{S. Bellavia} et al., J. Sci. Comput. 89, No. 2, Paper No. 46, 36 p. (2021; Zbl 1479.90152) Full Text: DOI arXiv OpenURL
Gong, Xiaoyu; Ding, Xuefeng; Wang, Xianjia A new method for \({P_*}(\kappa)\) horizontal linear complementarity problem based on full Newton step. (Chinese. English summary) Zbl 07404430 Math. Pract. Theory 51, No. 7, 206-212 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{X. Gong} et al., Math. Pract. Theory 51, No. 7, 206--212 (2021; Zbl 07404430) OpenURL
Zhao, Huali Complexity analysis of a wide neighborhood interior point method for nonmonotone LCP. (Chinese. English summary) Zbl 07403813 J. Beihua Univ., Nat. Sci. 22, No. 2, 141-148 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Zhao}, J. Beihua Univ., Nat. Sci. 22, No. 2, 141--148 (2021; Zbl 07403813) Full Text: DOI OpenURL
Mohammad-Nezhad, Ali; Terlaky, Tamás On the sensitivity of the optimal partition for parametric second-order conic optimization. (English) Zbl 1478.90128 Math. Program. 189, No. 1-2 (B), 491-525 (2021). MSC: 90C31 90C22 90C51 PDF BibTeX XML Cite \textit{A. Mohammad-Nezhad} and \textit{T. Terlaky}, Math. Program. 189, No. 1--2 (B), 491--525 (2021; Zbl 1478.90128) Full Text: DOI arXiv OpenURL
Guerrero-Sánchez, Yolanda; Umar, Muhammad; Sabir, Zulqurnain; Guirao, Juan L. G.; Raja, Muhammad Asif Zahoor Solving a class of biological HIV infection model of latently infected cells using heuristic approach. (English) Zbl 1471.92309 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3611-3628 (2021). MSC: 92D30 68T07 90C59 PDF BibTeX XML Cite \textit{Y. Guerrero-Sánchez} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3611--3628 (2021; Zbl 1471.92309) Full Text: DOI OpenURL
Bergamaschi, Luca; Gondzio, Jacek; Martínez, Ángeles; Pearson, John W.; Pougkakiotis, Spyridon A new preconditioning approach for an interior point-proximal method of multipliers for linear and convex quadratic programming. (English) Zbl 07396244 Numer. Linear Algebra Appl. 28, No. 4, e2361, 19 p. (2021). MSC: 90C20 65F08 65F22 PDF BibTeX XML Cite \textit{L. Bergamaschi} et al., Numer. Linear Algebra Appl. 28, No. 4, e2361, 19 p. (2021; Zbl 07396244) Full Text: DOI arXiv OpenURL
Lee, Yin Tat; Yue, Man-Chung Universal barrier is \(n\)-self-concordant. (English) Zbl 07395114 Math. Oper. Res. 46, No. 3, 1129-1148 (2021). MSC: 90C51 52A40 PDF BibTeX XML Cite \textit{Y. T. Lee} and \textit{M.-C. Yue}, Math. Oper. Res. 46, No. 3, 1129--1148 (2021; Zbl 07395114) Full Text: DOI arXiv OpenURL
Birgin, E. G.; Gardenghi, J. L.; Martínez, J. M.; Santos, S. A. On the solution of linearly constrained optimization problems by means of barrier algorithms. (English) Zbl 07389625 Top 29, No. 2, 417-441 (2021). MSC: 65K05 90C30 90C51 PDF BibTeX XML Cite \textit{E. G. Birgin} et al., Top 29, No. 2, 417--441 (2021; Zbl 07389625) Full Text: DOI OpenURL
Kheirfam, B. A polynomial-iteration infeasible interior-point algorithm with arc-search for semidefinite optimization. (English) Zbl 1476.90232 J. Sci. Comput. 88, No. 3, Paper No. 89, 23 p. (2021). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, J. Sci. Comput. 88, No. 3, Paper No. 89, 23 p. (2021; Zbl 1476.90232) Full Text: DOI OpenURL
Kheirfam, Behrouz; Osmanpour, Naser; Keyanpour, Mohammad An arc-search infeasible interior-point method for semidefinite optimization with the negative infinity neighborhood. (English) Zbl 1476.90233 Numer. Algorithms 88, No. 1, 143-163 (2021). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} et al., Numer. Algorithms 88, No. 1, 143--163 (2021; Zbl 1476.90233) Full Text: DOI OpenURL
