Hariachevska, I. V.; Protektor, D. O. Computer simulation system for nonlinear processes described by the Korteweg-de Vries-Burgers equation. (English. Russian original) Zbl 07485098 Cybern. Syst. Anal. 57, No. 6, 998-1007 (2021); translation from Kibern. Sist. Anal. 57, No. 6, 172-182 (2021). MSC: 35Qxx 65Mxx 76Bxx PDF BibTeX XML Cite \textit{I. V. Hariachevska} and \textit{D. O. Protektor}, Cybern. Syst. Anal. 57, No. 6, 998--1007 (2021; Zbl 07485098); translation from Kibern. Sist. Anal. 57, No. 6, 172--182 (2021) Full Text: DOI OpenURL
Lobo, Jervin Zen; Valaulikar, Y. S. Lie group analysis of the time-delayed inviscid Burgers’ equation. (English) Zbl 07425442 J. Indian Math. Soc., New Ser. 88, No. 1-2, 105-124 (2021). MSC: 35R10 35F20 35B06 35C99 PDF BibTeX XML Cite \textit{J. Z. Lobo} and \textit{Y. S. Valaulikar}, J. Indian Math. Soc., New Ser. 88, No. 1--2, 105--124 (2021; Zbl 07425442) Full Text: DOI OpenURL
Cheng, Xiujun A three-level implicit difference scheme for solving the inviscid Burgers’ equation with time delay. (English) Zbl 1480.65206 J. Difference Equ. Appl. 27, No. 8, 1218-1231 (2021). MSC: 65M06 65N06 65M12 65D05 35Q53 35R07 PDF BibTeX XML Cite \textit{X. Cheng}, J. Difference Equ. Appl. 27, No. 8, 1218--1231 (2021; Zbl 1480.65206) Full Text: DOI OpenURL
Boritchev, Alexandre; Kuksin, Sergei One-dimensional turbulence and the stochastic Burgers equation. (English) Zbl 07397916 Mathematical Surveys and Monographs 255. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6436-3/pbk; 978-1-4704-6564-3/ebook). vii, 192 p. (2021). Reviewer: Luigi Amedeo Bianchi (Povo) MSC: 60H15 35L65 35Q35 37A25 76F02 76F25 PDF BibTeX XML Cite \textit{A. Boritchev} and \textit{S. Kuksin}, One-dimensional turbulence and the stochastic Burgers equation. Providence, RI: American Mathematical Society (AMS) (2021; Zbl 07397916) Full Text: DOI OpenURL
Saqib, Muhammad; Hussain, Qamar; Kara, Abdul Hamid; Zaman, Fiazuddin On Lie symmetry analysis of nonhomogeneous generalized inviscid and fractional Burgers’ equation. (English) Zbl 1470.35410 Math. Methods Appl. Sci. 44, No. 11, 8726-8738 (2021). MSC: 35R11 35B06 PDF BibTeX XML Cite \textit{M. Saqib} et al., Math. Methods Appl. Sci. 44, No. 11, 8726--8738 (2021; Zbl 1470.35410) Full Text: DOI OpenURL
Chen, Mingjuan; Guo, Boling; Han, Lijia Global well-posedness and inviscid limit for the generalized Benjamin-Ono-Burgers equation. (English) Zbl 1460.35312 Appl. Anal. 100, No. 4, 804-818 (2021). MSC: 35Q53 35Q35 35A01 35A02 44A15 76B15 PDF BibTeX XML Cite \textit{M. Chen} et al., Appl. Anal. 100, No. 4, 804--818 (2021; Zbl 1460.35312) Full Text: DOI OpenURL
Yu, Di; Fu, Lei; Yang, Hongwei A new dynamic model of ocean internal solitary waves and the properties of its solutions. (English) Zbl 1456.76034 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105622, 23 p. (2021). MSC: 76B25 76B55 76M45 86A05 PDF BibTeX XML Cite \textit{D. Yu} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105622, 23 p. (2021; Zbl 1456.76034) Full Text: DOI OpenURL
Olver, Peter J.; Qu, Changzheng; Yang, Yun Feature matching and heat flow in centro-affine geometry. (English) Zbl 1460.53010 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 093, 22 p. (2020). MSC: 53A15 53A55 58J35 PDF BibTeX XML Cite \textit{P. J. Olver} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 093, 22 p. (2020; Zbl 1460.53010) Full Text: DOI arXiv OpenURL
Zhou, Lansuo; Luan, Jinfeng; Yin, Xiaojun; Na, Renmandula Inhomogeneous mKdV-Burgers equation under with complete Coriolis force and weak topography. (English) Zbl 1463.35453 J. Math., Wuhan Univ. 40, No. 4, 473-480 (2020). MSC: 35Q53 76B47 86A10 PDF BibTeX XML Cite \textit{L. Zhou} et al., J. Math., Wuhan Univ. 40, No. 4, 473--480 (2020; Zbl 1463.35453) Full Text: DOI OpenURL
Frolov, Sergey A. \(T\overline{T}\) deformation and the light-cone gauge. (English. Russian original) Zbl 1445.81044 Proc. Steklov Inst. Math. 309, 107-126 (2020); translation from Tr. Mat. Inst. Steklova 309, 120-140 (2020). MSC: 81T30 81T13 14D15 PDF BibTeX XML Cite \textit{S. A. Frolov}, Proc. Steklov Inst. Math. 309, 107--126 (2020; Zbl 1445.81044); translation from Tr. Mat. Inst. Steklova 309, 120--140 (2020) Full Text: DOI arXiv OpenURL
Sarrico, C. O. R.; Paiva, A. Creation, annihilation, and interaction of delta-waves in nonlinear models: a distributional product approach. (English) Zbl 1435.35241 Russ. J. Math. Phys. 27, No. 1, 111-125 (2020). MSC: 35L60 35L45 PDF BibTeX XML Cite \textit{C. O. R. Sarrico} and \textit{A. Paiva}, Russ. J. Math. Phys. 27, No. 1, 111--125 (2020; Zbl 1435.35241) Full Text: DOI OpenURL
Bendaas, Saida; Alaa, Noureddine Periodic wave shock solutions of Burgers equations. A new approach. (English) Zbl 1449.35375 Int. J. Nonlinear Anal. Appl. 10, No. 1, 119-129 (2019). MSC: 35Q53 35B10 35L65 35L67 PDF BibTeX XML Cite \textit{S. Bendaas} and \textit{N. Alaa}, Int. J. Nonlinear Anal. Appl. 10, No. 1, 119--129 (2019; Zbl 1449.35375) Full Text: DOI OpenURL
