Saut, Jean-Claude; Sun, Shihan; Wang, Yuexun; Zhang, Yi Wave breaking for the generalized Fornberg-Whitham equation. (English) Zbl 07880201 SIAM J. Math. Anal. 56, No. 4, 4440-4465 (2024). MSC: 76B15 76B25 76B03 35Q35 35Q51 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Guelmame, Billel; Junca, Stéphane; Clamond, Didier; Pego, Robert L. Global weak solutions of a Hamiltonian regularised Burgers equation. (English) Zbl 07876087 J. Dyn. Differ. Equations 36, No. 2, 1561-1589 (2024). MSC: 35D30 35C07 35L67 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Oh, Sung-Jin; Pasqualotto, Federico Gradient blow-up for dispersive and dissipative perturbations of the Burgers equation. (English) Zbl 07870154 Arch. Ration. Mech. Anal. 248, No. 3, Paper No. 54, 61 p. (2024). MSC: 35Q53 35B40 35B44 35B20 35B65 35C06 26A33 35R11 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gassot, Louise Zero-dispersion limit for the Benjamin-Ono equation on the torus with bell shaped initial data. (English) Zbl 1529.35381 Commun. Math. Phys. 401, No. 3, 2793-2843 (2023). MSC: 35Q35 35Q53 76B25 35C08 37K15 37K35 35P25 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kaushik, Sonali; Kumar, Rajesh Optimized decomposition method for solving multi-dimensional Burgers’ equation. (English) Zbl 1540.65417 Math. Comput. Simul. 208, 326-350 (2023). MSC: 65M70 35Q53 × Cite Format Result Cite Review PDF Full Text: DOI
Chen, Mingjuan; Guo, Boling; Han, Lijia Uniform local well-posedness and inviscid limit for the Benjamin-Ono-Burgers equation. (English) Zbl 1492.35252 Sci. China, Math. 65, No. 8, 1553-1576 (2022). MSC: 35Q53 35Q55 35A01 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Emmanuele, Daniela; Salvai, Marcos; Vittone, Francisco Möbius fluid dynamics on the unitary groups. (English) Zbl 1510.76133 Regul. Chaotic Dyn. 27, No. 3, 333-351 (2022). MSC: 76M60 76B99 53Z05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Karakoc, Seydi Battal Gazi; Ali, Khalid Karam Theoretical and computational structures on solitary wave solutions of Benjamin Bona Mahony-Burgers equation. (English) Zbl 1487.65180 Tbil. Math. J. 14, No. 2, 33-50 (2021). MSC: 65N30 74S05 76B25 × Cite Format Result Cite Review PDF Full Text: DOI
Lobo, Jervin Zen; Valaulikar, Y. S. Lie group analysis of the time-delayed inviscid Burgers’ equation. (English) Zbl 1488.35547 J. Indian Math. Soc., New Ser. 88, No. 1-2, 105-124 (2021). MSC: 35R10 35F20 35B06 35C99 × Cite Format Result Cite Review PDF Full Text: DOI
Cheng, Xiujun A three-level implicit difference scheme for solving the inviscid Burgers’ equation with time delay. (English) Zbl 1480.65206 J. Difference Equ. Appl. 27, No. 8, 1218-1231 (2021). MSC: 65M06 65N06 65M12 65D05 35Q53 35R07 × Cite Format Result Cite Review PDF Full Text: DOI
Boritchev, Alexandre; Kuksin, Sergei One-dimensional turbulence and the stochastic Burgers equation. (English) Zbl 1486.60002 Mathematical Surveys and Monographs 255. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6436-3/pbk; 978-1-4704-6564-3/ebook). vii, 192 p. (2021). Reviewer: Luigi Amedeo Bianchi (Povo) MSC: 60-02 60H15 35L65 35Q35 37A25 76F02 76F25 × Cite Format Result Cite Review PDF
Saqib, Muhammad; Hussain, Qamar; Kara, Abdul Hamid; Zaman, Fiazuddin On Lie symmetry analysis of nonhomogeneous generalized inviscid and fractional Burgers’ equation. (English) Zbl 1470.35410 Math. Methods Appl. Sci. 44, No. 11, 8726-8738 (2021). MSC: 35R11 35B06 × Cite Format Result Cite Review PDF Full Text: DOI
