Ghanmi, Chifaa; Aouadi, Saloua Mani; Triki, Faouzi Recovering the initial condition in the one-phase Stefan problem. (English) Zbl 1487.35446 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1143-1164 (2022). MSC: 35R30 35K20 35R35 80A22 45Q05 65M32 PDF BibTeX XML Cite \textit{C. Ghanmi} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1143--1164 (2022; Zbl 1487.35446) Full Text: DOI arXiv OpenURL
Bodaghi, Soheila; Zakeri, Ali; Amiraslani, Amir A numerical scheme based on discrete mollification method using Bernstein basis polynomials for solving the inverse one-dimensional Stefan problem. (English) Zbl 1475.65103 Inverse Probl. Sci. Eng. 28, No. 11, 1528-1550 (2020). MSC: 65M32 65M30 65M12 60H50 65K10 35B65 35C11 35K20 80A22 80A23 80M50 35R30 35R37 PDF BibTeX XML Cite \textit{S. Bodaghi} et al., Inverse Probl. Sci. Eng. 28, No. 11, 1528--1550 (2020; Zbl 1475.65103) Full Text: DOI OpenURL
Sarsengeldin, Merey M.; Kharin, Stanislav N.; Kassabek, Samat; Mukambetkazin, Zamanbek Exact solution of the one phase inverse Stefan problem. (English) Zbl 1499.80008 Filomat 32, No. 3, 985-990 (2018). MSC: 80A23 80A22 80M22 35R30 35R35 35R20 65M32 65M15 PDF BibTeX XML Cite \textit{M. M. Sarsengeldin} et al., Filomat 32, No. 3, 985--990 (2018; Zbl 1499.80008) Full Text: DOI OpenURL
Kwon, Sung-Sik An augmented Lagrangian method for estimating conductivity in the Stefan problem. (English) Zbl 1141.65381 Int. J. Mod. Math. 1, No. 1, 73-95 (2006). MSC: 65M32 35K05 35R30 35R35 80A22 65M60 80M10 65M12 PDF BibTeX XML Cite \textit{S.-S. Kwon}, Int. J. Mod. Math. 1, No. 1, 73--95 (2006; Zbl 1141.65381) OpenURL
Lorenzi, L. Recovering a memory kernel in an integrodifferential Stefan problem. (English) Zbl 1047.45009 Fabrizio, Mauro (ed.) et al., Mathematical models and methods for smart materials. Proceedings of the conference, Cortona, Italy, June 25–29, 2001. River Edge, NJ: World Scientific (ISBN 981-238-235-6/hbk). Ser. Adv. Math. Appl. Sci. 62, 197-205 (2002). MSC: 45Q05 45K05 80A22 PDF BibTeX XML Cite \textit{L. Lorenzi}, Ser. Adv. Math. Appl. Sci. 62, 197--205 (2002; Zbl 1047.45009) OpenURL
Lorenzi, L. An identification problem for a one-phase Stefan problem. (English) Zbl 1003.35125 J. Inverse Ill-Posed Probl. 9, No. 6, 627-653 (2001). Reviewer: D.Lesnic (Leeds) MSC: 35R30 35R35 35K05 PDF BibTeX XML Cite \textit{L. Lorenzi}, J. Inverse Ill-Posed Probl. 9, No. 6, 627--653 (2001; Zbl 1003.35125) Full Text: DOI OpenURL
Barbu, V.; Kunisch, K.; Ring, W. Control and estimation of the boundary heat transfer function in Stefan problems. (English) Zbl 0865.65070 RAIRO, Modélisation Math. Anal. Numér. 30, No. 6, 671-710 (1996). Reviewer: M.Jung (Chemnitz) MSC: 65M30 65M12 35K55 35R35 35R30 PDF BibTeX XML Cite \textit{V. Barbu} et al., RAIRO, Modélisation Math. Anal. Numér. 30, No. 6, 671--710 (1996; Zbl 0865.65070) Full Text: DOI EuDML OpenURL