De los Reyes, Juan Carlos; Loayza-Romero, Estefanía Total generalized variation regularization in data assimilation for Burgers’ equation. (English) Zbl 1418.76021 Inverse Probl. Imaging 13, No. 4, 755-786 (2019). MSC: 76B75 49M15 49K20 PDF BibTeX XML Cite \textit{J. C. De los Reyes} and \textit{E. Loayza-Romero}, Inverse Probl. Imaging 13, No. 4, 755--786 (2019; Zbl 1418.76021) Full Text: DOI arXiv OpenURL
Bendaas, Saida Periodic wave shock solutions of Burgers equations. (English) Zbl 1438.35345 Cogent Math. Stat. 5, Article ID 1463597, 11 p. (2018). MSC: 35Q53 35B10 35L65 35L67 PDF BibTeX XML Cite \textit{S. Bendaas}, Cogent Math. Stat. 5, Article ID 1463597, 11 p. (2018; Zbl 1438.35345) Full Text: DOI OpenURL
Ray, Santanu Saha The new complex rational function prototype structures for the nonlinear Schrödinger-inviscid Burgers system. (English) Zbl 1402.35262 Math. Methods Appl. Sci. 41, No. 16, 6312-6325 (2018). MSC: 35Q55 35Q35 PDF BibTeX XML Cite \textit{S. S. Ray}, Math. Methods Appl. Sci. 41, No. 16, 6312--6325 (2018; Zbl 1402.35262) Full Text: DOI OpenURL
Feng, Peihua; Zhang, Jiazhong; Cao, Shengli; Prants, S. V.; Liu, Yan Thermalized solution of the Galerkin-truncated Burgers equation: from the birth of local structures to thermalization. (English) Zbl 1458.76023 Commun. Nonlinear Sci. Numer. Simul. 45, 104-116 (2017). MSC: 76M22 65M70 35Q53 76B99 76E99 80A19 PDF BibTeX XML Cite \textit{P. Feng} et al., Commun. Nonlinear Sci. Numer. Simul. 45, 104--116 (2017; Zbl 1458.76023) Full Text: DOI OpenURL
Abdulwahhab, Muhammad Alim Nonlinear self-adjointness and generalized conserved quantities of the inviscid Burgers’ equation with nonlinear source. (English) Zbl 1397.35246 Int. J. Appl. Comput. Math. 3, No. 2, 963-970 (2017). MSC: 35Q53 76B03 PDF BibTeX XML Cite \textit{M. A. Abdulwahhab}, Int. J. Appl. Comput. Math. 3, No. 2, 963--970 (2017; Zbl 1397.35246) Full Text: DOI OpenURL
Zhang, Ting; Shen, Chun The shock wave solution to the Riemann problem for the Burgers equation with the linear forcing term. (English) Zbl 1335.35158 Appl. Anal. 95, No. 2, 283-302 (2016). MSC: 35L67 35L65 35B25 90B20 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{C. Shen}, Appl. Anal. 95, No. 2, 283--302 (2016; Zbl 1335.35158) Full Text: DOI OpenURL
Renac, Florent Stability analysis of discontinuous Galerkin discrete shock profiles for steady scalar conservation laws. (English) Zbl 1382.65279 SIAM J. Numer. Anal. 54, No. 1, 187-209 (2016). MSC: 65M12 65M60 35L65 PDF BibTeX XML Cite \textit{F. Renac}, SIAM J. Numer. Anal. 54, No. 1, 187--209 (2016; Zbl 1382.65279) Full Text: DOI OpenURL
Sarrico, C. O. R.; Paiva, A. Products of distributions and collision of a \(\delta\)-wave with a \(\delta'\)-wave in a turbulent model. (English) Zbl 1421.76149 J. Nonlinear Math. Phys. 22, No. 3, 381-394 (2015). MSC: 76L05 35L67 PDF BibTeX XML Cite \textit{C. O. R. Sarrico} and \textit{A. Paiva}, J. Nonlinear Math. Phys. 22, No. 3, 381--394 (2015; Zbl 1421.76149) Full Text: DOI OpenURL
Chan, Hiu Ning; Chung, Eric T. A staggered discontinuous Galerkin method with local TV regularization for the Burgers equation. (English) Zbl 1349.65442 Numer. Math., Theory Methods Appl. 8, No. 4, 451-474 (2015). MSC: 65M60 35Q53 65M50 PDF BibTeX XML Cite \textit{H. N. Chan} and \textit{E. T. Chung}, Numer. Math., Theory Methods Appl. 8, No. 4, 451--474 (2015; Zbl 1349.65442) Full Text: DOI OpenURL
Audusse, Emmanuel; Boyaval, Sébastien; Gao, Yueyuan; Hilhorst, Danielle Numerical simulations of the inviscid Burgers equation with periodic boundary conditions and stochastic forcing. (English. French summary) Zbl 1334.35445 ESAIM, Proc. Surv. 48, 308-320 (2015). MSC: 35R60 35Q35 PDF BibTeX XML Cite \textit{E. Audusse} et al., ESAIM, Proc. Surv. 48, 308--320 (2015; Zbl 1334.35445) Full Text: DOI OpenURL
Renac, Florent Stationary discrete shock profiles for scalar conservation laws with a discontinuous Galerkin method. (English) Zbl 1317.65240 SIAM J. Numer. Anal. 53, No. 4, 1690-1715 (2015). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{F. Renac}, SIAM J. Numer. Anal. 53, No. 4, 1690--1715 (2015; Zbl 1317.65240) Full Text: DOI arXiv OpenURL
Vázquez-Cendón, M. Elena Solving hyperbolic equations with finite volume methods. Translated from the Italian by Luz María García-García and Marcos Cobas-García. (English) Zbl 1319.65086 Unitext 90. La Matematica per il 3+2. Cham: Springer (ISBN 978-3-319-14783-3/pbk; 978-3-319-14784-0/ebook). xvii, 188 p. (2015). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65M08 65-02 35L40 35L45 35L60 35L65 76B15 76M12 35Q53 35Q35 PDF BibTeX XML Cite \textit{M. E. Vázquez-Cendón}, Solving hyperbolic equations with finite volume methods. Translated from the Italian by Luz María García-García and Marcos Cobas-García. Cham: Springer (2015; Zbl 1319.65086) Full Text: DOI OpenURL