Chen, Mingjuan; Guo, Boling; Han, Lijia Global well-posedness and inviscid limit for the generalized Benjamin-Ono-Burgers equation. (English) Zbl 1460.35312 Appl. Anal. 100, No. 4, 804-818 (2021). MSC: 35Q53 35Q35 35A01 35A02 44A15 76B15 × Cite Format Result Cite Review PDF Full Text: DOI
Yu, Di; Fu, Lei; Yang, Hongwei A new dynamic model of ocean internal solitary waves and the properties of its solutions. (English) Zbl 1456.76034 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105622, 23 p. (2021). MSC: 76B25 76B55 76M45 86A05 × Cite Format Result Cite Review PDF Full Text: DOI
Olver, Peter J.; Qu, Changzheng; Yang, Yun Feature matching and heat flow in centro-affine geometry. (English) Zbl 1460.53010 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 093, 22 p. (2020). MSC: 53A15 53A55 58J35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Zhou, Lansuo; Luan, Jinfeng; Yin, Xiaojun; Na, Renmandula Inhomogeneous mKdV-Burgers equation under with complete Coriolis force and weak topography. (English) Zbl 1463.35453 J. Math., Wuhan Univ. 40, No. 4, 473-480 (2020). MSC: 35Q53 76B47 86A10 × Cite Format Result Cite Review PDF Full Text: DOI
Frolov, Sergey A. \(T\overline{T}\) deformation and the light-cone gauge. (English. Russian original) Zbl 1445.81044 Proc. Steklov Inst. Math. 309, 107-126 (2020); translation from Tr. Mat. Inst. Steklova 309, 120-140 (2020). MSC: 81T30 81T13 14D15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Sarrico, C. O. R.; Paiva, A. Creation, annihilation, and interaction of delta-waves in nonlinear models: a distributional product approach. (English) Zbl 1435.35241 Russ. J. Math. Phys. 27, No. 1, 111-125 (2020). MSC: 35L60 35L45 × Cite Format Result Cite Review PDF Full Text: DOI
Bendaas, Saida; Alaa, Noureddine Periodic wave shock solutions of Burgers equations. A new approach. (English) Zbl 1449.35375 Int. J. Nonlinear Anal. Appl. 10, No. 1, 119-129 (2019). MSC: 35Q53 35B10 35L65 35L67 × Cite Format Result Cite Review PDF Full Text: DOI
De los Reyes, Juan Carlos; Loayza-Romero, Estefanía Total generalized variation regularization in data assimilation for Burgers’ equation. (English) Zbl 1418.76021 Inverse Probl. Imaging 13, No. 4, 755-786 (2019). MSC: 76B75 49M15 49K20 × Cite Format Result Cite Review PDF Full Text: DOI arXiv OA License
Bendaas, Saida Periodic wave shock solutions of Burgers equations. (English) Zbl 1438.35345 Cogent Math. Stat. 5, Article ID 1463597, 11 p. (2018). MSC: 35Q53 35B10 35L65 35L67 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Ray, Santanu Saha The new complex rational function prototype structures for the nonlinear Schrödinger-inviscid Burgers system. (English) Zbl 1402.35262 Math. Methods Appl. Sci. 41, No. 16, 6312-6325 (2018). MSC: 35Q55 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI
Wazwaz, Abdul-Majid A variety of soliton solutions for the Boussinesq-Burgers equation and the higher-order Boussinesq-Burgers equation. (English) Zbl 1488.35493 Filomat 31, No. 3, 831-840 (2017). MSC: 35Q53 35C08 37K40 76B25 × Cite Format Result Cite Review PDF Full Text: DOI
Feng, Peihua; Zhang, Jiazhong; Cao, Shengli; Prants, S. V.; Liu, Yan Thermalized solution of the Galerkin-truncated Burgers equation: from the birth of local structures to thermalization. (English) Zbl 1458.76023 Commun. Nonlinear Sci. Numer. Simul. 45, 104-116 (2017). MSC: 76M22 65M70 35Q53 76B99 76E99 80A19 × Cite Format Result Cite Review PDF Full Text: DOI
Abdulwahhab, Muhammad Alim Nonlinear self-adjointness and generalized conserved quantities of the inviscid Burgers’ equation with nonlinear source. (English) Zbl 1397.35246 Int. J. Appl. Comput. Math. 3, No. 2, 963-970 (2017). MSC: 35Q53 76B03 × Cite Format Result Cite Review PDF Full Text: DOI
