Song, Xue; Li, Enze; Pei, Donghe Legendrian dualities and evolute-involute curve pairs of spacelike fronts in null sphere. (English) Zbl 1496.53016 J. Geom. Phys. 178, Article ID 104543, 11 p. (2022). MSC: 53A35 53A04 53A05 57R45 PDF BibTeX XML Cite \textit{X. Song} et al., J. Geom. Phys. 178, Article ID 104543, 11 p. (2022; Zbl 1496.53016) Full Text: DOI OpenURL
Balestro, Vitor; Martini, Horst; Teixeira, Ralph On Legendre curves in normed planes. (English) Zbl 1408.46017 Pac. J. Math. 297, No. 1, 1-27 (2018). MSC: 46B20 51L10 52A21 53A04 53A35 PDF BibTeX XML Cite \textit{V. Balestro} et al., Pac. J. Math. 297, No. 1, 1--27 (2018; Zbl 1408.46017) Full Text: DOI arXiv OpenURL
Öztürk, Günay; Arslan, Kadri; Bulca, Betül A characterization of involutes and evolutes of a given curve in \(\mathbb{E}^n\). (English) Zbl 1398.53009 Kyungpook Math. J. 58, No. 1, 117-135 (2018). MSC: 53A04 53A05 PDF BibTeX XML Cite \textit{G. Öztürk} et al., Kyungpook Math. J. 58, No. 1, 117--135 (2018; Zbl 1398.53009) Full Text: DOI arXiv OpenURL
Craizer, Marcos; Martini, Horst Involutes of polygons of constant width in Minkowski planes. (English) Zbl 1354.52003 Ars Math. Contemp. 11, No. 1, 107-125 (2016). MSC: 52A10 52A21 53A15 53A40 51B20 PDF BibTeX XML Cite \textit{M. Craizer} and \textit{H. Martini}, Ars Math. Contemp. 11, No. 1, 107--125 (2016; Zbl 1354.52003) Full Text: DOI arXiv OpenURL
Fukunaga, Tomonori; Takahashi, Masatomo Involutes of fronts in the Euclidean plane. (English) Zbl 1352.58007 Beitr. Algebra Geom. 57, No. 3, 637-653 (2016). Reviewer: Aleksandr G. Aleksandrov (Moskva) MSC: 58K05 53A04 57R45 PDF BibTeX XML Cite \textit{T. Fukunaga} and \textit{M. Takahashi}, Beitr. Algebra Geom. 57, No. 3, 637--653 (2016; Zbl 1352.58007) Full Text: DOI Link OpenURL
Craizer, Marcos Iteration of involutes of constant width curves in the Minkowski plane. (English) Zbl 1305.52006 Beitr. Algebra Geom. 55, No. 2, 479-496 (2014). Reviewer: Rolf Schneider (Freiburg i. Br.) MSC: 52A10 52A21 53A15 PDF BibTeX XML Cite \textit{M. Craizer}, Beitr. Algebra Geom. 55, No. 2, 479--496 (2014; Zbl 1305.52006) Full Text: DOI arXiv OpenURL
Bukcu, Bahaddin; Karacan, Murat Kemal On involute and evolute curves of spacelike curve with a spacelike principal normal in Minkowski 3-space. (English) Zbl 1192.53002 Int. J. Math. Comb. 1, 27-37 (2009). MSC: 53A04 53B30 53A35 PDF BibTeX XML Cite \textit{B. Bukcu} and \textit{M. K. Karacan}, Int. J. Math. Comb. 2009, No. 1, 27--37 (2009; Zbl 1192.53002) OpenURL
Bukcu, Bahaddin; Karacan, Murat Kemal On the involute and evolute curves of the spacelike curve with a spacelike binormal in Minkowski 3-space. (English) Zbl 1123.53004 Int. J. Contemp. Math. Sci. 2, No. 5-8, 221-232 (2007). Reviewer: Hans Sachs (Leoben) MSC: 53A04 53B30 53A35 PDF BibTeX XML Cite \textit{B. Bukcu} and \textit{M. K. Karacan}, Int. J. Contemp. Math. Sci. 2, No. 5--8, 221--232 (2007; Zbl 1123.53004) Full Text: DOI Link OpenURL
Müller, Stephanie; Schwenk-Schellschmidt, Angela; Simon, Udo Eigenvalue equations in curve theory. II: Evolutes and involutes. (English) Zbl 1137.53003 Result. Math. 50, No. 1-2, 109-124 (2007). MSC: 53A04 34A30 34L15 53A17 PDF BibTeX XML Cite \textit{S. Müller} et al., Result. Math. 50, No. 1--2, 109--124 (2006; Zbl 1137.53003) Full Text: DOI OpenURL