Kunisch, K.; Murphy, K. A.; Peichl, G. Estimation of the conductivity in the one-phase Stefan problem: Numerical results. (English) Zbl 0786.65108 RAIRO, Modélisation Math. Anal. Numér. 27, No. 5, 613-650 (1993). Reviewer: C.A.De Moura (Botafogo) MSC: 65Z05 65M12 35R35 35K05 80A22 35R30 PDF BibTeX XML Cite \textit{K. Kunisch} et al., RAIRO, Modélisation Math. Anal. Numér. 27, No. 5, 613--650 (1993; Zbl 0786.65108) Full Text: DOI EuDML OpenURL
Arnăutu, Viorel On approximation of the inverse one-phase Stefan problem. (English) Zbl 0734.65091 Numerical methods for free boundary problems, Proc. Conf., Jyväskylä/Finl. 1990, ISNM 99, 69-81 (1991). Reviewer: N.Vulchanov (Gabrovo) MSC: 65Z05 65K10 35K05 49J20 35R35 35R30 80A22 PDF BibTeX XML OpenURL
Barbu, Viorel The approximate solvability of the inverse one phase Stefan problem. (English) Zbl 0733.65092 Numerical methods for free boundary problems, Proc. Conf., Jyväskylä/Finl. 1990, ISNM 99, 33-43 (1991). Reviewer: O.Titow (Berlin) MSC: 65Z05 65M60 35K05 35R30 35R35 80A22 80A23 PDF BibTeX XML OpenURL
Zhernovoj, Yu. V. Solution of the one-phase inverse Stefan problem with spherical symmetry. (Russian) Zbl 0727.35140 Mathematical modelling of physical processes, Collect. Sci. Works, Kiev, 57-61 (1989). Reviewer: Yang Yingchen (Beijing) MSC: 35R30 35R35 PDF BibTeX XML OpenURL
Cannon, John Rozier The one-dimensional heat equation. Foreword by Felix E. Browder. (English) Zbl 0567.35001 Encyclopedia of Mathematics and Its Applications, Vol. 23. Menlo Park, California etc.: Addison-Wesley Publishing Company; Cambridge etc.: Cambridge University Press. XXV, 483 p. (1984). Reviewer: B.R.Bhonsle MSC: 35-01 35K05 35R30 80A20 35B10 35C05 35C10 35C15 35R25 35R35 PDF BibTeX XML Backlinks: MO OpenURL
Tarzia, D. A. Simultaneous determination of two unknown thermal coefficients through an inverse one-phase Lamé-Clapeyron (Stefan) problem with an overspecified condition on the fixed face. (English) Zbl 0531.76107 Int. J. Heat Mass Transfer 26, 1151-1157 (1983). Reviewer: A.Fasano MSC: 76T99 76R99 35R30 35R35 PDF BibTeX XML Cite \textit{D. A. Tarzia}, Int. J. Heat Mass Transfer 26, 1151--1157 (1983; Zbl 0531.76107) Full Text: DOI OpenURL
Tarzia, Domingo Alberto Determination of the unknown coefficients in the Lame-Clapeyron problem (or one-phase Stefan problem). (English) Zbl 0493.35079 Adv. Appl. Math. 3, 74-82 (1982). MSC: 35R30 35R35 35K05 80A20 PDF BibTeX XML Cite \textit{D. A. Tarzia}, Adv. Appl. Math. 3, 74--82 (1982; Zbl 0493.35079) Full Text: DOI OpenURL
Jochum, Peter The inverse Stefan problem as a problem of nonlinear approximation theory. (English) Zbl 0463.35043 J. Approximation Theory 30, 81-98 (1980). MSC: 35K20 49J20 35R35 35B37 35R30 PDF BibTeX XML Cite \textit{P. Jochum}, J. Approx. Theory 30, 81--98 (1980; Zbl 0463.35043) Full Text: DOI OpenURL