Zhang, Ting; Shen, Chun The shock wave solution to the Riemann problem for the Burgers equation with the linear forcing term. (English) Zbl 1335.35158 Appl. Anal. 95, No. 2, 283-302 (2016). MSC: 35L67 35L65 35B25 90B20 × Cite Format Result Cite Review PDF Full Text: DOI
Renac, Florent Stability analysis of discontinuous Galerkin discrete shock profiles for steady scalar conservation laws. (English) Zbl 1382.65279 SIAM J. Numer. Anal. 54, No. 1, 187-209 (2016). MSC: 65M12 65M60 35L65 × Cite Format Result Cite Review PDF Full Text: DOI
Sarrico, C. O. R.; Paiva, A. Products of distributions and collision of a \(\delta\)-wave with a \(\delta'\)-wave in a turbulent model. (English) Zbl 1421.76149 J. Nonlinear Math. Phys. 22, No. 3, 381-394 (2015). MSC: 76L05 35L67 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Chan, Hiu Ning; Chung, Eric T. A staggered discontinuous Galerkin method with local TV regularization for the Burgers equation. (English) Zbl 1349.65442 Numer. Math., Theory Methods Appl. 8, No. 4, 451-474 (2015). MSC: 65M60 35Q53 65M50 × Cite Format Result Cite Review PDF Full Text: DOI
Audusse, Emmanuel; Boyaval, Sébastien; Gao, Yueyuan; Hilhorst, Danielle Numerical simulations of the inviscid Burgers equation with periodic boundary conditions and stochastic forcing. (English. French summary) Zbl 1334.35445 ESAIM, Proc. Surv. 48, 308-320 (2015). MSC: 35R60 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI OA License
Renac, Florent Stationary discrete shock profiles for scalar conservation laws with a discontinuous Galerkin method. (English) Zbl 1317.65240 SIAM J. Numer. Anal. 53, No. 4, 1690-1715 (2015). MSC: 65N30 65N12 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Vázquez-Cendón, M. Elena Solving hyperbolic equations with finite volume methods. Translated from the Italian by Luz María García-García and Marcos Cobas-García. (English) Zbl 1319.65086 Unitext 90. La Matematica per il 3+2. Cham: Springer (ISBN 978-3-319-14783-3/pbk; 978-3-319-14784-0/ebook). xvii, 188 p. (2015). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65M08 65-02 35L40 35L45 35L60 35L65 76B15 76M12 35Q53 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI
Abdulwahhab, Muhammad Alim Optimal system and exact solutions for the generalized system of 2-dimensional Burgers equations with infinite Reynolds number. (English) Zbl 1310.76014 Commun. Nonlinear Sci. Numer. Simul. 20, No. 1, 98-112 (2015). MSC: 76B03 35Q53 35A30 35C05 76M60 76Y05 × Cite Format Result Cite Review PDF Full Text: DOI
Abdulwahhab, Muhammad Alim Conservation laws of inviscid Burgers equation with nonlinear damping. (English) Zbl 1457.35051 Commun. Nonlinear Sci. Numer. Simul. 19, No. 6, 1729-1741 (2014). MSC: 35Q53 35A30 × Cite Format Result Cite Review PDF Full Text: DOI
Lombard, Bruno; Mercier, Jean-François Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators. (English) Zbl 1349.74362 J. Comput. Phys. 259, 421-443 (2014). MSC: 74S20 76M20 74J35 65M06 76B25 76Q05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv HAL
Lerat, Alain A comparison of analytical solutions of a high-order RBC scheme and its equivalent differential equation for a steady shock problem. (English) Zbl 1347.76031 Abgrall, Rémi (ed.) et al., High order nonlinear numerical schemes for evolutionary PDEs. Proceedings of the European workshop HONOM 2013, Bordeaux, France, March 18–22, 2013. Cham: Springer (ISBN 978-3-319-05454-4/hbk; 978-3-319-05455-1/ebook). Lecture Notes in Computational Science and Engineering 99, 169-183 (2014). MSC: 76M12 76L05 × Cite Format Result Cite Review PDF Full Text: DOI