Boudjellal, N.; Roumili, H.; Benterki, DJ. A primal-dual interior point algorithm for convex quadratic programming based on a new parametric kernel function. (English) Zbl 1476.90227 Optimization 70, No. 8, 1703-1724 (2021). MSC: 90C20 90C25 90C51 PDF BibTeX XML Cite \textit{N. Boudjellal} et al., Optimization 70, No. 8, 1703--1724 (2021; Zbl 1476.90227) Full Text: DOI OpenURL
Chi, Xiaoni; Wang, Guoqiang A full-Newton step infeasible interior-point method for the special weighted linear complementarity problem. (English) Zbl 1475.90128 J. Optim. Theory Appl. 190, No. 1, 108-129 (2021). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{X. Chi} and \textit{G. Wang}, J. Optim. Theory Appl. 190, No. 1, 108--129 (2021; Zbl 1475.90128) Full Text: DOI OpenURL
Chen, Zhongzhu; Fampa, Marcia; Lambert, Amélie; Lee, Jon Mixing convex-optimization bounds for maximum-entropy sampling. (English) Zbl 1473.90136 Math. Program. 188, No. 2(B), 539-568 (2021). MSC: 90C27 90C25 90C51 62K99 62H11 PDF BibTeX XML Cite \textit{Z. Chen} et al., Math. Program. 188, No. 2(B), 539--568 (2021; Zbl 1473.90136) Full Text: DOI arXiv OpenURL
Montoison, Alexis; Orban, Dominique TriCG and TriMR: two iterative methods for symmetric quasi-definite systems. (English) Zbl 07378167 SIAM J. Sci. Comput. 43, No. 4, A2502-A2525 (2021). MSC: 65F10 65F08 65F22 65F25 65F35 65F50 90C06 90C90 PDF BibTeX XML Cite \textit{A. Montoison} and \textit{D. Orban}, SIAM J. Sci. Comput. 43, No. 4, A2502--A2525 (2021; Zbl 07378167) Full Text: DOI arXiv OpenURL
Bennani, Ahlem; Benterki, Djamel; Grar, Hassina Adaptive projection methods for linear fractional programming. (English) Zbl 1472.90136 RAIRO, Oper. Res. 55, Suppl., S2383-S2392 (2021). MSC: 90C32 90C05 90C33 35R35 90C51 PDF BibTeX XML Cite \textit{A. Bennani} et al., RAIRO, Oper. Res. 55, S2383--S2392 (2021; Zbl 1472.90136) Full Text: DOI OpenURL
Yamashita, Hiroshi; Yabe, Hiroshi; Harada, Kouhei Correction to: “A primal-dual interior point trust-region method for nonlinear semidefinite programming”. (English) Zbl 1472.90085 Optim. Methods Softw. 36, No. 2-3, 669 (2021). MSC: 90C22 90C26 90C51 PDF BibTeX XML Cite \textit{H. Yamashita} et al., Optim. Methods Softw. 36, No. 2--3, 669 (2021; Zbl 1472.90085) Full Text: DOI OpenURL
Yamashita, Hiroshi; Yabe, Hiroshi; Harada, Kouhei A primal-dual interior point trust-region method for nonlinear semidefinite programming. (English) Zbl 1470.90067 Optim. Methods Softw. 36, No. 2-3, 569-601 (2021); correction ibid. 36, No. 2-3, 669 (2021). MSC: 90C22 90C26 90C51 PDF BibTeX XML Cite \textit{H. Yamashita} et al., Optim. Methods Softw. 36, No. 2--3, 569--601 (2021; Zbl 1470.90067) Full Text: DOI OpenURL
Lin, Tianyi; Ma, Shiqian; Ye, Yinyu; Zhang, Shuzhong An ADMM-based interior-point method for large-scale linear programming. (English) Zbl 1470.90048 Optim. Methods Softw. 36, No. 2-3, 389-424 (2021). MSC: 90C05 90C06 90C51 PDF BibTeX XML Cite \textit{T. Lin} et al., Optim. Methods Softw. 36, No. 2--3, 389--424 (2021; Zbl 1470.90048) Full Text: DOI arXiv OpenURL
Zhang, Richard Y.; Lavaei, Javad Sparse semidefinite programs with guaranteed near-linear time complexity via dualized clique tree conversion. (English) Zbl 1470.90070 Math. Program. 188, No. 1(A), 351-393 (2021). MSC: 90C22 90C35 90C51 90C06 PDF BibTeX XML Cite \textit{R. Y. Zhang} and \textit{J. Lavaei}, Math. Program. 188, No. 1(A), 351--393 (2021; Zbl 1470.90070) Full Text: DOI arXiv OpenURL