Abdulwahhab, Muhammad Alim Optimal system and exact solutions for the generalized system of 2-dimensional Burgers equations with infinite Reynolds number. (English) Zbl 1310.76014 Commun. Nonlinear Sci. Numer. Simul. 20, No. 1, 98-112 (2015). MSC: 76B03 35Q53 35A30 35C05 76M60 76Y05 PDF BibTeX XML Cite \textit{M. A. Abdulwahhab}, Commun. Nonlinear Sci. Numer. Simul. 20, No. 1, 98--112 (2015; Zbl 1310.76014) Full Text: DOI OpenURL
Abdulwahhab, Muhammad Alim Conservation laws of inviscid Burgers equation with nonlinear damping. (English) Zbl 1457.35051 Commun. Nonlinear Sci. Numer. Simul. 19, No. 6, 1729-1741 (2014). MSC: 35Q53 35A30 PDF BibTeX XML Cite \textit{M. A. Abdulwahhab}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 6, 1729--1741 (2014; Zbl 1457.35051) Full Text: DOI OpenURL
Lombard, Bruno; Mercier, Jean-François Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators. (English) Zbl 1349.74362 J. Comput. Phys. 259, 421-443 (2014). MSC: 74S20 76M20 74J35 65M06 76B25 76Q05 PDF BibTeX XML Cite \textit{B. Lombard} and \textit{J.-F. Mercier}, J. Comput. Phys. 259, 421--443 (2014; Zbl 1349.74362) Full Text: DOI arXiv OpenURL
Lerat, Alain A comparison of analytical solutions of a high-order RBC scheme and its equivalent differential equation for a steady shock problem. (English) Zbl 1347.76031 Abgrall, Rémi (ed.) et al., High order nonlinear numerical schemes for evolutionary PDEs. Proceedings of the European workshop HONOM 2013, Bordeaux, France, March 18–22, 2013. Cham: Springer (ISBN 978-3-319-05454-4/hbk; 978-3-319-05455-1/ebook). Lecture Notes in Computational Science and Engineering 99, 169-183 (2014). MSC: 76M12 76L05 PDF BibTeX XML Cite \textit{A. Lerat}, Lect. Notes Comput. Sci. Eng. 99, 169--183 (2014; Zbl 1347.76031) Full Text: DOI OpenURL
Linares, Felipe; Pilod, Didier; Saut, Jean-Claude Dispersive perturbations of Burgers and hyperbolic equations. I: Local theory. (English) Zbl 1294.35124 SIAM J. Math. Anal. 46, No. 2, 1505-1537 (2014). MSC: 35Q53 35Q35 76B15 35A01 76B03 PDF BibTeX XML Cite \textit{F. Linares} et al., SIAM J. Math. Anal. 46, No. 2, 1505--1537 (2014; Zbl 1294.35124) Full Text: DOI arXiv OpenURL
Baskonus, Haci Mehmet; Bulut, Hasan; Pandir, Yusuf The natural transform decomposition method for linear and nonlinear partial differential equations. (English) Zbl 1287.65095 Math. Eng. Sci. Aerosp. MESA 5, No. 1, 111-126 (2014). MSC: 65M99 35G31 35Q53 PDF BibTeX XML Cite \textit{H. M. Baskonus} et al., Math. Eng. Sci. Aerosp. MESA 5, No. 1, 111--126 (2014; Zbl 1287.65095) Full Text: Link OpenURL
Guan, Chunxia; Yin, Zhaoyang On the existence of global weak solutions to an integrable two-component Camassa-Holm shallow-water system. (English) Zbl 1288.35196 Proc. Edinb. Math. Soc., II. Ser. 56, No. 3, 755-775 (2013). Reviewer: David Ambrose (Philadelphia) MSC: 35G25 35Q53 35Q35 PDF BibTeX XML Cite \textit{C. Guan} and \textit{Z. Yin}, Proc. Edinb. Math. Soc., II. Ser. 56, No. 3, 755--775 (2013; Zbl 1288.35196) Full Text: DOI Link OpenURL
Achatz, Ulrich; Dolaptchiev, Stamen I.; Timofeyev, Ilya Subgrid-scale closure for the inviscid Burgers-Hopf equation. (English) Zbl 1286.76122 Commun. Math. Sci. 11, No. 3, 757-777 (2013). Reviewer: Vivek S. Borkar (Mumbai) MSC: 76M35 65M75 60H30 PDF BibTeX XML Cite \textit{U. Achatz} et al., Commun. Math. Sci. 11, No. 3, 757--777 (2013; Zbl 1286.76122) Full Text: DOI OpenURL
Hattori, Tetsuya; Kusuoka, Seiichiro Kusuoka Stochastic ranking process with space-time dependent intensities. (English) Zbl 1277.60176 ALEA, Lat. Am. J. Probab. Math. Stat. 9, No. 2, 571-607 (2012). MSC: 60K35 35C05 82C22 PDF BibTeX XML Cite \textit{T. Hattori} and \textit{S. K. Kusuoka}, ALEA, Lat. Am. J. Probab. Math. Stat. 9, No. 2, 571--607 (2012; Zbl 1277.60176) Full Text: arXiv Link OpenURL
Yang, Hong-Wei; Yin, Bao-Shu; Dong, Huan-He; Shi, Yun-Long Algebraic Rossby solitary waves excited by non-stationary external source. (English) Zbl 1264.76030 Commun. Theor. Phys. 58, No. 3, 425-431 (2012). MSC: 76B65 76B47 76E20 76M22 35Q53 35C08 35L65 65M70 PDF BibTeX XML Cite \textit{H.-W. Yang} et al., Commun. Theor. Phys. 58, No. 3, 425--431 (2012; Zbl 1264.76030) Full Text: DOI OpenURL
Freire, Igor Leite New conservation laws for inviscid Burgers equation. (English) Zbl 1263.76057 Comput. Appl. Math. 31, No. 3, 559-567 (2012). MSC: 76M60 58J70 PDF BibTeX XML Cite \textit{I. L. Freire}, Comput. Appl. Math. 31, No. 3, 559--567 (2012; Zbl 1263.76057) Full Text: DOI Link OpenURL