Rutter, John W. Geometry of curves. (English) Zbl 0962.53002 Chapman and Hall Mathematics Series. Boca Raton, FL: Chapman & Hall/CRC Press. xviii, 361 p. (2000). Reviewer: Aleksandar Perović (Berlin) MSC: 53-01 51N05 14H50 53A04 68U05 PDF BibTeX XML Cite \textit{J. W. Rutter}, Geometry of curves. Boca Raton, FL: Chapman \& Hall/CRC Press (2000; Zbl 0962.53002) OpenURL
Farouki, Rida T.; Rampersad, Joanne Cycles upon cycles: An anecdotal history of higher curves in science and engineering. (English) Zbl 0904.65017 Dæhlen, Morten (ed.) et al., Mathematical methods for curves and surfaces II. 2nd international conference, Lillehammer, Norway, July 3–8, 1997. Nashville, TN: Vanderbilt Univ. Press. 95-116 (1998). MSC: 65D17 65-03 53A17 53A04 PDF BibTeX XML Cite \textit{R. T. Farouki} and \textit{J. Rampersad}, in: Mathematical methods for curves and surfaces II. 2nd international conference, Lillehammer, Norway, July 3--8, 1997. Nashville, TN: Vanderbilt Univ. Press. 95--116 (1998; Zbl 0904.65017) OpenURL
Walton, D. J.; Meek, D. S. A planar cubic Bézier spiral. (English) Zbl 0857.65019 J. Comput. Appl. Math. 72, No. 1, 85-100 (1996). Reviewer: H.Guggenheimer (West Hempstead) MSC: 65D17 65D10 53A04 PDF BibTeX XML Cite \textit{D. J. Walton} and \textit{D. S. Meek}, J. Comput. Appl. Math. 72, No. 1, 85--100 (1996; Zbl 0857.65019) Full Text: DOI OpenURL
Manselli, P.; Pucci, C. Uniqueness results for differentiable curves, involutes and evolutes of themselves. (Italian. English summary) Zbl 0761.53002 Boll. Unione Mat. Ital., VII. Ser., A 5, No. 3, 373-379 (1991). Reviewer: Bernd Wegner (Berlin) MSC: 53A04 PDF BibTeX XML Cite \textit{P. Manselli} and \textit{C. Pucci}, Boll. Unione Mat. Ital., VII. Ser., A 5, No. 3, 373--379 (1991; Zbl 0761.53002) OpenURL
Kuyk, Willem; Smits, Lieven On the geometries of the rational unfoldings of \(X^ k\). (English) Zbl 0726.58011 Acta Appl. Math. 19, No. 1, 77-86 (1990). Reviewer: V.G.Angelov (Sofia) MSC: 58K35 92B05 PDF BibTeX XML Cite \textit{W. Kuyk} and \textit{L. Smits}, Acta Appl. Math. 19, No. 1, 77--86 (1990; Zbl 0726.58011) OpenURL
Rao, P. Samba Shiva Geometry of streamlines in fluid flow theory. (English) Zbl 0402.76015 Def. Sci. J. 28, 175-178 (1979). MSC: 76B10 PDF BibTeX XML Cite \textit{P. S. S. Rao}, Def. Sci. J. 28, 175--178 (1979; Zbl 0402.76015) OpenURL
Hesse, O. Gundelfinger, S. (ed.) Lectures on planar analytic geometry of lines, points and circles. Third edition revised by S. Gundelfinger. (Vorlesungen aus der analytischen Geometrie der geraden Linie, des Punktes und des Kreises in der Ebene. Dritte Aufl. revid. von S. Gundelfinger.) (German) JFM 13.0536.02 Leipzig. Teubner (1881). Reviewer: Maynz, Dr. (Ludwigslust) MSC: 51-01 51N20 51N15 01A75 PDF BibTeX XML Full Text: Link OpenURL
Aoust Integrals of the curves whose involutes by the plan and developed by the plan are all equal. (Intégrales des courbes dont les développantes par le plan et les développées par le plan sont égales entre elles.) (French) JFM 11.0550.02 Bull. S. M. F. VII, 143-154 (1879). Reviewer: Hoppe, Prof. (Berlin) MSC: 53A04 PDF BibTeX XML Cite \textit{Aoust}, Bull. Soc. Math. Fr. 7, 143--154 (1879; JFM 11.0550.02) Full Text: DOI Numdam EuDML OpenURL