Chi, Xiaoni; Zhang, Ruijie; Liu, Sanyang A new full-Newton step feasible interior-point algorithm for linear weighted complementarity problem. (Chinese. English summary) Zbl 1474.90474 Math. Appl. 34, No. 2, 304-311 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{X. Chi} et al., Math. Appl. 34, No. 2, 304--311 (2021; Zbl 1474.90474) OpenURL
Papadopoulos, Ioannis P. A.; Farrell, Patrick E.; Surowiec, Thomas M. Computing multiple solutions of topology optimization problems. (English) Zbl 1472.35308 SIAM J. Sci. Comput. 43, No. 3, A1555-A1582 (2021). MSC: 35Q35 49M15 65K05 65K10 74P05 74P10 90C26 90C51 PDF BibTeX XML Cite \textit{I. P. A. Papadopoulos} et al., SIAM J. Sci. Comput. 43, No. 3, A1555--A1582 (2021; Zbl 1472.35308) Full Text: DOI arXiv OpenURL
Armand, Paul; Tran, Ngoc Nguyen Local convergence analysis of a primal-dual method for bound-constrained optimization without SOSC. (English) Zbl 1470.90127 J. Optim. Theory Appl. 189, No. 1, 96-116 (2021). MSC: 90C30 65K05 90C26 90C33 90C51 PDF BibTeX XML Cite \textit{P. Armand} and \textit{N. N. Tran}, J. Optim. Theory Appl. 189, No. 1, 96--116 (2021; Zbl 1470.90127) Full Text: DOI OpenURL
Castro, Jordi; Nasini, Stefano A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks. (English) Zbl 07355301 Eur. J. Oper. Res. 290, No. 3, 857-869 (2021). MSC: 90Bxx PDF BibTeX XML Cite \textit{J. Castro} and \textit{S. Nasini}, Eur. J. Oper. Res. 290, No. 3, 857--869 (2021; Zbl 07355301) Full Text: DOI Link OpenURL
Pougkakiotis, Spyridon; Gondzio, Jacek An interior point-proximal method of multipliers for convex quadratic programming. (English) Zbl 1469.90158 Comput. Optim. Appl. 78, No. 2, 307-351 (2021). MSC: 90C51 90C20 90C25 PDF BibTeX XML Cite \textit{S. Pougkakiotis} and \textit{J. Gondzio}, Comput. Optim. Appl. 78, No. 2, 307--351 (2021; Zbl 1469.90158) Full Text: DOI arXiv OpenURL
Ek, David; Forsgren, Anders Approximate solution of system of equations arising in interior-point methods for bound-constrained optimization. (English) Zbl 1469.90137 Comput. Optim. Appl. 79, No. 1, 155-191 (2021). MSC: 90C30 90C51 PDF BibTeX XML Cite \textit{D. Ek} and \textit{A. Forsgren}, Comput. Optim. Appl. 79, No. 1, 155--191 (2021; Zbl 1469.90137) Full Text: DOI arXiv OpenURL
Sekiguchi, Yoshiyuki; Waki, Hayato Perturbation analysis of singular semidefinite programs and its applications to control problems. (English) Zbl 07350178 J. Optim. Theory Appl. 188, No. 1, 52-72 (2021). MSC: 90C31 90C22 90C51 93D15 PDF BibTeX XML Cite \textit{Y. Sekiguchi} and \textit{H. Waki}, J. Optim. Theory Appl. 188, No. 1, 52--72 (2021; Zbl 07350178) Full Text: DOI arXiv OpenURL
Darvay, Zsolt; Illés, Tibor; Majoros, Csilla Interior-point algorithm for sufficient LCPs based on the technique of algebraically equivalent transformation. (English) Zbl 1466.90108 Optim. Lett. 15, No. 2, 357-376 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., Optim. Lett. 15, No. 2, 357--376 (2021; Zbl 1466.90108) Full Text: DOI OpenURL
Wambacq, J.; Ulloa, J.; Lombaert, G.; François, S. Interior-point methods for the phase-field approach to brittle and ductile fracture. (English) Zbl 07340451 Comput. Methods Appl. Mech. Eng. 375, Article ID 113612, 27 p. (2021). MSC: 74-XX 49-XX PDF BibTeX XML Cite \textit{J. Wambacq} et al., Comput. Methods Appl. Mech. Eng. 375, Article ID 113612, 27 p. (2021; Zbl 07340451) Full Text: DOI arXiv OpenURL
Henrion, Didier; Naldi, Simone; Safey El Din, Mohab Exact algorithms for semidefinite programs with degenerate feasible set. (English) Zbl 1460.90128 J. Symb. Comput. 104, 942-959 (2021). MSC: 90C22 68W30 90C51 90C05 90C60 13P15 14P10 PDF BibTeX XML Cite \textit{D. Henrion} et al., J. Symb. Comput. 104, 942--959 (2021; Zbl 1460.90128) Full Text: DOI arXiv OpenURL