Freire, Igor Leite A note on “Lie symmetries of inviscid Burgers equation”. (English) Zbl 1260.35181 Adv. Appl. Clifford Algebr. 22, No. 2, 297-300 (2012). MSC: 35Q53 35Q35 37K30 PDF BibTeX XML Cite \textit{I. L. Freire}, Adv. Appl. Clifford Algebr. 22, No. 2, 297--300 (2012; Zbl 1260.35181) Full Text: DOI OpenURL
Bertozzi, Andrea L.; Garnett, John B.; Laurent, Thomas Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. (English) Zbl 1248.35023 SIAM J. Math. Anal. 44, No. 2, 651-681 (2012). MSC: 35B44 35B07 35B33 35Q70 35Q92 35R09 PDF BibTeX XML Cite \textit{A. L. Bertozzi} et al., SIAM J. Math. Anal. 44, No. 2, 651--681 (2012; Zbl 1248.35023) Full Text: DOI arXiv OpenURL
Hunter, John K.; Ifrim, Mihaela Enhanced life span of smooth solutions of a Burgers-Hilbert equation. (English) Zbl 1259.35166 SIAM J. Math. Anal. 44, No. 3, 2039-2052 (2012). MSC: 35Q35 37L65 76B47 PDF BibTeX XML Cite \textit{J. K. Hunter} and \textit{M. Ifrim}, SIAM J. Math. Anal. 44, No. 3, 2039--2052 (2012; Zbl 1259.35166) Full Text: DOI arXiv Link OpenURL
Gao, Wei; Li, Hong; Liu, Yang; Jian, Yong-Jun An oscillation-free high order TVD/CBC-based upwind scheme for convection discretization. (English) Zbl 1269.65082 Numer. Algorithms 59, No. 1, 29-50 (2012). MSC: 65M08 35L45 35Q53 PDF BibTeX XML Cite \textit{W. Gao} et al., Numer. Algorithms 59, No. 1, 29--50 (2012; Zbl 1269.65082) Full Text: DOI OpenURL
Camassa, Roberto; Chiu, Pao-Hsiung; Lee, Long; Sheu, W.-H. A particle method and numerical study of a quasilinear partial differential equation. (English) Zbl 1269.65091 Commun. Pure Appl. Anal. 10, No. 5, 1503-1515 (2011). MSC: 65M25 35Q53 65R20 45J05 PDF BibTeX XML Cite \textit{R. Camassa} et al., Commun. Pure Appl. Anal. 10, No. 5, 1503--1515 (2011; Zbl 1269.65091) Full Text: DOI OpenURL
Freire, Igor Leite Conservation laws for self-adjoint first-order evolution equation. (English) Zbl 1219.35228 J. Nonlinear Math. Phys. 18, No. 2, 279-290 (2011). MSC: 35Q53 76M60 58J70 70G65 PDF BibTeX XML Cite \textit{I. L. Freire}, J. Nonlinear Math. Phys. 18, No. 2, 279--290 (2011; Zbl 1219.35228) Full Text: DOI arXiv OpenURL
Hariya, Yuu; Hattori, Kumiko; Hattori, Tetsuya; Nagahata, Yukio; Takeshima, Yuusuke; Kobayashi, Takahisa Stochastic ranking process with time dependent intensities. (English) Zbl 1218.60087 Tohoku Math. J. (2) 63, No. 1, 77-111 (2011). MSC: 60K35 35C05 82C22 PDF BibTeX XML Cite \textit{Y. Hariya} et al., Tohoku Math. J. (2) 63, No. 1, 77--111 (2011; Zbl 1218.60087) Full Text: DOI arXiv OpenURL
Zhang, Hua; Ke, Yuqin The inviscid limit of the modified Benjamin-Ono-Burgers equation. (English) Zbl 1216.35128 Bull. Aust. Math. Soc. 83, No. 2, 301-320 (2011). MSC: 35Q53 49K40 35A22 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{Y. Ke}, Bull. Aust. Math. Soc. 83, No. 2, 301--320 (2011; Zbl 1216.35128) Full Text: DOI OpenURL
Flandoli, Franco Random perturbation of PDEs and fluid dynamic models. École d’Été de Probabilités de Saint-Flour XL – 2010. (English) Zbl 1221.35004 Lecture Notes in Mathematics 2015. Berlin: Springer (ISBN 978-3-642-18230-3/pbk; 978-3-642-18231-0/ebook). ix, 176 p. (2011). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 35-02 35R60 35Q35 35Q31 35Q30 PDF BibTeX XML Cite \textit{F. Flandoli}, Random perturbation of PDEs and fluid dynamic models. École d'Été de Probabilités de Saint-Flour XL -- 2010. Berlin: Springer (2011; Zbl 1221.35004) Full Text: DOI OpenURL
Miller, Peter D.; Xu, Zhengjie On the zero-dispersion limit of the Benjamin-Ono Cauchy problem for positive initial data. (English) Zbl 1213.35052 Commun. Pure Appl. Math. 64, No. 2, 205-270 (2011). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35B25 76B15 76B70 35Q53 PDF BibTeX XML Cite \textit{P. D. Miller} and \textit{Z. Xu}, Commun. Pure Appl. Math. 64, No. 2, 205--270 (2011; Zbl 1213.35052) Full Text: DOI arXiv Link OpenURL
Popivanov, Peter; Slavova, Angela Nonlinear waves. An introduction. (English) Zbl 1215.76001 Series on Analysis, Applications and Computation 4. Hackensack, NJ: World Scientific (ISBN 978-981-4322-12-6/hbk). x, 168 p. (2011). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 76-02 35-02 76B25 35Q53 35Q51 PDF BibTeX XML Cite \textit{P. Popivanov} and \textit{A. Slavova}, Nonlinear waves. An introduction. Hackensack, NJ: World Scientific (2011; Zbl 1215.76001) Full Text: DOI Link OpenURL
Zhou, Xin-Wei; Yao, Li The variational iteration method for Cauchy problems. (English) Zbl 1201.65189 Comput. Math. Appl. 60, No. 3, 756-760 (2010). MSC: 65M99 PDF BibTeX XML Cite \textit{X.-W. Zhou} and \textit{L. Yao}, Comput. Math. Appl. 60, No. 3, 756--760 (2010; Zbl 1201.65189) Full Text: DOI OpenURL
Lenells, Jonatan; Misiołek, Gerard; Tiğlay, Feride Integrable evolution equations on spaces of tensor densities and their peakon solutions. (English) Zbl 1214.35059 Commun. Math. Phys. 299, No. 1, 129-161 (2010). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35Q53 37K05 37K10 37K30 35B44 PDF BibTeX XML Cite \textit{J. Lenells} et al., Commun. Math. Phys. 299, No. 1, 129--161 (2010; Zbl 1214.35059) Full Text: DOI arXiv OpenURL
