Zumbrun, Kevin Invariant manifolds for a class of degenerate evolution equations and structure of kinetic shock layers. (English) Zbl 1405.37087 Klingenberg, Christian (ed.) et al., Theory, numerics and applications of hyperbolic problems II, Aachen, Germany, August 2016. Cham: Springer (ISBN 978-3-319-91547-0/hbk; 978-3-319-91548-7/ebook). Springer Proceedings in Mathematics & Statistics 237, 691-714 (2018). MSC: 37L15 37L10 37L25 35Q20 76P05 PDF BibTeX XML Cite \textit{K. Zumbrun}, Springer Proc. Math. Stat. 237, 691--714 (2018; Zbl 1405.37087) Full Text: DOI arXiv OpenURL
Roberts, A. J. Model emergent dynamics in complex systems. (English) Zbl 1330.34013 Mathematical Modeling and Computation 20. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (ISBN 978-1-61197-355-6/pbk). xii, 748 p. (2015). Reviewer: Nikola Popovic (Edinburgh) (MR3244318) MSC: 34-02 34C45 34Exx 35Q35 37C10 37D10 37L10 76A20 PDF BibTeX XML Cite \textit{A. J. Roberts}, Model emergent dynamics in complex systems. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (2015; Zbl 1330.34013) OpenURL
Elbialy, Mohamed Sami Smooth conjugacy and linearization near resonant fixed points in Hilbert spaces. (English) Zbl 1355.37039 Houston J. Math. 40, No. 2, 467-509 (2014). MSC: 37C05 34C20 37D10 37C10 34K19 37L10 34K30 PDF BibTeX XML Cite \textit{M. S. Elbialy}, Houston J. Math. 40, No. 2, 467--509 (2014; Zbl 1355.37039) OpenURL
Bruining, Johannes; Castañeda, Pablo; Marchesin, Dan The dynamics of chemical reactors in porous media. (English) Zbl 1254.80004 Adv. Differ. Equ. 17, No. 7-8, 725-746 (2012). MSC: 80A32 76S05 35B38 35Q79 35B40 35K55 35K57 35K60 37L25 PDF BibTeX XML Cite \textit{J. Bruining} et al., Adv. Differ. Equ. 17, No. 7--8, 725--746 (2012; Zbl 1254.80004) Full Text: Euclid OpenURL
Stoop, Ruedi; Steeb, Willi-Hans Computable chaos in dynamical systems. (Berechenbares Chaos in dynamischen Systemen.) (German) Zbl 1096.65128 Basel: Birkhäuser (ISBN 3-7643-7550-7/pbk). xii, 264 p. (2006). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 65P20 37D45 65P10 65P30 65P40 65-02 37-02 37M20 37M25 PDF BibTeX XML Cite \textit{R. Stoop} and \textit{W.-H. Steeb}, Berechenbares Chaos in dynamischen Systemen. Basel: Birkhäuser (2006; Zbl 1096.65128) OpenURL
De Chant, L. J. Approximate inertial manifold-base finite-difference operators and quasi-steady solutions of parabolic PDEs with application to sediment transport. (English) Zbl 1112.37326 Math. Comput. Modelling 40, No. 1-2, 11-21 (2004). MSC: 37L25 65M06 76M20 76S05 86-08 PDF BibTeX XML Cite \textit{L. J. De Chant}, Math. Comput. Modelling 40, No. 1--2, 11--21 (2004; Zbl 1112.37326) Full Text: DOI OpenURL
Eirola, Timo; von Pfaler, Jan Numerical Taylor expansions for invariant manifolds. (English) Zbl 1063.65139 Numer. Math. 99, No. 1, 25-46 (2004). Reviewer: Willy Govaerts (Gent) MSC: 65P30 37L25 37M20 37C10 37C25 37D10 PDF BibTeX XML Cite \textit{T. Eirola} and \textit{J. von Pfaler}, Numer. Math. 99, No. 1, 25--46 (2004; Zbl 1063.65139) Full Text: DOI OpenURL
Lubich, Christian On dynamics and bifurcations of nonlinear evolution equations under numerical discretization. (English) Zbl 1011.37049 Fiedler, Bernold (ed.), Ergodic theory, analysis, and efficient simulation of dynamical systems. Berlin: Springer. 469-500 (2001). MSC: 37M20 37L65 37-02 35B40 35B41 35K55 65P30 35B42 35B32 37C27 PDF BibTeX XML Cite \textit{C. Lubich}, in: Ergodic theory, analysis, and efficient simulation of dynamical systems. Berlin: Springer. 469--500 (2001; Zbl 1011.37049) OpenURL
Latushkin, Y.; Layton, B. The optimal gap condition for invariant manifolds. (English) Zbl 0971.34044 Discrete Contin. Dyn. Syst. 5, No. 2, 233-268 (1999). Reviewer: Norbert Koksch (Dresden) MSC: 34G20 34C30 35B42 37L05 37L15 34K19 37L25 37C10 PDF BibTeX XML Cite \textit{Y. Latushkin} and \textit{B. Layton}, Discrete Contin. Dyn. Syst. 5, No. 2, 233--268 (1999; Zbl 0971.34044) Full Text: DOI OpenURL
Stoffer, Daniel On the qualitative behaviour of symplectic integrators. I: Perturbed linear systems. (English) Zbl 0885.65088 Numer. Math. 77, No. 4, 535-547 (1997). Reviewer: M.Calvo (Zaragoza) MSC: 65L06 65L05 37C10 34C30 37J99 PDF BibTeX XML Cite \textit{D. Stoffer}, Numer. Math. 77, No. 4, 535--547 (1997; Zbl 0885.65088) Full Text: DOI OpenURL
Robinson, James C. Inertial manifolds and the cone condition. (English) Zbl 0787.34036 Dyn. Syst. Appl. 2, No. 3, 311-330 (1993). MSC: 34C30 35B40 35G10 35K25 PDF BibTeX XML Cite \textit{J. C. Robinson}, Dyn. Syst. Appl. 2, No. 3, 311--330 (1993; Zbl 0787.34036) OpenURL
Mallet-Paret, John; Sell, George R. Inertial manifolds for reaction diffusion equations in higher space dimensions. (English) Zbl 0674.35049 J. Am. Math. Soc. 1, No. 4, 804-866 (1988). Reviewer: M.Kučera MSC: 35K60 35K57 34C30 35P20 11B05 11E99 47H10 11N05 35B40 34C29 PDF BibTeX XML Cite \textit{J. Mallet-Paret} and \textit{G. R. Sell}, J. Am. Math. Soc. 1, No. 4, 804--866 (1988; Zbl 0674.35049) Full Text: DOI OpenURL