Haeser, Gabriel; Hinder, Oliver; Ye, Yinyu On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. (English) Zbl 1459.90152 Math. Program. 186, No. 1-2 (A), 257-288 (2021). MSC: 90C25 90C30 90C46 90C51 PDF BibTeX XML Cite \textit{G. Haeser} et al., Math. Program. 186, No. 1--2 (A), 257--288 (2021; Zbl 1459.90152) Full Text: DOI arXiv OpenURL
Allamigeon, Xavier; Benchimol, Pascal; Gaubert, Stéphane; Joswig, Michael What tropical geometry tells us about the complexity of linear programming. (English) Zbl 1459.90124 SIAM Rev. 63, No. 1, 123-164 (2021). MSC: 90C05 90C51 90C24 14T10 PDF BibTeX XML Cite \textit{X. Allamigeon} et al., SIAM Rev. 63, No. 1, 123--164 (2021; Zbl 1459.90124) Full Text: DOI OpenURL
Garreis, Sebastian; Surowiec, Thomas M.; Ulbrich, Michael An interior-point approach for solving risk-averse PDE-constrained optimization problems with coherent risk measures. (English) Zbl 1456.49005 SIAM J. Optim. 31, No. 1, 1-29 (2021). MSC: 49J20 49J50 49J55 49K20 49K45 90C15 PDF BibTeX XML Cite \textit{S. Garreis} et al., SIAM J. Optim. 31, No. 1, 1--29 (2021; Zbl 1456.49005) Full Text: DOI OpenURL
Kheirfam, B.; Nasrollahi, A.; Mohammadi, M. A second-order corrector infeasible interior-point method for semidefinite optimization based on a wide neighborhood. (English) Zbl 1458.90507 J. Sci. Comput. 86, No. 1, Paper No. 13, 17 p. (2021). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} et al., J. Sci. Comput. 86, No. 1, Paper No. 13, 17 p. (2021; Zbl 1458.90507) Full Text: DOI OpenURL
Bartmeyer, Petra Maria; Bocanegra, Silvana; Oliveira, Aurelio Ribeiro Leite Switching preconditioners using a hybrid approach for linear systems arising from interior point methods for linear programming. (English) Zbl 1456.65039 Numer. Algorithms 86, No. 1, 397-424 (2021). MSC: 65K05 65F08 90C05 90C51 PDF BibTeX XML Cite \textit{P. M. Bartmeyer} et al., Numer. Algorithms 86, No. 1, 397--424 (2021; Zbl 1456.65039) Full Text: DOI OpenURL
Yang, Yaguang Arc-search techniques for interior-point methods. (English) Zbl 1448.90002 Boca Raton, FL: CRC Press (ISBN 978-0-367-48728-7/hbk; 978-1-003-04251-8/ebook). x, 306 p. (2021). MSC: 90-01 90C51 90C05 90C20 90C22 90C60 PDF BibTeX XML Cite \textit{Y. Yang}, Arc-search techniques for interior-point methods. Boca Raton, FL: CRC Press (2021; Zbl 1448.90002) Full Text: DOI OpenURL
Chaghoub, Soraya; Benterki, Djamel Comparative numerical study between line search methods and majorant functions in barrier logarithmic methods for linear programming. (English) Zbl 07473683 J. Numer. Anal. Approx. Theory 49, No. 1, 15-21 (2020). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{S. Chaghoub} and \textit{D. Benterki}, J. Numer. Anal. Approx. Theory 49, No. 1, 15--21 (2020; Zbl 07473683) OpenURL
Fathi Hafshejani, Sajad; Fakharzadeh Jahromi, Alireza An interior point method for \(P_*(\kappa)\)-horizontal linear complementarity problem based on a new proximity function. (English) Zbl 1475.90109 J. Appl. Math. Comput. 62, No. 1-2, 281-300 (2020). MSC: 90C33 90C51 65K05 PDF BibTeX XML Cite \textit{S. Fathi Hafshejani} and \textit{A. Fakharzadeh Jahromi}, J. Appl. Math. Comput. 62, No. 1--2, 281--300 (2020; Zbl 1475.90109) Full Text: DOI OpenURL