Teng, Zhen-Huan Exact boundary conditions for the initial value problem of convex conservation laws. (English) Zbl 1190.65127 J. Comput. Phys. 229, No. 10, 3792-3801 (2010). MSC: 65M06 35L65 35Q53 PDF BibTeX XML Cite \textit{Z.-H. Teng}, J. Comput. Phys. 229, No. 10, 3792--3801 (2010; Zbl 1190.65127) Full Text: DOI OpenURL
Zhang, Hua; Han, LiJia Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation. (English) Zbl 1238.35139 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e-Suppl., e1708-e1715 (2009). MSC: 35Q53 35Q35 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{L. Han}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e1708--e1715 (2009; Zbl 1238.35139) Full Text: DOI OpenURL
Dai, Chao-Qing; Wang, Yue-Yue New exact solutions of the (3+1)-dimensional Burgers system. (English) Zbl 1227.35231 Phys. Lett., A 373, No. 2, 181-187 (2009). MSC: 35Q35 76B03 35C08 PDF BibTeX XML Cite \textit{C.-Q. Dai} and \textit{Y.-Y. Wang}, Phys. Lett., A 373, No. 2, 181--187 (2009; Zbl 1227.35231) Full Text: DOI OpenURL
Benzoni-Gavage, Sylvie Local well-posedness of nonlocal Burgers equations. (English) Zbl 1240.35446 Differ. Integral Equ. 22, No. 3-4, 303-320 (2009). MSC: 35Q53 35L65 35B44 76B15 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage}, Differ. Integral Equ. 22, No. 3--4, 303--320 (2009; Zbl 1240.35446) OpenURL
Sakthivel, Rathinasamy Robust stabilization the Korteweg-de Vries-Burgers equation by boundary control. (English) Zbl 1183.76660 Nonlinear Dyn. 58, No. 4, 739-744 (2009). MSC: 76B75 76B25 93C20 PDF BibTeX XML Cite \textit{R. Sakthivel}, Nonlinear Dyn. 58, No. 4, 739--744 (2009; Zbl 1183.76660) Full Text: DOI OpenURL
Valageas, Patrick Some statistical properties of the Burgers equation with white-noise initial velocity. (English) Zbl 1192.82053 J. Stat. Phys. 137, No. 4, 729-764 (2009). Reviewer: Dominik Strzałka (Rzeszów) MSC: 82C23 70S05 76D05 35Q30 PDF BibTeX XML Cite \textit{P. Valageas}, J. Stat. Phys. 137, No. 4, 729--764 (2009; Zbl 1192.82053) Full Text: DOI arXiv OpenURL
Bhat, H. S.; Fetecau, R. C. The Riemann problem for the Leray-Burgers equation. (English) Zbl 1177.35136 J. Differ. Equations 246, No. 10, 3957-3979 (2009). MSC: 35L67 35L65 PDF BibTeX XML Cite \textit{H. S. Bhat} and \textit{R. C. Fetecau}, J. Differ. Equations 246, No. 10, 3957--3979 (2009; Zbl 1177.35136) Full Text: DOI OpenURL
Guo, Zihua; Wang, Baoxiang Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation. (English) Zbl 1170.35084 J. Differ. Equations 246, No. 10, 3864-3901 (2009). MSC: 35Q53 35B40 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{B. Wang}, J. Differ. Equations 246, No. 10, 3864--3901 (2009; Zbl 1170.35084) Full Text: DOI arXiv OpenURL
Valageas, Patrick Statistical properties of the Burgers equation with Brownian initial velocity. (English) Zbl 1162.82017 J. Stat. Phys. 134, No. 3, 589-640 (2009). MSC: 82C31 60J65 35Q53 PDF BibTeX XML Cite \textit{P. Valageas}, J. Stat. Phys. 134, No. 3, 589--640 (2009; Zbl 1162.82017) Full Text: DOI arXiv OpenURL
Kojok, Bassam Global existence for a forced dispersive dissipative equation via the I-method. (English) Zbl 1178.35332 Commun. Pure Appl. Anal. 8, No. 4, 1401-1419 (2009). Reviewer: K. N. Shukla (Gurgaon) MSC: 35Q53 35B30 76B03 76B15 35A22 PDF BibTeX XML Cite \textit{B. Kojok}, Commun. Pure Appl. Anal. 8, No. 4, 1401--1419 (2009; Zbl 1178.35332) Full Text: DOI OpenURL
Inc, Mustafa On numerical solution of Burgers’ equation by homotopy analysis method. (English) Zbl 1217.76019 Phys. Lett., A 372, No. 4, 356-360 (2008). MSC: 76B07 34A34 34D10 65L07 PDF BibTeX XML Cite \textit{M. Inc}, Phys. Lett., A 372, No. 4, 356--360 (2008; Zbl 1217.76019) Full Text: DOI OpenURL
Yin, Hui; Chen, Shuyue; Jin, Jing Convergence rate to traveling waves for generalized Benjamin-Bona-Mahony-Burgers equations. (English) Zbl 1231.35183 Z. Angew. Math. Phys. 59, No. 6, 969-1001 (2008). MSC: 35Q35 76B03 35C07 PDF BibTeX XML Cite \textit{H. Yin} et al., Z. Angew. Math. Phys. 59, No. 6, 969--1001 (2008; Zbl 1231.35183) Full Text: DOI OpenURL
Cruzeiro, Ana Bela; Malliavin, Paul Stochastic evolution of inviscid Burgers fluid. (English) Zbl 1173.76005 Pinsky, Mark (ed.) et al., Probability, geometry and integrable systems. For Henry McKean’s seventy-fifth birthday. Cambridge: Cambridge University Press (ISBN 978-0-521-89527-9/hbk). Mathematical Sciences Research Institute Publications 55, 167-183 (2008). Reviewer: Dirk Blömker (Augsburg) MSC: 76B03 37H10 35Q35 76M35 35R60 60H15 PDF BibTeX XML Cite \textit{A. B. Cruzeiro} and \textit{P. Malliavin}, Math. Sci. Res. Inst. Publ. 55, 167--183 (2008; Zbl 1173.76005) Full Text: Link OpenURL