Linares, Felipe; Pilod, Didier; Saut, Jean-Claude Dispersive perturbations of Burgers and hyperbolic equations. I: Local theory. (English) Zbl 1294.35124 SIAM J. Math. Anal. 46, No. 2, 1505-1537 (2014). MSC: 35Q53 35Q35 76B15 35A01 76B03 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Baskonus, Haci Mehmet; Bulut, Hasan; Pandir, Yusuf The natural transform decomposition method for linear and nonlinear partial differential equations. (English) Zbl 1287.65095 Math. Eng. Sci. Aerosp. MESA 5, No. 1, 111-126 (2014). MSC: 65M99 35G31 35Q53 × Cite Format Result Cite Review PDF Full Text: Link
Guan, Chunxia; Yin, Zhaoyang On the existence of global weak solutions to an integrable two-component Camassa-Holm shallow-water system. (English) Zbl 1288.35196 Proc. Edinb. Math. Soc., II. Ser. 56, No. 3, 755-775 (2013). Reviewer: David Ambrose (Philadelphia) MSC: 35G25 35Q53 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI Link
Achatz, Ulrich; Dolaptchiev, Stamen I.; Timofeyev, Ilya Subgrid-scale closure for the inviscid Burgers-Hopf equation. (English) Zbl 1286.76122 Commun. Math. Sci. 11, No. 3, 757-777 (2013). Reviewer: Vivek S. Borkar (Mumbai) MSC: 76M35 65M75 60H30 × Cite Format Result Cite Review PDF Full Text: DOI
Hattori, Tetsuya; Kusuoka, Seiichiro Kusuoka Stochastic ranking process with space-time dependent intensities. (English) Zbl 1277.60176 ALEA, Lat. Am. J. Probab. Math. Stat. 9, No. 2, 571-607 (2012). MSC: 60K35 35C05 82C22 × Cite Format Result Cite Review PDF Full Text: arXiv Link
Yang, Hong-Wei; Yin, Bao-Shu; Dong, Huan-He; Shi, Yun-Long Algebraic Rossby solitary waves excited by non-stationary external source. (English) Zbl 1264.76030 Commun. Theor. Phys. 58, No. 3, 425-431 (2012). MSC: 76B65 76B47 76E20 76M22 35Q53 35C08 35L65 65M70 × Cite Format Result Cite Review PDF Full Text: DOI
Freire, Igor Leite New conservation laws for inviscid Burgers equation. (English) Zbl 1263.76057 Comput. Appl. Math. 31, No. 3, 559-567 (2012). MSC: 76M60 58J70 × Cite Format Result Cite Review PDF Full Text: DOI Link
Freire, Igor Leite A note on “Lie symmetries of inviscid Burgers equation”. (English) Zbl 1260.35181 Adv. Appl. Clifford Algebr. 22, No. 2, 297-300 (2012). MSC: 35Q53 35Q35 37K30 × Cite Format Result Cite Review PDF Full Text: DOI
Bertozzi, Andrea L.; Garnett, John B.; Laurent, Thomas Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. (English) Zbl 1248.35023 SIAM J. Math. Anal. 44, No. 2, 651-681 (2012). MSC: 35B44 35B07 35B33 35Q70 35Q92 35R09 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Hunter, John K.; Ifrim, Mihaela Enhanced life span of smooth solutions of a Burgers-Hilbert equation. (English) Zbl 1259.35166 SIAM J. Math. Anal. 44, No. 3, 2039-2052 (2012). MSC: 35Q35 37L65 76B47 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gao, Wei; Li, Hong; Liu, Yang; Jian, Yong-Jun An oscillation-free high order TVD/CBC-based upwind scheme for convection discretization. (English) Zbl 1269.65082 Numer. Algorithms 59, No. 1, 29-50 (2012). MSC: 65M08 35L45 35Q53 × Cite Format Result Cite Review PDF Full Text: DOI
Camassa, Roberto; Chiu, Pao-Hsiung; Lee, Long; Sheu, W.-H. A particle method and numerical study of a quasilinear partial differential equation. (English) Zbl 1269.65091 Commun. Pure Appl. Anal. 10, No. 5, 1503-1515 (2011). MSC: 65M25 35Q53 65R20 45J05 × Cite Format Result Cite Review PDF Full Text: DOI Link