Zhang, Mingwang; Huang, Kun; Li, Mengmeng; Lv, Yanli A new full-Newton step interior-point method for \(P_*(\kappa)\)-LCP based on a positive-asymptotic kernel function. (English) Zbl 1475.90130 J. Appl. Math. Comput. 64, No. 1-2, 313-330 (2020). MSC: 90C51 90C05 90C30 PDF BibTeX XML Cite \textit{M. Zhang} et al., J. Appl. Math. Comput. 64, No. 1--2, 313--330 (2020; Zbl 1475.90130) Full Text: DOI OpenURL
Kheirfam, B.; Haghighi, M. A wide neighborhood interior-point algorithm based on the trigonometric kernel function. (English) Zbl 1475.90034 J. Appl. Math. Comput. 64, No. 1-2, 119-135 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{M. Haghighi}, J. Appl. Math. Comput. 64, No. 1--2, 119--135 (2020; Zbl 1475.90034) Full Text: DOI OpenURL
Chenouf, Chahinez; Kebbiche, Zakia The effect of the step-size on the numerical behavior of a primal-dual interior-point algorithm applied to \(P_*(\kappa)\)-linear complementary problem. (English) Zbl 07417639 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 13(62), No. 1, 331-342 (2020). MSC: 90C33 90C05 90C51 PDF BibTeX XML Cite \textit{C. Chenouf} and \textit{Z. Kebbiche}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 13(62), No. 1, 331--342 (2020; Zbl 07417639) Full Text: DOI OpenURL
Ayache, Benhadid; Khaled, Saoudi A new parameterized logarithmic kernel function for linear optimization with a double barrier term yielding the best known iteration bound. (English) Zbl 1465.90041 Commun. Math. 28, No. 1, 27-41 (2020). MSC: 90C05 90C51 90C31 PDF BibTeX XML Cite \textit{B. Ayache} and \textit{S. Khaled}, Commun. Math. 28, No. 1, 27--41 (2020; Zbl 1465.90041) Full Text: DOI OpenURL
Geng, Jie; Zhang, Mingwang; Pang, Jinjuan A full-Newton step feasible IPM for semidefinite optimization based on a kernel function with linear growth term. (English) Zbl 1474.90322 Wuhan Univ. J. Nat. Sci. 25, No. 6, 501-509 (2020). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{J. Geng} et al., Wuhan Univ. J. Nat. Sci. 25, No. 6, 501--509 (2020; Zbl 1474.90322) Full Text: DOI OpenURL
Kheirfam, Behrouz A new predictor-corrector infeasible interior-point algorithm for linear optimization in a wide neighborhood. (English) Zbl 07350028 Fundam. Inform. 177, No. 2, 141-156 (2020). MSC: 68-XX PDF BibTeX XML Cite \textit{B. Kheirfam}, Fundam. Inform. 177, No. 2, 141--156 (2020; Zbl 07350028) Full Text: DOI OpenURL
Cho, You-Young; Cho, Gyeong-Mi Interior-point methods for \(P_\ast(\kappa)\)-horizontal linear complementarity problems. (English) Zbl 1460.90202 J. Nonlinear Convex Anal. 21, No. 1, 127-137 (2020). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{Y.-Y. Cho} and \textit{G.-M. Cho}, J. Nonlinear Convex Anal. 21, No. 1, 127--137 (2020; Zbl 1460.90202) Full Text: Link OpenURL
Derbal, Louiza; Kebbiche, Zakia An efficient parameterized logarithmic kernel function for semidefinite optimization. (English) Zbl 1466.90066 Acta Math. Appl. Sin., Engl. Ser. 36, No. 3, 753-770 (2020). MSC: 90C22 90C31 90C51 PDF BibTeX XML Cite \textit{L. Derbal} and \textit{Z. Kebbiche}, Acta Math. Appl. Sin., Engl. Ser. 36, No. 3, 753--770 (2020; Zbl 1466.90066) Full Text: DOI OpenURL
Kheirfam, Behrouz An interior-point method for symmetric optimization based on a new wide neighborhood. (English) Zbl 1457.90170 Pac. J. Optim. 16, No. 4, 625-640 (2020). MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, Pac. J. Optim. 16, No. 4, 625--640 (2020; Zbl 1457.90170) Full Text: Link OpenURL
Leulmi, A.; Leulmi, S.; Merikhi, B. Adaptation of the minorant function in Karmarkar’s projective method for linear optimization. (English) Zbl 1461.65171 Indian J. Math. 62, No. 3, 269-285 (2020). MSC: 65K05 90C05 90C51 PDF BibTeX XML Cite \textit{A. Leulmi} et al., Indian J. Math. 62, No. 3, 269--285 (2020; Zbl 1461.65171) OpenURL