Kenyon, Richard; Okounkov, Andrei Limit shapes and the complex Burgers equation. (English) Zbl 1156.14029 Acta Math. 199, No. 2, 263-302 (2007). Reviewer: Michal Marvan (Opava) MSC: 14H81 35F30 52B20 82B20 82B26 82B41 PDF BibTeX XML Cite \textit{R. Kenyon} and \textit{A. Okounkov}, Acta Math. 199, No. 2, 263--302 (2007; Zbl 1156.14029) Full Text: DOI arXiv OpenURL
Constantinescu, Emil M.; Sandu, Adrian Multirate timestepping methods for hyperbolic conservation laws. (English) Zbl 1127.76033 J. Sci. Comput. 33, No. 3, 239-278 (2007). MSC: 76M12 76R99 76B99 65M12 PDF BibTeX XML Cite \textit{E. M. Constantinescu} and \textit{A. Sandu}, J. Sci. Comput. 33, No. 3, 239--278 (2007; Zbl 1127.76033) Full Text: DOI Link OpenURL
Muraki, David J. A simple illustration of a weak spectral cascade. (English) Zbl 1128.35066 SIAM J. Appl. Math. 67, No. 5, 1504-1521 (2007). MSC: 35L60 76M45 35L45 PDF BibTeX XML Cite \textit{D. J. Muraki}, SIAM J. Appl. Math. 67, No. 5, 1504--1521 (2007; Zbl 1128.35066) Full Text: DOI Link OpenURL
Ludu, A.; Kevrekidis, P. G. Nonlinear dispersion relations. (English) Zbl 1123.76060 Math. Comput. Simul. 74, No. 2-3, 229-236 (2007). MSC: 76M99 76B25 76D99 35Q53 PDF BibTeX XML Cite \textit{A. Ludu} and \textit{P. G. Kevrekidis}, Math. Comput. Simul. 74, No. 2--3, 229--236 (2007; Zbl 1123.76060) Full Text: DOI OpenURL
Córdoba, Antonio; Córdoba, Diego; Fontelos, Marco A. Integral inequalities for the Hilbert transform applied to a nonlocal transport equation. (English) Zbl 1106.35059 J. Math. Pures Appl. (9) 86, No. 6, 529-540 (2006). MSC: 35Q35 26D10 35R10 76B03 42A38 35L67 PDF BibTeX XML Cite \textit{A. Córdoba} et al., J. Math. Pures Appl. (9) 86, No. 6, 529--540 (2006; Zbl 1106.35059) Full Text: DOI OpenURL
Coclite, Giuseppe Maria; Karlsen, Kenneth Hvistendahl A singular limit problem for conservation laws related to the Camassa–Holm shallow water equation. (English) Zbl 1102.35010 Commun. Partial Differ. Equations 31, No. 8, 1253-1272 (2006). Reviewer: Leonid B. Chubarov (Novosibirsk) MSC: 35B25 76B03 76B15 35Q53 35G25 35L65 PDF BibTeX XML Cite \textit{G. M. Coclite} and \textit{K. H. Karlsen}, Commun. Partial Differ. Equations 31, No. 8, 1253--1272 (2006; Zbl 1102.35010) Full Text: DOI OpenURL
Waleffe, Fabian On some dyadic models of the Euler equations. (English) Zbl 1096.35108 Proc. Am. Math. Soc. 134, No. 10, 2913-2922 (2006). Reviewer: Georg V. Jaiani (Tbilisi) MSC: 35Q30 35Q05 35Q53 76B03 PDF BibTeX XML Cite \textit{F. Waleffe}, Proc. Am. Math. Soc. 134, No. 10, 2913--2922 (2006; Zbl 1096.35108) Full Text: DOI arXiv OpenURL
Banda, M. K.; Seaid, M. Higher-order relaxation schemes for hyperbolic systems of conservation laws. (English) Zbl 1084.65076 J. Numer. Math. 13, No. 3, 171-196 (2005). MSC: 65M06 65M12 35L65 35Q53 76N15 76M20 PDF BibTeX XML Cite \textit{M. K. Banda} and \textit{M. Seaid}, J. Numer. Math. 13, No. 3, 171--196 (2005; Zbl 1084.65076) Full Text: DOI OpenURL
Chae, Dongho; Córdoba, Antonio; Córdoba, Diego; Fontelos, Marco A. Finite time singularities in a 1D model of the quasi-geostrophic equation. (English) Zbl 1128.76372 Adv. Math. 194, No. 1, 203-223 (2005). MSC: 76U05 86A10 35Q35 76B03 PDF BibTeX XML Cite \textit{D. Chae} et al., Adv. Math. 194, No. 1, 203--223 (2005; Zbl 1128.76372) Full Text: DOI OpenURL
Bernard, Patrick The asymptotic behaviour of solutions of the forced Burgers equation on the circle. (English) Zbl 1086.35086 Nonlinearity 18, No. 1, 101-124 (2005). MSC: 35Q53 35B40 35F25 37E40 PDF BibTeX XML Cite \textit{P. Bernard}, Nonlinearity 18, No. 1, 101--124 (2005; Zbl 1086.35086) Full Text: DOI arXiv HAL OpenURL
Khesin, Boris A.; Michor, Peter W. The flow completion of the Burgers equation. (English) Zbl 1062.37100 Wurzbacher, Tilmann (ed.), Infinite dimensional groups and manifolds. Based on the 70th meeting of theoretical physicists and mathematicians at IRMA, Strasbourg, France, May 2004. Berlin: de Gruyter (ISBN 3-11-018186-X/pbk). IRMA Lectures in Mathematics and Theoretical Physics 5, 17-26 (2004). MSC: 37K65 35Q53 37N10 58D25 76D05 PDF BibTeX XML Cite \textit{B. A. Khesin} and \textit{P. W. Michor}, IRMA Lect. Math. Theor. Phys. 5, 17--26 (2004; Zbl 1062.37100) OpenURL
Constantin, Adrian; Kolev, Boris Geodesic flow on the diffeomorphism group of the circle. (English) Zbl 1037.37032 Comment. Math. Helv. 78, No. 4, 787-804 (2003). MSC: 37K65 35Q35 58B25 53D25 PDF BibTeX XML Cite \textit{A. Constantin} and \textit{B. Kolev}, Comment. Math. Helv. 78, No. 4, 787--804 (2003; Zbl 1037.37032) Full Text: DOI OpenURL
Viet Ha Hoang; Khanin, Konstantin Random Burgers equation and Lagrangian systems in non-compact domains. (English) Zbl 1038.35101 Nonlinearity 16, No. 3, 819-842 (2003). Reviewer: Jan Seidler (Praha) MSC: 35Q53 35Q35 70H20 PDF BibTeX XML Cite \textit{Viet Ha Hoang} and \textit{K. Khanin}, Nonlinearity 16, No. 3, 819--842 (2003; Zbl 1038.35101) Full Text: DOI OpenURL