Freire, Igor Leite Conservation laws for self-adjoint first-order evolution equation. (English) Zbl 1219.35228 J. Nonlinear Math. Phys. 18, No. 2, 279-290 (2011). MSC: 35Q53 76M60 58J70 70G65 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Hariya, Yuu; Hattori, Kumiko; Hattori, Tetsuya; Nagahata, Yukio; Takeshima, Yuusuke; Kobayashi, Takahisa Stochastic ranking process with time dependent intensities. (English) Zbl 1218.60087 Tohoku Math. J. (2) 63, No. 1, 77-111 (2011). MSC: 60K35 35C05 82C22 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Zhang, Hua; Ke, Yuqin The inviscid limit of the modified Benjamin-Ono-Burgers equation. (English) Zbl 1216.35128 Bull. Aust. Math. Soc. 83, No. 2, 301-320 (2011). MSC: 35Q53 49K40 35A22 × Cite Format Result Cite Review PDF Full Text: DOI
Flandoli, Franco Random perturbation of PDEs and fluid dynamic models. École d’Été de Probabilités de Saint-Flour XL – 2010. (English) Zbl 1221.35004 Lecture Notes in Mathematics 2015. Berlin: Springer (ISBN 978-3-642-18230-3/pbk; 978-3-642-18231-0/ebook). ix, 176 p. (2011). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 35-02 35R60 35Q35 35Q31 35Q30 × Cite Format Result Cite Review PDF Full Text: DOI
Miller, Peter D.; Xu, Zhengjie On the zero-dispersion limit of the Benjamin-Ono Cauchy problem for positive initial data. (English) Zbl 1213.35052 Commun. Pure Appl. Math. 64, No. 2, 205-270 (2011). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35B25 76B15 76B70 35Q53 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Popivanov, Peter; Slavova, Angela Nonlinear waves. An introduction. (English) Zbl 1215.76001 Series on Analysis, Applications and Computation 4. Hackensack, NJ: World Scientific (ISBN 978-981-4322-12-6/hbk). x, 168 p. (2011). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 76-02 35-02 76B25 35Q53 35Q51 × Cite Format Result Cite Review PDF Full Text: DOI Link
Zhou, Xin-Wei; Yao, Li The variational iteration method for Cauchy problems. (English) Zbl 1201.65189 Comput. Math. Appl. 60, No. 3, 756-760 (2010). MSC: 65M99 × Cite Format Result Cite Review PDF Full Text: DOI
Lenells, Jonatan; Misiołek, Gerard; Tiğlay, Feride Integrable evolution equations on spaces of tensor densities and their peakon solutions. (English) Zbl 1214.35059 Commun. Math. Phys. 299, No. 1, 129-161 (2010). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35Q53 37K05 37K10 37K30 35B44 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Teng, Zhen-Huan Exact boundary conditions for the initial value problem of convex conservation laws. (English) Zbl 1190.65127 J. Comput. Phys. 229, No. 10, 3792-3801 (2010). MSC: 65M06 35L65 35Q53 × Cite Format Result Cite Review PDF Full Text: DOI
Zhang, Hua; Han, LiJia Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation. (English) Zbl 1238.35139 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e-Suppl., e1708-e1715 (2009). MSC: 35Q53 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI
Dai, Chao-Qing; Wang, Yue-Yue New exact solutions of the (3+1)-dimensional Burgers system. (English) Zbl 1227.35231 Phys. Lett., A 373, No. 2, 181-187 (2009). MSC: 35Q35 76B03 35C08 × Cite Format Result Cite Review PDF Full Text: DOI
Benzoni-Gavage, Sylvie Local well-posedness of nonlocal Burgers equations. (English) Zbl 1240.35446 Differ. Integral Equ. 22, No. 3-4, 303-320 (2009). MSC: 35Q53 35L65 35B44 76B15 × Cite Format Result Cite Review PDF
Sakthivel, Rathinasamy Robust stabilization the Korteweg-de Vries-Burgers equation by boundary control. (English) Zbl 1183.76660 Nonlinear Dyn. 58, No. 4, 739-744 (2009). MSC: 76B75 76B25 93C20 × Cite Format Result Cite Review PDF Full Text: DOI