Hoto, R. S. V.; Matioli, L. C.; Santos, P. S. M. A penalty algorithm for solving convex separable knapsack problems. (English) Zbl 1474.65167 Appl. Math. Comput. 387, Article ID 124855, 9 p. (2020). MSC: 65K05 90C25 90C51 90C30 PDF BibTeX XML Cite \textit{R. S. V. Hoto} et al., Appl. Math. Comput. 387, Article ID 124855, 9 p. (2020; Zbl 1474.65167) Full Text: DOI OpenURL
Freitas, Juliana Campos de; Florentino, Helenice de Oliveira; Benedito, Antone dos Santos; Cantane, Daniela Renata Optimization model applied to radiotherapy planning problem with dose intensity and beam choice. (English) Zbl 1472.92121 Appl. Math. Comput. 387, Article ID 124786, 13 p. (2020). MSC: 92C50 90C05 90C51 90C90 PDF BibTeX XML Cite \textit{J. C. de Freitas} et al., Appl. Math. Comput. 387, Article ID 124786, 13 p. (2020; Zbl 1472.92121) Full Text: DOI OpenURL
Kheirfam, B.; Nasrollahi, A. A wide neighborhood predictor-infeasible corrector interior-point algorithm for linear optimization. (English) Zbl 1460.90107 Optim. Lett. 14, No. 8, 2549-2563 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{A. Nasrollahi}, Optim. Lett. 14, No. 8, 2549--2563 (2020; Zbl 1460.90107) Full Text: DOI OpenURL
Darvay, Zsolt; Kheirfam, Behrouz; Rigó, Petra Renáta A new wide neighborhood primal-dual second-order corrector algorithm for linear optimization. (English) Zbl 1459.90125 Optim. Lett. 14, No. 7, 1747-1763 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., Optim. Lett. 14, No. 7, 1747--1763 (2020; Zbl 1459.90125) Full Text: DOI OpenURL
Hübner, Jens; Schmidt, Martin; Steinbach, Marc C. Optimization techniques for tree-structured nonlinear problems. (English) Zbl 07304217 Comput. Manag. Sci. 17, No. 3, 409-436 (2020). MSC: 90Bxx 90-08 90C06 90C15 90C30 90C51 PDF BibTeX XML Cite \textit{J. Hübner} et al., Comput. Manag. Sci. 17, No. 3, 409--436 (2020; Zbl 07304217) Full Text: DOI OpenURL
Schork, Lukas; Gondzio, Jacek Implementation of an interior point method with basis preconditioning. (English) Zbl 1452.90217 Math. Program. Comput. 12, No. 4, 603-635 (2020). MSC: 90C05 90C06 90C51 PDF BibTeX XML Cite \textit{L. Schork} and \textit{J. Gondzio}, Math. Program. Comput. 12, No. 4, 603--635 (2020; Zbl 1452.90217) Full Text: DOI OpenURL
Rasheed, Ali S.; Mayah, Faik; Al-Jumaili, Ahmed A. H. Optimization techniques on affine differential manifolds. (English) Zbl 1474.90341 Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 14, 12 p. (2020). MSC: 90C25 90C51 PDF BibTeX XML Cite \textit{A. S. Rasheed} et al., Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 14, 12 p. (2020; Zbl 1474.90341) Full Text: Link OpenURL
Dadush, Daniel; Huiberts, Sophie; Natura, Bento; Végh, László A. A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix. (English) Zbl 07298286 Makarychev, Konstantin (ed.) et al., Proceedings of the 52nd annual ACM SIGACT symposium on theory of computing, STOC ’20, Chicago, IL, USA, June 22–26, 2020. New York, NY: Association for Computing Machinery (ACM). 761-774 (2020). MSC: 68Qxx PDF BibTeX XML Cite \textit{D. Dadush} et al., in: Proceedings of the 52nd annual ACM SIGACT symposium on theory of computing, STOC '20, Chicago, IL, USA, June 22--26, 2020. New York, NY: Association for Computing Machinery (ACM). 761--774 (2020; Zbl 07298286) Full Text: DOI arXiv Link OpenURL
Gupta, Varun; Radovanović, Ana Interior-point-based online stochastic bin packing. (English) Zbl 1457.90123 Oper. Res. 68, No. 5, 1474-1492 (2020). MSC: 90C27 90C15 90C51 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{A. Radovanović}, Oper. Res. 68, No. 5, 1474--1492 (2020; Zbl 1457.90123) Full Text: DOI arXiv OpenURL