Stinis, Panagiotis A hybrid method for the inviscid Burgers equation. (English) Zbl 1027.76037 Discrete Contin. Dyn. Syst. 9, No. 4, 793-799 (2003). MSC: 76M22 76N15 76L05 PDF BibTeX XML Cite \textit{P. Stinis}, Discrete Contin. Dyn. Syst. 9, No. 4, 793--799 (2003; Zbl 1027.76037) Full Text: DOI OpenURL
Iturriaga, R.; Khanin, K. Burgers turbulence and random Lagrangian systems. (English) Zbl 1029.76030 Commun. Math. Phys. 232, No. 3, 377-428 (2003). MSC: 76F55 76M35 35Q35 PDF BibTeX XML Cite \textit{R. Iturriaga} and \textit{K. Khanin}, Commun. Math. Phys. 232, No. 3, 377--428 (2003; Zbl 1029.76030) Full Text: DOI OpenURL
Al-Zanaidi, M. A.; Chawla, M. M. A high-accuracy box scheme for first-order systems of hyperbolic conservation laws. (English) Zbl 1044.65069 Neural Parallel Sci. Comput. 10, No. 4, 423-430 (2002). MSC: 65M06 65M12 65M15 35Q53 35L65 PDF BibTeX XML Cite \textit{M. A. Al-Zanaidi} and \textit{M. M. Chawla}, Neural Parallel Sci. Comput. 10, No. 4, 423--430 (2002; Zbl 1044.65069) OpenURL
Bainov, Drumi D.; Kolev, Dimitar A.; Motreanu, Dumitru Barrier to existence of gradient blow-up for impulsive inviscid Burger’s equation. (English) Zbl 1023.35089 Panam. Math. J. 12, No. 4, 29-41 (2002). MSC: 35R12 35Q53 35L60 PDF BibTeX XML Cite \textit{D. D. Bainov} et al., Panam. Math. J. 12, No. 4, 29--41 (2002; Zbl 1023.35089) OpenURL
Chattot, Jean-Jacques Computational aerodynamics and fluid dynamics. An introduction. (English) Zbl 1013.76001 Scientific Computation. Berlin: Springer. xii, 186 p. (2002). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 76-01 76M20 PDF BibTeX XML Cite \textit{J.-J. Chattot}, Computational aerodynamics and fluid dynamics. An introduction. Berlin: Springer (2002; Zbl 1013.76001) OpenURL
Guinot, Vincent The time-line interpolation method for large-time-step Godunov-type schemes. (English) Zbl 0998.65087 J. Comput. Phys. 177, No. 2, 394-417 (2002). MSC: 65M06 35Q30 35Q15 35Q35 65M12 35L65 35L67 35Q53 76D07 76D05 76H05 76N15 76M20 PDF BibTeX XML Cite \textit{V. Guinot}, J. Comput. Phys. 177, No. 2, 394--417 (2002; Zbl 0998.65087) Full Text: DOI OpenURL
Winkel, Matthias Burgers turbulence initialized by a regenerative impulse. (English) Zbl 1099.35522 Stochastic Processes Appl. 93, No. 2, 241-268 (2001). MSC: 35Q53 35R60 60F10 60J99 PDF BibTeX XML Cite \textit{M. Winkel}, Stochastic Processes Appl. 93, No. 2, 241--268 (2001; Zbl 1099.35522) Full Text: DOI OpenURL
Hammerton, P. W. Effect of molecular relaxation on the propagation of sonic booms through a stratified atmosphere. (English) Zbl 1074.76603 Wave Motion 33, No. 4, 359-377 (2001). MSC: 76Q05 76B60 76B70 76L05 86A10 PDF BibTeX XML Cite \textit{P. W. Hammerton}, Wave Motion 33, No. 4, 359--377 (2001; Zbl 1074.76603) Full Text: DOI OpenURL
Menzaque, Fernando; Rosales, Rodolfo R.; Tabak, Esteban G.; Turner, Cristina V. The forced inviscid Burgers equation as a model for nonlinear interactions among dispersive waves. (English) Zbl 1001.76014 Milewski, Paul A. (ed.) et al., Advances in wave interaction and turbulence. Proceedings of an AMS-IMS-SIAM joint summer research conference on dispersive wave turbulence, Mount Holyoke College, South Hadley, MA, USA, June 11-15, 2000. Providence, RI: AMS, American Mathematical Society. Contemp. Math. 283, 51-82 (2001). MSC: 76B15 76M45 35Q53 PDF BibTeX XML Cite \textit{F. Menzaque} et al., Contemp. Math. 283, 51--82 (2001; Zbl 1001.76014) OpenURL
Chawla, M. M.; Al-Zanaidi, M. A. Linearized box schemes for first-order systems of hyperbolic conservation laws. (English) Zbl 0992.65095 Neural Parallel Sci. Comput. 9, No. 3-4, 429-438 (2001). MSC: 65M06 76B15 76M20 35L65 65M12 35Q53 PDF BibTeX XML Cite \textit{M. M. Chawla} and \textit{M. A. Al-Zanaidi}, Neural Parallel Sci. Comput. 9, No. 3--4, 429--438 (2001; Zbl 0992.65095) OpenURL
Balázs, Márton Microscopic shape of shocks in a domain growth model. (English) Zbl 1017.82035 J. Stat. Phys. 105, No. 3-4, 511-524 (2001). MSC: 82C22 60K35 PDF BibTeX XML Cite \textit{M. Balázs}, J. Stat. Phys. 105, No. 3--4, 511--524 (2001; Zbl 1017.82035) Full Text: DOI arXiv OpenURL
Engelberg, Shlomo; Liu, Hailiang; Tadmor, Eitan Critical thresholds in Euler-Poisson equations. (English) Zbl 0989.35110 Indiana Univ. Math. J. 50, Spec. Iss., 109-157 (2001). Reviewer: A.Jeffrey (Newcastle upon Tyne) MSC: 35Q35 35Q60 35B30 PDF BibTeX XML Cite \textit{S. Engelberg} et al., Indiana Univ. Math. J. 50, 109--157 (2001; Zbl 0989.35110) Full Text: DOI arXiv OpenURL
Giraud, Christophe Genealogy of shocks in Burgers turbulence with white noise initial velocity. (English) Zbl 0997.76035 Commun. Math. Phys. 223, No. 1, 67-86 (2001). MSC: 76F55 76L05 76M35 PDF BibTeX XML Cite \textit{C. Giraud}, Commun. Math. Phys. 223, No. 1, 67--86 (2001; Zbl 0997.76035) Full Text: DOI OpenURL