Valageas, Patrick Some statistical properties of the Burgers equation with white-noise initial velocity. (English) Zbl 1192.82053 J. Stat. Phys. 137, No. 4, 729-764 (2009). Reviewer: Dominik Strzałka (Rzeszów) MSC: 82C23 70S05 76D05 35Q30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bhat, H. S.; Fetecau, R. C. The Riemann problem for the Leray-Burgers equation. (English) Zbl 1177.35136 J. Differ. Equations 246, No. 10, 3957-3979 (2009). MSC: 35L67 35L65 × Cite Format Result Cite Review PDF Full Text: DOI
Guo, Zihua; Wang, Baoxiang Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation. (English) Zbl 1170.35084 J. Differ. Equations 246, No. 10, 3864-3901 (2009). MSC: 35Q53 35B40 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Valageas, Patrick Statistical properties of the Burgers equation with Brownian initial velocity. (English) Zbl 1162.82017 J. Stat. Phys. 134, No. 3, 589-640 (2009). MSC: 82C31 60J65 35Q53 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kojok, Bassam Global existence for a forced dispersive dissipative equation via the I-method. (English) Zbl 1178.35332 Commun. Pure Appl. Anal. 8, No. 4, 1401-1419 (2009). Reviewer: K. N. Shukla (Gurgaon) MSC: 35Q53 35B30 76B03 76B15 35A22 × Cite Format Result Cite Review PDF Full Text: DOI
Inc, Mustafa On numerical solution of Burgers’ equation by homotopy analysis method. (English) Zbl 1217.76019 Phys. Lett., A 372, No. 4, 356-360 (2008). MSC: 76B07 34A34 34D10 65L07 × Cite Format Result Cite Review PDF Full Text: DOI
Yin, Hui; Chen, Shuyue; Jin, Jing Convergence rate to traveling waves for generalized Benjamin-Bona-Mahony-Burgers equations. (English) Zbl 1231.35183 Z. Angew. Math. Phys. 59, No. 6, 969-1001 (2008). MSC: 35Q35 76B03 35C07 × Cite Format Result Cite Review PDF Full Text: DOI
Cruzeiro, Ana Bela; Malliavin, Paul Stochastic evolution of inviscid Burgers fluid. (English) Zbl 1173.76005 Pinsky, Mark (ed.) et al., Probability, geometry and integrable systems. For Henry McKean’s seventy-fifth birthday. Cambridge: Cambridge University Press (ISBN 978-0-521-89527-9/hbk). Mathematical Sciences Research Institute Publications 55, 167-183 (2008). Reviewer: Dirk Blömker (Augsburg) MSC: 76B03 37H10 35Q35 76M35 35R60 60H15 × Cite Format Result Cite Review PDF Full Text: Link
Kenyon, Richard; Okounkov, Andrei Limit shapes and the complex Burgers equation. (English) Zbl 1156.14029 Acta Math. 199, No. 2, 263-302 (2007). Reviewer: Michal Marvan (Opava) MSC: 14H81 35F30 52B20 82B20 82B26 82B41 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Constantinescu, Emil M.; Sandu, Adrian Multirate timestepping methods for hyperbolic conservation laws. (English) Zbl 1127.76033 J. Sci. Comput. 33, No. 3, 239-278 (2007). MSC: 76M12 76R99 76B99 65M12 × Cite Format Result Cite Review PDF Full Text: DOI Link
Muraki, David J. A simple illustration of a weak spectral cascade. (English) Zbl 1128.35066 SIAM J. Appl. Math. 67, No. 5, 1504-1521 (2007). MSC: 35L60 76M45 35L45 × Cite Format Result Cite Review PDF Full Text: DOI Link
Ludu, A.; Kevrekidis, P. G. Nonlinear dispersion relations. (English) Zbl 1123.76060 Math. Comput. Simul. 74, No. 2-3, 229-236 (2007). MSC: 76M99 76B25 76D99 35Q53 × Cite Format Result Cite Review PDF Full Text: DOI
Córdoba, Antonio; Córdoba, Diego; Fontelos, Marco A. Integral inequalities for the Hilbert transform applied to a nonlocal transport equation. (English) Zbl 1106.35059 J. Math. Pures Appl. (9) 86, No. 6, 529-540 (2006). MSC: 35Q35 26D10 35R10 76B03 42A38 35L67 × Cite Format Result Cite Review PDF Full Text: DOI
Coclite, Giuseppe Maria; Karlsen, Kenneth Hvistendahl A singular limit problem for conservation laws related to the Camassa–Holm shallow water equation. (English) Zbl 1102.35010 Commun. Partial Differ. Equations 31, No. 8, 1253-1272 (2006). Reviewer: Leonid B. Chubarov (Novosibirsk) MSC: 35B25 76B03 76B15 35Q53 35G25 35L65 × Cite Format Result Cite Review PDF Full Text: DOI