Casanellas, Glòria; Castro, Jordi Using interior point solvers for optimizing progressive lens models with spherical coordinates. (English) Zbl 1457.90113 Optim. Eng. 21, No. 4, 1389-1421 (2020). MSC: 90C26 90C51 PDF BibTeX XML Cite \textit{G. Casanellas} and \textit{J. Castro}, Optim. Eng. 21, No. 4, 1389--1421 (2020; Zbl 1457.90113) Full Text: DOI Link OpenURL
Fathi-Hafshejani, S.; Moaberfard, Z. An interior-point algorithm for linearly constrained convex optimization based on kernel function and application in non-negative matrix factorization. (English) Zbl 1457.90108 Optim. Eng. 21, No. 3, 1019-1051 (2020). MSC: 90C25 90C51 PDF BibTeX XML Cite \textit{S. Fathi-Hafshejani} and \textit{Z. Moaberfard}, Optim. Eng. 21, No. 3, 1019--1051 (2020; Zbl 1457.90108) Full Text: DOI OpenURL
Darvay, Zsolt; Rigó, Petra Renáta; Szénási, Eszter Interior-point algorithm for linear optimization based on a new search direction. (Hungarian. English summary) Zbl 1463.90146 Alkalmazott Mat. Lapok 37, No. 2, 10 p. (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., Alkalmazott Mat. Lapok 37, No. 2, 10 p. (2020; Zbl 1463.90146) Full Text: Link OpenURL
Kheirfam, Behrouz A second-order corrector infeasible interior-point method with one-norm wide neighborhood for symmetric optimization. (English) Zbl 1476.90350 Fundam. Inform. 172, No. 4, 343-359 (2020). MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, Fundam. Inform. 172, No. 4, 343--359 (2020; Zbl 1476.90350) Full Text: DOI OpenURL
Jia, Wei; Yong, Longquan; Li, Na Initial point selection in primal-dual interior point method for linear programming based on evolutionary algorithm. (Chinese. English summary) Zbl 1463.90147 J. Nanjing Univ. Aeronaut. Astronaut. 52, No. 2, 334-340 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{W. Jia} et al., J. Nanjing Univ. Aeronaut. Astronaut. 52, No. 2, 334--340 (2020; Zbl 1463.90147) Full Text: DOI OpenURL
Darvay, Zsolt; Illés, Tibor; Povh, Janez; Rigó, Petra Renáta Feasible corrector-predictor interior-point algorithm for \(P_* (\kappa)\)-linear complementarity problems based on a new search direction. (English) Zbl 1451.90161 SIAM J. Optim. 30, No. 3, 2628-2658 (2020). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., SIAM J. Optim. 30, No. 3, 2628--2658 (2020; Zbl 1451.90161) Full Text: DOI OpenURL
Chouzenoux, Emilie; Corbineau, Marie-Caroline; Pesquet, Jean-Christophe A proximal interior point algorithm with applications to image processing. (English) Zbl 07255781 J. Math. Imaging Vis. 62, No. 6-7, 919-940 (2020). MSC: 90C51 68U10 90C25 94A08 PDF BibTeX XML Cite \textit{E. Chouzenoux} et al., J. Math. Imaging Vis. 62, No. 6--7, 919--940 (2020; Zbl 07255781) Full Text: DOI HAL OpenURL
Darvay, Zs.; Illés, T.; Kheirfam, B.; Rigó, P. R. A corrector-predictor interior-point method with new search direction for linear optimization. (English) Zbl 07252401 CEJOR, Cent. Eur. J. Oper. Res. 28, No. 3, 1123-1140 (2020). MSC: 90Bxx 90C05 90C51 PDF BibTeX XML Cite \textit{Zs. Darvay} et al., CEJOR, Cent. Eur. J. Oper. Res. 28, No. 3, 1123--1140 (2020; Zbl 07252401) Full Text: DOI OpenURL
Asadi, Soodabeh; Darvay, Zsolt; Lesaja, Goran; Mahdavi-Amiri, Nezam; Potra, Florian A full-Newton step interior-point method for monotone weighted linear complementarity problems. (English) Zbl 1441.90163 J. Optim. Theory Appl. 186, No. 3, 864-878 (2020). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{S. Asadi} et al., J. Optim. Theory Appl. 186, No. 3, 864--878 (2020; Zbl 1441.90163) Full Text: DOI OpenURL
