Bell, John L. Some new intuitionistic equivalents of Zorn’s Lemma. (English) Zbl 1045.03047 Arch. Math. Logic 42, No. 8, 811-814 (2003). Reviewer: Victor V. Pambuccian (Phoenix) MSC: 03F55 03E70 03E25 PDF BibTeX XML Cite \textit{J. L. Bell}, Arch. Math. Logic 42, No. 8, 811--814 (2003; Zbl 1045.03047) Full Text: DOI Link OpenURL
Yankov, V. A. Dialogue theory of proofs for arithmetic, analysis, and set theory. (English. Russian original) Zbl 0836.03029 Russ. Acad. Sci., Izv., Math. 44, No. 3, 571-600 (1995); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 58, No. 3, 140-168 (1994). MSC: 03F03 03F55 03E35 03F30 03F10 03E30 03B20 PDF BibTeX XML Cite \textit{V. A. Yankov}, Russ. Acad. Sci., Izv., Math. 44, No. 3, 1 (1994; Zbl 0836.03029); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 58, No. 3, 140--168 (1994) Full Text: DOI OpenURL
Griffor, Edward; Rathjen, Michael The strength of some Martin-Löf type theories. (English) Zbl 0819.03047 Arch. Math. Logic 33, No. 5, 347-385 (1994). Reviewer: M.Yasuhara (Princeton) MSC: 03F35 03F50 PDF BibTeX XML Cite \textit{E. Griffor} and \textit{M. Rathjen}, Arch. Math. Logic 33, No. 5, 347--385 (1994; Zbl 0819.03047) Full Text: DOI OpenURL
Hallnäs, Lars On normalization of proofs in set theory. (English) Zbl 0667.03041 Diss. Math. 261, 95 p. (1988). Reviewer: G.Mints MSC: 03F05 03E99 PDF BibTeX XML OpenURL
McCarty, Charles Subcountability under realizability. (English) Zbl 0637.03060 Notre Dame J. Formal Logic 27, 210-220 (1986). Reviewer: M.Beeson MSC: 03F50 03E70 03F55 03E35 PDF BibTeX XML Cite \textit{C. McCarty}, Notre Dame J. Formal Logic 27, 210--220 (1986; Zbl 0637.03060) Full Text: DOI OpenURL
Goodman, Nicolas D. Replacement and collection: a correction. (English) Zbl 0618.03026 J. Symb. Log. 51, 333 (1986). MSC: 03E70 03F55 PDF BibTeX XML Cite \textit{N. D. Goodman}, J. Symb. Log. 51, 333 (1986; Zbl 0618.03026) Full Text: DOI OpenURL
Leivant, Daniel Syntactic translations and provably recursive functions. (English) Zbl 0593.03038 J. Symb. Log. 50, 682-688 (1985). Reviewer: H.Pfeiffer MSC: 03F50 03D20 PDF BibTeX XML Cite \textit{D. Leivant}, J. Symb. Log. 50, 682--688 (1985; Zbl 0593.03038) Full Text: DOI OpenURL
Myhill, John Intensional set theory. (English) Zbl 0592.03043 Intensional mathematics, Stud. Logic Found. Math. 113, 47-61 (1985). Reviewer: C.F.Kielkopf MSC: 03E70 03B20 03B45 03F55 PDF BibTeX XML OpenURL
Goodman, Nicolas D. Replacement and collection in intuitionistic set theory. (English) Zbl 0585.03026 J. Symb. Log. 50, 344-348 (1985). Reviewer: B.van Rootselaar MSC: 03E70 03F55 PDF BibTeX XML Cite \textit{N. D. Goodman}, J. Symb. Log. 50, 344--348 (1985; Zbl 0585.03026) Full Text: DOI OpenURL
Ščedrov, Andrej Extending Gödel’s modal interpretation to type theory and set theory. (English) Zbl 0569.03025 Intensional mathematics, Stud. Logic Found. Math. 113, 81-119 (1985). MSC: 03F50 03F55 03B45 03F35 03F25 PDF BibTeX XML OpenURL
Takeuti, Gaisi; Titani, Satoko Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. (English) Zbl 0575.03015 J. Symb. Log. 49, 851-866 (1984). Reviewer: S. D. Latow MSC: 03B52 03E72 03B50 03C90 03E70 03E40 PDF BibTeX XML Cite \textit{G. Takeuti} and \textit{S. Titani}, J. Symb. Log. 49, 851--866 (1984; Zbl 0575.03015) Full Text: DOI OpenURL
Friedman, Harvey M.; Ščedrov, Andrej Set existence property for intuitionistic theories with dependent choice. (English) Zbl 0539.03039 Ann. Pure Appl. Logic 25, 129-140 (1983). MSC: 03F50 PDF BibTeX XML Cite \textit{H. M. Friedman} and \textit{A. Ščedrov}, Ann. Pure Appl. Logic 25, 129--140 (1983; Zbl 0539.03039) Full Text: DOI OpenURL
Lavendhomme, R.; Lucas, T. A note on intuitionistic models of ZF. (English) Zbl 0487.03028 Notre Dame J. Formal Logic 24, 54-66 (1983). MSC: 03E35 03E45 03F55 PDF BibTeX XML Cite \textit{R. Lavendhomme} and \textit{T. Lucas}, Notre Dame J. Formal Logic 24, 54--66 (1983; Zbl 0487.03028) Full Text: DOI OpenURL
Fourman, M. P.; Scedrov, A. The ”World’s simplest axiom of choice” fails. (English) Zbl 0499.03048 Manuscr. Math. 38, 325-332 (1982). MSC: 03G30 03F50 03E25 18B25 PDF BibTeX XML Cite \textit{M. P. Fourman} and \textit{A. Scedrov}, Manuscr. Math. 38, 325--332 (1982; Zbl 0499.03048) Full Text: DOI EuDML OpenURL
Beeson, Michael Continuity in intuitionistic set theories. (English) Zbl 0429.03041 Logic colloquium ’78, Proc., Mons/Belgium 1978, Stud. Logic Found. Math. Vol. 97, 1-52 (1979). MSC: 03F55 03F60 03E35 03E99 03F25 PDF BibTeX XML OpenURL