Waleffe, Fabian On some dyadic models of the Euler equations. (English) Zbl 1096.35108 Proc. Am. Math. Soc. 134, No. 10, 2913-2922 (2006). Reviewer: Georg V. Jaiani (Tbilisi) MSC: 35Q30 35Q05 35Q53 76B03 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Banda, M. K.; Seaid, M. Higher-order relaxation schemes for hyperbolic systems of conservation laws. (English) Zbl 1084.65076 J. Numer. Math. 13, No. 3, 171-196 (2005). MSC: 65M06 65M12 35L65 35Q53 76N15 76M20 × Cite Format Result Cite Review PDF Full Text: DOI
Chae, Dongho; Córdoba, Antonio; Córdoba, Diego; Fontelos, Marco A. Finite time singularities in a 1D model of the quasi-geostrophic equation. (English) Zbl 1128.76372 Adv. Math. 194, No. 1, 203-223 (2005). MSC: 76U05 86A10 35Q35 76B03 × Cite Format Result Cite Review PDF Full Text: DOI
Bernard, Patrick The asymptotic behaviour of solutions of the forced Burgers equation on the circle. (English) Zbl 1086.35086 Nonlinearity 18, No. 1, 101-124 (2005). MSC: 35Q53 35B40 35F25 37E40 × Cite Format Result Cite Review PDF Full Text: DOI arXiv HAL
Khesin, Boris A.; Michor, Peter W. The flow completion of the Burgers equation. (English) Zbl 1062.37100 Wurzbacher, Tilmann (ed.), Infinite dimensional groups and manifolds. Based on the 70th meeting of theoretical physicists and mathematicians at IRMA, Strasbourg, France, May 2004. Berlin: de Gruyter (ISBN 3-11-018186-X/pbk). IRMA Lectures in Mathematics and Theoretical Physics 5, 17-26 (2004). MSC: 37K65 35Q53 37N10 58D25 76D05 × Cite Format Result Cite Review PDF
Constantin, Adrian; Kolev, Boris Geodesic flow on the diffeomorphism group of the circle. (English) Zbl 1037.37032 Comment. Math. Helv. 78, No. 4, 787-804 (2003). MSC: 37K65 35Q35 58B25 53D25 × Cite Format Result Cite Review PDF Full Text: DOI
Viet Ha Hoang; Khanin, Konstantin Random Burgers equation and Lagrangian systems in non-compact domains. (English) Zbl 1038.35101 Nonlinearity 16, No. 3, 819-842 (2003). Reviewer: Jan Seidler (Praha) MSC: 35Q53 35Q35 70H20 × Cite Format Result Cite Review PDF Full Text: DOI
Stinis, Panagiotis A hybrid method for the inviscid Burgers equation. (English) Zbl 1027.76037 Discrete Contin. Dyn. Syst. 9, No. 4, 793-799 (2003). MSC: 76M22 76N15 76L05 × Cite Format Result Cite Review PDF Full Text: DOI
Iturriaga, R.; Khanin, K. Burgers turbulence and random Lagrangian systems. (English) Zbl 1029.76030 Commun. Math. Phys. 232, No. 3, 377-428 (2003). MSC: 76F55 76M35 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI
Al-Zanaidi, M. A.; Chawla, M. M. A high-accuracy box scheme for first-order systems of hyperbolic conservation laws. (English) Zbl 1044.65069 Neural Parallel Sci. Comput. 10, No. 4, 423-430 (2002). MSC: 65M06 65M12 65M15 35Q53 35L65 × Cite Format Result Cite Review PDF
Bainov, Drumi D.; Kolev, Dimitar A.; Motreanu, Dumitru Barrier to existence of gradient blow-up for impulsive inviscid Burger’s equation. (English) Zbl 1023.35089 Panam. Math. J. 12, No. 4, 29-41 (2002). MSC: 35R12 35Q53 35L60 × Cite Format Result Cite Review PDF
Chattot, Jean-Jacques Computational aerodynamics and fluid dynamics. An introduction. (English) Zbl 1013.76001 Scientific Computation. Berlin: Springer. xii, 186 p. (2002). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 76-01 76M20 × Cite Format Result Cite Review PDF