Karimi, Mehdi; Tunçel, Levent Primal-dual interior-point methods for domain-driven formulations. (English) Zbl 1455.90127 Math. Oper. Res. 45, No. 2, 591-621 (2020). MSC: 90C25 90C51 49N15 65Y20 PDF BibTeX XML Cite \textit{M. Karimi} and \textit{L. Tunçel}, Math. Oper. Res. 45, No. 2, 591--621 (2020; Zbl 1455.90127) Full Text: DOI arXiv OpenURL
Natale, Andrea; Todeschi, Gabriele TPFA finite volume approximation of Wasserstein gradient flows. (English) Zbl 1454.65097 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 193-201 (2020). MSC: 65M08 65M06 65M12 49M29 35K65 90C51 PDF BibTeX XML Cite \textit{A. Natale} and \textit{G. Todeschi}, Springer Proc. Math. Stat. 323, 193--201 (2020; Zbl 1454.65097) Full Text: DOI arXiv HAL OpenURL
De Klerk, Etienne; Glineur, François; Taylor, Adrien B. Worst-case convergence analysis of inexact gradient and Newton methods through semidefinite programming performance estimation. (English) Zbl 1448.90070 SIAM J. Optim. 30, No. 3, 2053-2082 (2020). MSC: 90C22 90C60 90C26 PDF BibTeX XML Cite \textit{E. De Klerk} et al., SIAM J. Optim. 30, No. 3, 2053--2082 (2020; Zbl 1448.90070) Full Text: DOI arXiv OpenURL
Kheirfam, Behrouz; Haghighi, Masoumeh A full-Newton step infeasible interior-point method based on a trigonometric kernel function without centering steps. (English) Zbl 1448.90059 Numer. Algorithms 85, No. 1, 59-75 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{M. Haghighi}, Numer. Algorithms 85, No. 1, 59--75 (2020; Zbl 1448.90059) Full Text: DOI OpenURL
Kardoš, Juraj; Kourounis, Drosos; Schenk, Olaf Structure-exploiting interior point methods. (English) Zbl 1455.65095 Grama, Ananth (ed.) et al., Parallel algorithms in computational science and engineering. Cham: Birkhäuser. Model. Simul. Sci. Eng. Technol., 63-93 (2020). MSC: 65K05 90C30 90C51 PDF BibTeX XML Cite \textit{J. Kardoš} et al., in: Parallel algorithms in computational science and engineering. Cham: Birkhäuser. 63--93 (2020; Zbl 1455.65095) Full Text: DOI arXiv OpenURL
Dai, Yu-Hong; Liu, Xin-Wei; Sun, Jie A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs. (English) Zbl 1449.90325 J. Ind. Manag. Optim. 16, No. 2, 1009-1035 (2020). MSC: 90C30 90C51 90C26 90C46 PDF BibTeX XML Cite \textit{Y.-H. Dai} et al., J. Ind. Manag. Optim. 16, No. 2, 1009--1035 (2020; Zbl 1449.90325) Full Text: DOI arXiv OpenURL
Bouafia, Mousaab; Yassine, Adnan An efficient twice parameterized trigonometric kernel function for linear optimization. (English) Zbl 1447.90018 Optim. Eng. 21, No. 2, 651-672 (2020). MSC: 90C05 90C31 90C51 PDF BibTeX XML Cite \textit{M. Bouafia} and \textit{A. Yassine}, Optim. Eng. 21, No. 2, 651--672 (2020; Zbl 1447.90018) Full Text: DOI OpenURL
Bueno, Luís Felipe; Haeser, Gabriel; Santos, Luiz-Rafael Towards an efficient augmented Lagrangian method for convex quadratic programming. (English) Zbl 1446.90122 Comput. Optim. Appl. 76, No. 3, 767-800 (2020). MSC: 90C20 90C25 90C51 PDF BibTeX XML Cite \textit{L. F. Bueno} et al., Comput. Optim. Appl. 76, No. 3, 767--800 (2020; Zbl 1446.90122) Full Text: DOI OpenURL
Liu, Deyi; Tran-Dinh, Quoc An inexact interior-point Lagrangian decomposition algorithm with inexact oracles. (English) Zbl 1445.90082 J. Optim. Theory Appl. 185, No. 3, 903-926 (2020). MSC: 90C25 90-08 PDF BibTeX XML Cite \textit{D. Liu} and \textit{Q. Tran-Dinh}, J. Optim. Theory Appl. 185, No. 3, 903--926 (2020; Zbl 1445.90082) Full Text: DOI arXiv OpenURL