Gasser, I. The small Debye length limit in a hydrodynamic model for charged fluids. (English) Zbl 1002.76126 ZAMM, Z. Angew. Math. Mech. 81, Suppl. 3, 597-598 (2001). MSC: 76W05 76M45 PDF BibTeX XML Cite \textit{I. Gasser}, ZAMM, Z. Angew. Math. Mech. 81, 597--598 (2001; Zbl 1002.76126) Full Text: DOI OpenURL
Balogh, Andras; Krstic, Miroslav Boundary control of the Korteweg-de Vries-Burgers equation: Further results on stabilization and well-posedness, with numerical demonstration. (English) Zbl 0990.93049 IEEE Trans. Autom. Control 45, No. 9, 1739-1745 (2000). MSC: 93C20 76B75 93D15 PDF BibTeX XML Cite \textit{A. Balogh} and \textit{M. Krstic}, IEEE Trans. Autom. Control 45, No. 9, 1739--1745 (2000; Zbl 0990.93049) Full Text: DOI Link OpenURL
Zhang, Hongqing; Yan, Zhenya Two types of new algorithms for finding explicit analytical solutions of nonlinear differential equations. (English) Zbl 1008.76074 Appl. Math. Mech., Engl. Ed. 21, No. 12, 1423-1431 (2000). MSC: 76M25 76B15 76B25 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{Z. Yan}, Appl. Math. Mech., Engl. Ed. 21, No. 12, 1423--1431 (2000; Zbl 1008.76074) Full Text: DOI OpenURL
Geurts, Bernard J.; van Buuren, René; Lu, Hao Application of polynomial preconditioners to conservation laws. (English) Zbl 1006.76065 J. Eng. Math. 38, No. 4, 403-426 (2000). MSC: 76M20 76D99 76H05 PDF BibTeX XML Cite \textit{B. J. Geurts} et al., J. Eng. Math. 38, No. 4, 403--426 (2000; Zbl 1006.76065) Full Text: DOI OpenURL
Bialy, M. L. Shock formation for the forced Burgers equation and an application. (English) Zbl 0963.35166 Geom. Funct. Anal. 10, No. 4, 732-740 (2000). MSC: 35Q53 37K05 PDF BibTeX XML Cite \textit{M. L. Bialy}, Geom. Funct. Anal. 10, No. 4, 732--740 (2000; Zbl 0963.35166) Full Text: DOI arXiv OpenURL
Frachebourg, L.; Martin, Ph. A. Exact statistical properties of the Burgers equation. (English) Zbl 0961.76016 J. Fluid Mech. 417, 323-349 (2000). MSC: 76D06 76M35 35R60 PDF BibTeX XML Cite \textit{L. Frachebourg} and \textit{Ph. A. Martin}, J. Fluid Mech. 417, 323--349 (2000; Zbl 0961.76016) Full Text: DOI arXiv OpenURL
Hixon, R. Nonlinear comparison of high-order and optimized finite difference schemes. (English) Zbl 0964.76063 Int. J. Comput. Fluid Dyn. 13, No. 3, 259-277 (2000). MSC: 76M20 65M06 PDF BibTeX XML Cite \textit{R. Hixon}, Int. J. Comput. Fluid Dyn. 13, No. 3, 259--277 (2000; Zbl 0964.76063) Full Text: DOI OpenURL
Hunter, John K.; Brio, Moysey Weak shock reflection. (English) Zbl 0959.76036 J. Fluid Mech. 410, 235-261 (2000). MSC: 76L05 PDF BibTeX XML Cite \textit{J. K. Hunter} and \textit{M. Brio}, J. Fluid Mech. 410, 235--261 (2000; Zbl 0959.76036) Full Text: DOI OpenURL
Buick, J. M.; Buckley, C. L.; Greated, C. A.; Gilbert, J. Lattice Boltzmann BGK simulation of nonlinear sound waves: The development of a shock front. (English) Zbl 0957.76065 J. Phys. A, Math. Gen. 33, No. 21, 3917-3928 (2000). MSC: 76M28 76Q05 82B40 76P05 76L05 PDF BibTeX XML Cite \textit{J. M. Buick} et al., J. Phys. A, Math. Gen. 33, No. 21, 3917--3928 (2000; Zbl 0957.76065) Full Text: DOI HAL OpenURL
Zaki, S. I. Solitary waves of the Korteweg-de Vries-Burgers’ equation. (English) Zbl 0951.65097 Comput. Phys. Commun. 126, No. 3, 207-218 (2000). Reviewer: Etienne Emmrich (Berlin) MSC: 65M60 65M06 65M12 35Q53 76B25 PDF BibTeX XML Cite \textit{S. I. Zaki}, Comput. Phys. Commun. 126, No. 3, 207--218 (2000; Zbl 0951.65097) Full Text: DOI OpenURL
Rykov, Yu. G. Propagation of shock wave type singularities in equations of two-dimensional zero-pressure gas dynamics. (English. Russian original) Zbl 1003.76044 Math. Notes 66, No. 5, 628-635 (1999); translation from Mat. Zametki 66, No. 5, 760-769 (1999). MSC: 76L05 76N10 35L67 PDF BibTeX XML Cite \textit{Yu. G. Rykov}, Math. Notes 66, No. 5, 628--635 (1999; Zbl 1003.76044); translation from Mat. Zametki 66, No. 5, 760--769 (1999) Full Text: DOI OpenURL
Bakholdin, I. B. Jumps in models described by generalized Korteweg-de Vries equations. (English. Russian original) Zbl 1005.76010 Fluid Dyn. 34, No. 4, 534-545 (1999); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 1999, No. 4, 95-109 (1999). MSC: 76B25 35Q53 35Q51 PDF BibTeX XML Cite \textit{I. B. Bakholdin}, Fluid Dyn. 34, No. 4, 534--545 (1999; Zbl 1005.76010); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 1999, No. 4, 95--109 (1999) OpenURL
Bauer, Michel; Bernard, Denis Sailing the deep blue sea of decaying Burgers turbulence. (English) Zbl 0962.76038 J. Phys. A, Math. Gen. 32, No. 28, 5179-5199 (1999). MSC: 76F55 76F25 PDF BibTeX XML Cite \textit{M. Bauer} and \textit{D. Bernard}, J. Phys. A, Math. Gen. 32, No. 28, 5179--5199 (1999; Zbl 0962.76038) Full Text: DOI arXiv OpenURL