Guinot, Vincent The time-line interpolation method for large-time-step Godunov-type schemes. (English) Zbl 0998.65087 J. Comput. Phys. 177, No. 2, 394-417 (2002). MSC: 65M06 35Q30 35Q15 35Q35 65M12 35L65 35L67 35Q53 76D07 76D05 76H05 76N15 76M20 × Cite Format Result Cite Review PDF Full Text: DOI
Winkel, Matthias Burgers turbulence initialized by a regenerative impulse. (English) Zbl 1099.35522 Stochastic Processes Appl. 93, No. 2, 241-268 (2001). MSC: 35Q53 35R60 60F10 60J99 × Cite Format Result Cite Review PDF Full Text: DOI
Hammerton, P. W. Effect of molecular relaxation on the propagation of sonic booms through a stratified atmosphere. (English) Zbl 1074.76603 Wave Motion 33, No. 4, 359-377 (2001). MSC: 76Q05 76B60 76B70 76L05 86A10 × Cite Format Result Cite Review PDF Full Text: DOI
Menzaque, Fernando; Rosales, Rodolfo R.; Tabak, Esteban G.; Turner, Cristina V. The forced inviscid Burgers equation as a model for nonlinear interactions among dispersive waves. (English) Zbl 1001.76014 Milewski, Paul A. (ed.) et al., Advances in wave interaction and turbulence. Proceedings of an AMS-IMS-SIAM joint summer research conference on dispersive wave turbulence, Mount Holyoke College, South Hadley, MA, USA, June 11-15, 2000. Providence, RI: AMS, American Mathematical Society. Contemp. Math. 283, 51-82 (2001). MSC: 76B15 76M45 35Q53 × Cite Format Result Cite Review PDF
Chawla, M. M.; Al-Zanaidi, M. A. Linearized box schemes for first-order systems of hyperbolic conservation laws. (English) Zbl 0992.65095 Neural Parallel Sci. Comput. 9, No. 3-4, 429-438 (2001). MSC: 65M06 76B15 76M20 35L65 65M12 35Q53 × Cite Format Result Cite Review PDF
Balázs, Márton Microscopic shape of shocks in a domain growth model. (English) Zbl 1017.82035 J. Stat. Phys. 105, No. 3-4, 511-524 (2001). MSC: 82C22 60K35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Engelberg, Shlomo; Liu, Hailiang; Tadmor, Eitan Critical thresholds in Euler-Poisson equations. (English) Zbl 0989.35110 Indiana Univ. Math. J. 50, Spec. Iss., 109-157 (2001). Reviewer: A.Jeffrey (Newcastle upon Tyne) MSC: 35Q35 35Q60 35B30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Giraud, Christophe Genealogy of shocks in Burgers turbulence with white noise initial velocity. (English) Zbl 0997.76035 Commun. Math. Phys. 223, No. 1, 67-86 (2001). MSC: 76F55 76L05 76M35 × Cite Format Result Cite Review PDF Full Text: DOI
Gasser, I. The small Debye length limit in a hydrodynamic model for charged fluids. (English) Zbl 1002.76126 ZAMM, Z. Angew. Math. Mech. 81, Suppl. 3, 597-598 (2001). MSC: 76W05 76M45 × Cite Format Result Cite Review PDF Full Text: DOI
Balogh, Andras; Krstic, Miroslav Boundary control of the Korteweg-de Vries-Burgers equation: Further results on stabilization and well-posedness, with numerical demonstration. (English) Zbl 0990.93049 IEEE Trans. Autom. Control 45, No. 9, 1739-1745 (2000). MSC: 93C20 76B75 93D15 × Cite Format Result Cite Review PDF Full Text: DOI Link
Zhang, Hongqing; Yan, Zhenya Two types of new algorithms for finding explicit analytical solutions of nonlinear differential equations. (English) Zbl 1008.76074 Appl. Math. Mech., Engl. Ed. 21, No. 12, 1423-1431 (2000). MSC: 76M25 76B15 76B25 × Cite Format Result Cite Review PDF Full Text: DOI
Geurts, Bernard J.; van Buuren, René; Lu, Hao Application of polynomial preconditioners to conservation laws. (English) Zbl 1006.76065 J. Eng. Math. 38, No. 4, 403-426 (2000). MSC: 76M20 76D99 76H05 × Cite Format Result Cite Review PDF Full Text: DOI
Bialy, M. L. Shock formation for the forced Burgers equation and an application. (English) Zbl 0963.35166 Geom. Funct. Anal. 10, No. 4, 732-740 (2000). MSC: 35Q53 37K05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv