Alrawajfeh, Alaa; Al-Hasanat, Bilal N.; Alhasanat, Hothifa; Al Faqih, Feras M. On the edge irregularity strength of bipartite graph and corona product of two graphs. (English) Zbl 1451.05201 Int. J. Math. Comput. Sci. 16, No. 2, 639-645 (2021). MSC: 05C78 05C38 PDF BibTeX XML Cite \textit{A. Alrawajfeh} et al., Int. J. Math. Comput. Sci. 16, No. 2, 639--645 (2021; Zbl 1451.05201) Full Text: Link
Rose, Smitha; Naduvath, Sudev On certain chromatic topological indices of some Mycielski graphs. (English) Zbl 07314248 Jordan J. Math. Stat. 13, No. 4, 487-503 (2020). MSC: 05C15 05C38 PDF BibTeX XML Cite \textit{S. Rose} and \textit{S. Naduvath}, Jordan J. Math. Stat. 13, No. 4, 487--503 (2020; Zbl 07314248) Full Text: Link
Nishikawa, Hiroaki A face-area-weighted ‘centroid’ formula for finite-volume method that improves skewness and convergence on triangular grids. (English) Zbl 07302297 J. Comput. Phys. 401, Article ID 109001, 26 p. (2020). MSC: 65M08 65M50 76M12 PDF BibTeX XML Cite \textit{H. Nishikawa}, J. Comput. Phys. 401, Article ID 109001, 26 p. (2020; Zbl 07302297) Full Text: DOI
Mohammed, Mohanad A.; Al-Mayyahi, Suad Younus A.; Virk, Abaid ur Rehman; Mutee ur Rehman, Hafiz Irregularity indices for line graph of Dutch windmill graph. (English) Zbl 1452.05044 Proyecciones 39, No. 4, 903-918 (2020). MSC: 05C10 05C12 05C15 05C22 05C31 PDF BibTeX XML Cite \textit{M. A. Mohammed} et al., Proyecciones 39, No. 4, 903--918 (2020; Zbl 1452.05044) Full Text: DOI
Zhang, Xiujun; Cancan, Murat; Nadeem, Muhammad Faisal; Imran, Muhammad Edge irregularity strength of certain families of comb graph. (English) Zbl 1452.05166 Proyecciones 39, No. 4, 787-797 (2020). MSC: 05C78 PDF BibTeX XML Cite \textit{X. Zhang} et al., Proyecciones 39, No. 4, 787--797 (2020; Zbl 1452.05166) Full Text: DOI
Belostochnyĭ, Grigoriĭ Nikolaevich; Myl’tsina, Ol’ga Anatol’evna Dynamic thermal stability of heated geometrically irregular cylindrical shell under the influence of a periodic temporal coordinate load. (Russian. English summary) Zbl 07294554 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 3, 583-594 (2020). MSC: 74F05 74K20 PDF BibTeX XML Cite \textit{G. N. Belostochnyĭ} and \textit{O. A. Myl'tsina}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 3, 583--594 (2020; Zbl 07294554) Full Text: DOI MNR
Ahmad, Ali; Asim, Muhammad Ahsan; Assiri, Basem; Semaničová-Feňovčíková, Andrea Computing the edge irregularity strength of bipartite graphs and wheel related graphs. (English) Zbl 07274559 Fundam. Inform. 174, No. 1, 1-13 (2020). MSC: 68 PDF BibTeX XML Cite \textit{A. Ahmad} et al., Fundam. Inform. 174, No. 1, 1--13 (2020; Zbl 07274559) Full Text: DOI
Jeyanthi, P.; Sudha, A. Total irregularity strength of disjoint union of crossed prism and necklace graphs. (English) Zbl 1452.05161 Util. Math. 114, 13-31 (2020). MSC: 05C78 PDF BibTeX XML Cite \textit{P. Jeyanthi} and \textit{A. Sudha}, Util. Math. 114, 13--31 (2020; Zbl 1452.05161)
Alizadeh, Yaser; Deutsch, Emeric; Klavžar, Sandi On the irregularity of \(\pi \)-permutation graphs, Fibonacci cubes, and trees. (English) Zbl 1451.05038 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4443-4456 (2020). MSC: 05C05 05A05 05C07 05C35 PDF BibTeX XML Cite \textit{Y. Alizadeh} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4443--4456 (2020; Zbl 1451.05038) Full Text: DOI
Graham, Cole Irregularity of distribution in Wasserstein distance. (English) Zbl 07261230 J. Fourier Anal. Appl. 26, No. 5, Paper No. 75, 20 p. (2020). Reviewer: Peter Kritzer (Linz) MSC: 11K38 11K06 42A05 PDF BibTeX XML Cite \textit{C. Graham}, J. Fourier Anal. Appl. 26, No. 5, Paper No. 75, 20 p. (2020; Zbl 07261230) Full Text: DOI
Ghalavand, Ali; Sohail, Tanveer On some variations of the irregularity. (English) Zbl 07250380 DML, Discrete Math. Lett. 3, 25-30 (2020). MSC: 05C05 05C07 05C09 PDF BibTeX XML Cite \textit{A. Ghalavand} and \textit{T. Sohail}, DML, Discrete Math. Lett. 3, 25--30 (2020; Zbl 07250380) Full Text: Link
Ba, Zhenning; Zhang, Enwei; Liang, Jianwen; Lu, Yan; Wu, Mengtao Two-dimensional scattering of plane waves by irregularities in a multi-layered transversely isotropic saturated half-space. (English) Zbl 07228813 Eng. Anal. Bound. Elem. 118, 169-187 (2020). MSC: 74 78 PDF BibTeX XML Cite \textit{Z. Ba} et al., Eng. Anal. Bound. Elem. 118, 169--187 (2020; Zbl 07228813) Full Text: DOI
André, Yves; Baldassarri, Francesco; Cailotto, Maurizio De Rham cohomology of differential modules on algebraic varieties. 2nd revised edition. (English) Zbl 1437.14029 Progress in Mathematics 189. Cham: Birkhäuser (ISBN 978-3-030-39718-0/hbk; 978-3-030-39719-7/ebook). xiv, 241 p. (2020). MSC: 14F40 14F10 14-02 13N05 32S40 PDF BibTeX XML Cite \textit{Y. André} et al., De Rham cohomology of differential modules on algebraic varieties. 2nd revised edition. Cham: Birkhäuser (2020; Zbl 1437.14029) Full Text: DOI
Berkesch, Christine; Fernández-Fernández, María-Cruz Characteristic cycles and Gevrey series solutions of \(A\)-hypergeometric systems. (English) Zbl 1442.13087 Algebra Number Theory 14, No. 2, 323-347 (2020). MSC: 13N10 13F65 14M25 32C38 33C70 PDF BibTeX XML Cite \textit{C. Berkesch} and \textit{M.-C. Fernández-Fernández}, Algebra Number Theory 14, No. 2, 323--347 (2020; Zbl 1442.13087) Full Text: DOI
Ratnasari, Lucia; Susanti, Yeni Total edge irregularity strength of ladder-related graphs. (English) Zbl 1441.05202 Asian-Eur. J. Math. 13, No. 4, Article ID 2050072, 16 p. (2020). MSC: 05C78 05C85 PDF BibTeX XML Cite \textit{L. Ratnasari} and \textit{Y. Susanti}, Asian-Eur. J. Math. 13, No. 4, Article ID 2050072, 16 p. (2020; Zbl 1441.05202) Full Text: DOI
Ahmad, Ali Upper bounds of irregularity indices of categorical product of two connected graphs. (English) Zbl 1431.05044 Palest. J. Math. 9, No. 1, 26-30 (2020). MSC: 05C09 05C05 05C12 05C15 05C31 05C69 05C90 05C76 PDF BibTeX XML Cite \textit{A. Ahmad}, Palest. J. Math. 9, No. 1, 26--30 (2020; Zbl 1431.05044) Full Text: Link
Ashrafi, Ali Reza; Ghalavand, Ali Note on non-regular graphs with minimal total irregularity. (English) Zbl 1433.05079 Appl. Math. Comput. 369, Article ID 124891, 5 p. (2020). MSC: 05C07 05C76 05C35 PDF BibTeX XML Cite \textit{A. R. Ashrafi} and \textit{A. Ghalavand}, Appl. Math. Comput. 369, Article ID 124891, 5 p. (2020; Zbl 1433.05079) Full Text: DOI
Ashraf, Faraha; López, Susana Clara; Muntaner-Batle, Francesc Antoni; Oshima, Akito; Bača, Martin; Semaničová-Feňovčíková, Andrea On total \(H\)-irregularity strength of the disjoint union of graphs. (English) Zbl 1430.05103 Discuss. Math., Graph Theory 40, No. 1, 181-194 (2020). MSC: 05C78 05C70 05C76 PDF BibTeX XML Cite \textit{F. Ashraf} et al., Discuss. Math., Graph Theory 40, No. 1, 181--194 (2020; Zbl 1430.05103) Full Text: DOI
Filali, Mahmoud (ed.) Banach algebras and applications. Proceedings of the 23rd international conference, University of Oulu, Finland, November 3–11, 2017. (English) Zbl 1448.46007 De Gruyter Proceedings in Mathematics. Berlin: De Gruyter (ISBN 978-3-11-060132-9/hbk; 978-3-11-060241-8/ebook). x, 253 p. (2020). MSC: 46-06 46Lxx 47L10 00B25 PDF BibTeX XML Cite \textit{M. Filali} (ed.), Banach algebras and applications. Proceedings of the 23rd international conference, University of Oulu, Finland, November 3--11, 2017. Berlin: De Gruyter (2020; Zbl 1448.46007) Full Text: DOI
Rose, Smitha; Naduvath, Sudev Some results on injective chromatics topological indices of some graphs. (English) Zbl 07292203 South East Asian J. Math. Math. Sci. 15, No. 3, 115-128 (2019). MSC: 05C15 05C30 05C09 05C07 PDF BibTeX XML Cite \textit{S. Rose} and \textit{S. Naduvath}, South East Asian J. Math. Math. Sci. 15, No. 3, 115--128 (2019; Zbl 07292203) Full Text: Link
Ramdani, Rismawati; Salman, A. N. M.; Assiyatun, Hilda On the total edge and vertex irregularity strength of some graphs obtained from star. (English) Zbl 1451.05208 J. Indones. Math. Soc. 25, No. 3, 314-324 (2019). MSC: 05C78 PDF BibTeX XML Cite \textit{R. Ramdani} et al., J. Indones. Math. Soc. 25, No. 3, 314--324 (2019; Zbl 1451.05208) Full Text: DOI
Berberler, Zeynep Nihan On computing the irregularity of \(R\)-corona product types of graphs. (English) Zbl 1452.05153 Util. Math. 112, 53-68 (2019). MSC: 05C76 05C35 05C07 PDF BibTeX XML Cite \textit{Z. N. Berberler}, Util. Math. 112, 53--68 (2019; Zbl 1452.05153)
Kozerenko, Sergiy Edge imbalance sequences and their graphicness. (English) Zbl 1452.05023 J. Adv. Math. Stud. 12, No. 1, 50-62 (2019). MSC: 05C07 05C76 PDF BibTeX XML Cite \textit{S. Kozerenko}, J. Adv. Math. Stud. 12, No. 1, 50--62 (2019; Zbl 1452.05023)
Jeyanthi, P.; Sudha, A. Some results on edge irregular total labeling. (English) Zbl 07273189 J. Int. Math. Virtual Inst. 9, No. 1, 73-91 (2019). MSC: 05C78 PDF BibTeX XML Cite \textit{P. Jeyanthi} and \textit{A. Sudha}, J. Int. Math. Virtual Inst. 9, No. 1, 73--91 (2019; Zbl 07273189) Full Text: DOI
Jeyanthi, P.; Sudha, A. On the total irregularity strength of some graphs. (English) Zbl 07273165 Bull. Int. Math. Virtual Inst. 9, No. 2, 393-401 (2019). MSC: 05C78 PDF BibTeX XML Cite \textit{P. Jeyanthi} and \textit{A. Sudha}, Bull. Int. Math. Virtual Inst. 9, No. 2, 393--401 (2019; Zbl 07273165) Full Text: DOI
van Gils, Teun; Tiesinga, Paul H. E.; Englitz, Bernhard; Martens, Marijn B. Sensitivity to stimulus irregularity is inherent in neural networks. (English) Zbl 1429.92028 Neural Comput. 31, No. 9, 1789-1824 (2019). MSC: 92B20 PDF BibTeX XML Cite \textit{T. van Gils} et al., Neural Comput. 31, No. 9, 1789--1824 (2019; Zbl 1429.92028) Full Text: DOI
Asim, M. A.; Ahmad, A.; Hasni, R. Edge irregular \(k\)-labeling for several classes of trees. (English) Zbl 1427.05194 Util. Math. 111, 75-83 (2019). MSC: 05C78 PDF BibTeX XML Cite \textit{M. A. Asim} et al., Util. Math. 111, 75--83 (2019; Zbl 1427.05194)
Jeyanthi, P.; Sudha, A. On the total irregularity strength of wheel related graphs. (English) Zbl 1427.05197 Util. Math. 110, 131-144 (2019). MSC: 05C78 PDF BibTeX XML Cite \textit{P. Jeyanthi} and \textit{A. Sudha}, Util. Math. 110, 131--144 (2019; Zbl 1427.05197)
Tarawneh, I.; Hasni, R.; Siddiqui, M. K.; Asim, M. A. On the edge irregularity strength of disjoint union of certain graphs. (English) Zbl 07144852 Ars Comb. 142, 239-249 (2019). MSC: 05C78 05C38 PDF BibTeX XML Cite \textit{I. Tarawneh} et al., Ars Comb. 142, 239--249 (2019; Zbl 07144852)
Liu, Yang; Li, Jianxi On the irregularity of cacti. (English) Zbl 1449.05052 Ars Comb. 143, 77-89 (2019). MSC: 05C07 05C12 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{J. Li}, Ars Comb. 143, 77--89 (2019; Zbl 1449.05052)
Ibrahim, M.; Siddiqui, M. K.; Shabir, S.; Nadeem, M. Total irregularity strength of cycle related graphs with pendent edges. (English) Zbl 1449.05223 Ars Comb. 144, 309-322 (2019). MSC: 05C78 90C35 90C27 PDF BibTeX XML Cite \textit{M. Ibrahim} et al., Ars Comb. 144, 309--322 (2019; Zbl 1449.05223)
Tang, Zikai; Liu, Hechao; Luo, Huimin; Deng, Hanyuan Comparison between the non-self-centrality number and the total irregularity of graphs. (English) Zbl 1428.05089 Appl. Math. Comput. 361, 332-337 (2019). MSC: 05C12 05C35 PDF BibTeX XML Cite \textit{Z. Tang} et al., Appl. Math. Comput. 361, 332--337 (2019; Zbl 1428.05089) Full Text: DOI
Abdo, Hosam; Dimitrov, Darko; Gutman, Ivan Graph irregularity and its measures. (English) Zbl 1428.05300 Appl. Math. Comput. 357, 317-324 (2019). MSC: 05C90 05C07 05C35 PDF BibTeX XML Cite \textit{H. Abdo} et al., Appl. Math. Comput. 357, 317--324 (2019; Zbl 1428.05300) Full Text: DOI
Vijender, N. Approximation by hidden variable fractal functions: a sequential approach. (English) Zbl 1428.28019 Result. Math. 74, No. 4, Paper No. 192, 23 p. (2019). MSC: 28A80 41A17 41A30 PDF BibTeX XML Cite \textit{N. Vijender}, Result. Math. 74, No. 4, Paper No. 192, 23 p. (2019; Zbl 1428.28019) Full Text: DOI
Anholcer, Marcin; Cichacz, Sylwia Note on the group edge irregularity strength of graphs. (English) Zbl 1428.05260 Appl. Math. Comput. 350, 237-241 (2019). MSC: 05C78 05C25 05C15 PDF BibTeX XML Cite \textit{M. Anholcer} and \textit{S. Cichacz}, Appl. Math. Comput. 350, 237--241 (2019; Zbl 1428.05260) Full Text: DOI arXiv
Réti, Tamás On some properties of graph irregularity indices with a particular regard to the \(\sigma \)-index. (English) Zbl 1428.05086 Appl. Math. Comput. 344-345, 107-115 (2019). MSC: 05C12 05C50 05C90 PDF BibTeX XML Cite \textit{T. Réti}, Appl. Math. Comput. 344--345, 107--115 (2019; Zbl 1428.05086) Full Text: DOI
Ma, Yuede; Cao, Shujuan; Shi, Yongtang; Dehmer, Matthias; Xia, Chengyi Nordhaus-Gaddum type results for graph irregularities. (English) Zbl 1428.05154 Appl. Math. Comput. 343, 268-272 (2019). MSC: 05C35 05C07 05C12 PDF BibTeX XML Cite \textit{Y. Ma} et al., Appl. Math. Comput. 343, 268--272 (2019; Zbl 1428.05154) Full Text: DOI
Anholcer, Marcin; Cichacz, Sylwia; Przybyło, Jakub Linear bounds on nowhere-zero group irregularity strength and nowhere-zero group sum chromatic number of graphs. (English) Zbl 1428.05261 Appl. Math. Comput. 343, 149-155 (2019). MSC: 05C78 05C15 05C25 PDF BibTeX XML Cite \textit{M. Anholcer} et al., Appl. Math. Comput. 343, 149--155 (2019; Zbl 1428.05261) Full Text: DOI
Jorry, T. F.; Parvathy, K. S. Extremal irregularity of totally segregated unicyclic graphs. (English) Zbl 1423.05048 Far East J. Math. Sci. (FJMS) 112, No. 1, 1-21 (2019). MSC: 05C07 05C05 05C35 PDF BibTeX XML Cite \textit{T. F. Jorry} and \textit{K. S. Parvathy}, Far East J. Math. Sci. (FJMS) 112, No. 1, 1--21 (2019; Zbl 1423.05048) Full Text: DOI
Kamgarpour, Masoud; Sage, Daniel S. A geometric analogue of a conjecture of Gross and Reeder. (English) Zbl 1428.14021 Am. J. Math. 141, No. 5, 1457-1476 (2019). Reviewer: Yun Hao (Berlin) MSC: 14D24 20G10 PDF BibTeX XML Cite \textit{M. Kamgarpour} and \textit{D. S. Sage}, Am. J. Math. 141, No. 5, 1457--1476 (2019; Zbl 1428.14021) Full Text: DOI arXiv
Lu, Qiang; Zha, Jinxing Realization of irregular dynamic surface modeling supported by 3D terrain. (Chinese. English summary) Zbl 1449.65031 J. Hefei Univ. Technol., Nat. Sci. 42, No. 3, 403-408 (2019). MSC: 65D18 PDF BibTeX XML Cite \textit{Q. Lu} and \textit{J. Zha}, J. Hefei Univ. Technol., Nat. Sci. 42, No. 3, 403--408 (2019; Zbl 1449.65031) Full Text: DOI
Nurdin; Kim, Hye Kyung Irregular labeling on transportation network of splitting graphs of stars. (English) Zbl 1423.05146 Proc. Jangjeon Math. Soc. 22, No. 1, 103-108 (2019). MSC: 05C78 PDF BibTeX XML Cite \textit{Nurdin} and \textit{H. K. Kim}, Proc. Jangjeon Math. Soc. 22, No. 1, 103--108 (2019; Zbl 1423.05146) Full Text: DOI
Horoldagva, Batmend; Das, Kinkar Ch.; Selenge, Tsend-Ayush On \(ve\)-degree and \(ev\)-degree of graphs. (English) Zbl 07065738 Discrete Optim. 31, 1-7 (2019). MSC: 90C PDF BibTeX XML Cite \textit{B. Horoldagva} et al., Discrete Optim. 31, 1--7 (2019; Zbl 07065738) Full Text: DOI
Bennett, Jamie J. R.; Sherratt, Jonathan A. How do dispersal rates affect the transition from periodic to irregular spatio-temporal oscillations in invasive predator-prey systems? (English) Zbl 1411.92242 Appl. Math. Lett. 94, 80-86 (2019). MSC: 92D25 92D40 35C07 PDF BibTeX XML Cite \textit{J. J. R. Bennett} and \textit{J. A. Sherratt}, Appl. Math. Lett. 94, 80--86 (2019; Zbl 1411.92242) Full Text: DOI
Ashrafi, Ali Reza; Ghalavand, Ali; Ali, Akbar Molecular trees with the sixth, seventh and eighth minimal irregularity values. (English) Zbl 1404.05026 Discrete Math. Algorithms Appl. 11, No. 1, Article ID 1950002, 10 p. (2019). MSC: 05C05 05C07 05C75 05C35 05C90 PDF BibTeX XML Cite \textit{A. R. Ashrafi} et al., Discrete Math. Algorithms Appl. 11, No. 1, Article ID 1950002, 10 p. (2019; Zbl 1404.05026) Full Text: DOI
Bokhary, Syed Ahtsham ul Haq; Faheem, Hira Vertex irregular total labeling of grid graph. (English) Zbl 1408.05114 Palest. J. Math. 8, No. 1, 52-62 (2019). MSC: 05C78 05C30 05C76 PDF BibTeX XML Cite \textit{S. A. u. H. Bokhary} and \textit{H. Faheem}, Palest. J. Math. 8, No. 1, 52--62 (2019; Zbl 1408.05114) Full Text: Link
Gutman, Ivan Stepwise irregular graphs. (English) Zbl 1428.05061 Appl. Math. Comput. 325, 234-238 (2018). MSC: 05C07 05C35 05C12 05C50 PDF BibTeX XML Cite \textit{I. Gutman}, Appl. Math. Comput. 325, 234--238 (2018; Zbl 1428.05061) Full Text: DOI
Xu, Kexiang; Gu, Xiaoqian; Gutman, Ivan Relations between total irregularity and non-self-centrality of graphs. (English) Zbl 1427.05122 Appl. Math. Comput. 337, 461-468 (2018). MSC: 05C42 05C12 05C35 PDF BibTeX XML Cite \textit{K. Xu} et al., Appl. Math. Comput. 337, 461--468 (2018; Zbl 1427.05122) Full Text: DOI
Gutman, Ivan Topological indices and irregularity measures. (English) Zbl 1438.05055 Bull. Int. Math. Virtual Inst. 8, No. 3, 469-475 (2018). MSC: 05C09 05C07 05C35 PDF BibTeX XML Cite \textit{I. Gutman}, Bull. Int. Math. Virtual Inst. 8, No. 3, 469--475 (2018; Zbl 1438.05055) Full Text: DOI
Cao, Wei; Sun, Ming Formation control of partially irregular multi-agent systems with iterative learning. (Chinese. English summary) Zbl 1424.68114 Control Decis. 33, No. 9, 1619-1624 (2018). MSC: 68T05 68T42 93C40 PDF BibTeX XML Cite \textit{W. Cao} and \textit{M. Sun}, Control Decis. 33, No. 9, 1619--1624 (2018; Zbl 1424.68114) Full Text: DOI
Chen, Xiaodan; Hou, Yaoping; Lin, Fenggen Some new spectral bounds for graph irregularity. (English) Zbl 1426.05088 Appl. Math. Comput. 320, 331-340 (2018). MSC: 05C50 05C07 15A18 PDF BibTeX XML Cite \textit{X. Chen} et al., Appl. Math. Comput. 320, 331--340 (2018; Zbl 1426.05088) Full Text: DOI
Ahmad, A.; Asim, M. A.; Bača, M.; Hasni, R. Computing edge irregularity strength of complete \(m\)-ary trees. (English) Zbl 1424.05249 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 2, 145-152 (2018). MSC: 05C78 05C05 05C85 PDF BibTeX XML Cite \textit{A. Ahmad} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 2, 145--152 (2018; Zbl 1424.05249)
Jeyanthi, P.; Sudha, A. Total edge irregularity strength of some families of graphs. (English) Zbl 1415.05160 Util. Math. 109, 139-153 (2018). MSC: 05C78 PDF BibTeX XML Cite \textit{P. Jeyanthi} and \textit{A. Sudha}, Util. Math. 109, 139--153 (2018; Zbl 1415.05160)
Miwa, Masashi; Oyama, Tatsuo An optimal track maintenance scheduling model analysis taking the risk of accidents into consideration. (English) Zbl 1407.90169 Int. Trans. Oper. Res. 25, No. 5, 1465-1490 (2018). MSC: 90B35 90B25 PDF BibTeX XML Cite \textit{M. Miwa} and \textit{T. Oyama}, Int. Trans. Oper. Res. 25, No. 5, 1465--1490 (2018; Zbl 1407.90169) Full Text: DOI
Nasiri, R.; Ellahi, H. R.; Gholami, A.; Fath-Tabar, G. H. The irregularity and total irregularity of Eulerian graphs. (English) Zbl 1406.92775 Iran. J. Math. Chem. 9, No. 2, 101-111 (2018). MSC: 92E10 05C90 PDF BibTeX XML Cite \textit{R. Nasiri} et al., Iran. J. Math. Chem. 9, No. 2, 101--111 (2018; Zbl 1406.92775) Full Text: Link
Hinding, Nurdin; Firmayasari, Dian; Basir, Hasmawati; Bača, Martin; Semaničová-Feňovčíková, Andrea On irregularity strength of diamond network. (English) Zbl 1403.05125 AKCE Int. J. Graphs Comb. 15, No. 3, 291-297 (2018). MSC: 05C78 PDF BibTeX XML Cite \textit{N. Hinding} et al., AKCE Int. J. Graphs Comb. 15, No. 3, 291--297 (2018; Zbl 1403.05125) Full Text: DOI
Ibrahim, M.; Asif, M.; Ahmad, A.; Siddiqui, M. K. Computing the total irregularity strength of wheel related graphs. (English) Zbl 1407.05203 Util. Math. 108, 321-338 (2018). MSC: 05C78 PDF BibTeX XML Cite \textit{M. Ibrahim} et al., Util. Math. 108, 321--338 (2018; Zbl 1407.05203)
Yang, Hong; Siddiqui, Muhammad Kamran; Ibrahim, Muhammad; Ahmad, Sarfraz; Ahmad, Ali Computing the irregularity strength of planar graphs. (English) Zbl 1401.05263 Mathematics 6, No. 9, Paper No. 150, 14 p. (2018). MSC: 05C78 05C10 05C90 PDF BibTeX XML Cite \textit{H. Yang} et al., Mathematics 6, No. 9, Paper No. 150, 14 p. (2018; Zbl 1401.05263) Full Text: DOI
Tarawneh, I.; Hasni, R.; Asim, M. A. On the edge irregularity strength of disjoint union of star graph and subdivision of star graph. (English) Zbl 06986934 Ars Comb. 141, 93-100 (2018). MSC: 05C78 05C38 PDF BibTeX XML Cite \textit{I. Tarawneh} et al., Ars Comb. 141, 93--100 (2018; Zbl 06986934)
Abdo, Hosam; Dimitrov, Darko; Gutman, Ivan Graphs with maximal \(\sigma\) irregularity. (English) Zbl 1398.05064 Discrete Appl. Math. 250, 57-64 (2018). MSC: 05C07 05C35 PDF BibTeX XML Cite \textit{H. Abdo} et al., Discrete Appl. Math. 250, 57--64 (2018; Zbl 1398.05064) Full Text: DOI
Asim, M. A.; Ahmad, A.; Hasni, R. Iterative algorithm for computing irregularity strength of complete graph. (English) Zbl 06945745 Ars Comb. 138, 17-24 (2018). MSC: 05C78 05C85 PDF BibTeX XML Cite \textit{M. A. Asim} et al., Ars Comb. 138, 17--24 (2018; Zbl 06945745)
Voidelevich, A. S. Complete description of the relations between the irregularity coefficients of mutually adjoint differential systems. (English. Russian original) Zbl 1400.34020 Differ. Equ. 54, No. 6, 709-715 (2018); translation from Differ. Uravn. 54, No. 6, 715-721 (2018). MSC: 34A30 34D08 PDF BibTeX XML Cite \textit{A. S. Voidelevich}, Differ. Equ. 54, No. 6, 709--715 (2018; Zbl 1400.34020); translation from Differ. Uravn. 54, No. 6, 715--721 (2018) Full Text: DOI
Favale, Filippo F.; Naranjo, J. C.; Pirola, Gian P. On the Xiao conjecture for plane curves. (English) Zbl 1428.14053 Geom. Dedicata 195, 193-201 (2018). Reviewer: Yongnam Lee (Daejon) MSC: 14H50 14D06 14B10 PDF BibTeX XML Cite \textit{F. F. Favale} et al., Geom. Dedicata 195, 193--201 (2018; Zbl 1428.14053) Full Text: DOI
Jeyanthi, P.; Sudha, A. Total vertex irregularity strength of some graphs. (English) Zbl 1393.05228 Palest. J. Math. 7, No. 2, 725-733 (2018). MSC: 05C78 PDF BibTeX XML Cite \textit{P. Jeyanthi} and \textit{A. Sudha}, Palest. J. Math. 7, No. 2, 725--733 (2018; Zbl 1393.05228) Full Text: Link
Mehmood, Tariq; Mahmood, H.; Hussain, M. Edge irregularity strength of some rooted product graphs. (English) Zbl 1395.05077 Util. Math. 107, 279-286 (2018). MSC: 05C22 05C78 05C75 PDF BibTeX XML Cite \textit{T. Mehmood} et al., Util. Math. 107, 279--286 (2018; Zbl 1395.05077)
Bokhary, Syed Ahtsham ul Haq; Ali, Usman; Maqbool, Sahar Irregular total labelling of wheel related graphs. (English) Zbl 1395.05141 Util. Math. 107, 231-242 (2018). MSC: 05C78 PDF BibTeX XML Cite \textit{S. A. u. H. Bokhary} et al., Util. Math. 107, 231--242 (2018; Zbl 1395.05141)
Putra, Riyan Wicaksana; Susanti, Yeni On total edge irregularity strength of centralized uniform theta graphs. (English) Zbl 1390.05209 AKCE Int. J. Graphs Comb. 15, No. 1, 7-13 (2018). MSC: 05C78 05C40 PDF BibTeX XML Cite \textit{R. W. Putra} and \textit{Y. Susanti}, AKCE Int. J. Graphs Comb. 15, No. 1, 7--13 (2018; Zbl 1390.05209) Full Text: DOI
Anholcer, Marcin; Cichacz, Sylwia; Jura, Rafał; Marczyk, Antoni Note on group irregularity strength of disconnected graphs. (English) Zbl 1390.05200 Open Math. 16, 154-160 (2018). MSC: 05C78 05C22 PDF BibTeX XML Cite \textit{M. Anholcer} et al., Open Math. 16, 154--160 (2018; Zbl 1390.05200) Full Text: DOI
Bača, Martin; Hinding, Nurdin; Javed, Aisha; Semaničová-Feňovčíková, Andrea Entire \(H\)-irregularity strength of plane graphs. (English) Zbl 06890103 Brankovic, Ljiljana (ed.) et al., Combinatorial algorithms. 28th international workshop, IWOCA 2017, Newcastle, NSW, Australia, July 17–21, 2017. Revised selected papers. Cham: Springer (ISBN 978-3-319-78824-1/pbk; 978-3-319-78825-8/ebook). Lecture Notes in Computer Science 10765, 3-12 (2018). MSC: 68Rxx 68Wxx PDF BibTeX XML Cite \textit{M. Bača} et al., Lect. Notes Comput. Sci. 10765, 3--12 (2018; Zbl 06890103) Full Text: DOI
Heineken, Sigrid B.; Llarena, Juan P.; Morillas, Patricia M. On the minimizers of the fusion frame potential. (English) Zbl 1393.42030 Math. Nachr. 291, No. 4, 669-681 (2018). Reviewer: Ghanshyam Bhatt (Nashville) MSC: 42C15 42C99 42C40 15A60 PDF BibTeX XML Cite \textit{S. B. Heineken} et al., Math. Nachr. 291, No. 4, 669--681 (2018; Zbl 1393.42030) Full Text: DOI arXiv
Przybyło, Jakub Distant total irregularity strength of graphs via random vertex ordering. (English) Zbl 1380.05080 Discrete Math. 341, No. 4, 1098-1102 (2018). MSC: 05C15 05C07 05C35 PDF BibTeX XML Cite \textit{J. Przybyło}, Discrete Math. 341, No. 4, 1098--1102 (2018; Zbl 1380.05080) Full Text: DOI
Xu, Lei; Zhai, Wanming; Gao, Jianmin A probabilistic model for track random irregularities in vehicle/track coupled dynamics. (English) Zbl 07166255 Appl. Math. Modelling 51, 145-158 (2017). MSC: 74 70 PDF BibTeX XML Cite \textit{L. Xu} et al., Appl. Math. Modelling 51, 145--158 (2017; Zbl 07166255) Full Text: DOI
Bača, Martin; Lascsáková, Marcela; Naseem, Maria; Semaničová-Feňovčíková, Andrea On entire face irregularity strength of disjoint union of plane graphs. (English) Zbl 1411.05231 Appl. Math. Comput. 307, 232-238 (2017). MSC: 05C78 05C15 PDF BibTeX XML Cite \textit{M. Bača} et al., Appl. Math. Comput. 307, 232--238 (2017; Zbl 1411.05231) Full Text: DOI
Myl’tsina, Ol’ga Anatol’evna; Polienko, Asel’ Valer’evna; Belostochnyĭ, Grigoriĭ Nikolaevich Dynamic stability of heated geometrically irregular plates on the basis of the Reisner model. (Russian. English summary) Zbl 1413.74046 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 21, No. 4, 760-772 (2017). MSC: 74F05 74K20 PDF BibTeX XML Cite \textit{O. A. Myl'tsina} et al., Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 21, No. 4, 760--772 (2017; Zbl 1413.74046) Full Text: DOI MNR
Muthu Guru Packiam, K.; Ramya, S. Modular irregular labeling of some new classes of graphs. (English) Zbl 1382.05064 J. Graph Label. 3, No. 1, 51-57 (2017). MSC: 05C78 05C75 PDF BibTeX XML Cite \textit{K. Muthu Guru Packiam} and \textit{S. Ramya}, J. Graph Label. 3, No. 1, 51--57 (2017; Zbl 1382.05064) Full Text: Link
Muthu Guru Packiam, K.; Manimaran, T.; Thuraiswamy, A. Irregularity strength of edge corona of two graphs. (English) Zbl 1382.05063 J. Graph Label. 3, No. 1, 1-8 (2017). MSC: 05C78 05C38 PDF BibTeX XML Cite \textit{K. Muthu Guru Packiam} et al., J. Graph Label. 3, No. 1, 1--8 (2017; Zbl 1382.05063) Full Text: Link
Laurence, S. David; Kathiresan, KM. The total edge irregular strength of the path union of cycles. (English) Zbl 1387.05225 Util. Math. 105, 125-131 (2017). MSC: 05C78 05C76 05C38 PDF BibTeX XML Cite \textit{S. D. Laurence} and \textit{KM. Kathiresan}, Util. Math. 105, 125--131 (2017; Zbl 1387.05225)
Al-Mushayt, Omar Saeed On edge irregularity strength of products of certain families of graphs with path \(P_2\). (English) Zbl 06836997 Ars Comb. 135, 323-334 (2017). MSC: 05C78 PDF BibTeX XML Cite \textit{O. S. Al-Mushayt}, Ars Comb. 135, 323--334 (2017; Zbl 06836997)
Slamin On distance irregular labelling of graphs. (English) Zbl 1378.05179 Far East J. Math. Sci. (FJMS) 102, No. 5, 919-932 (2017). MSC: 05C78 05C12 PDF BibTeX XML Cite \textit{Slamin}, Far East J. Math. Sci. (FJMS) 102, No. 5, 919--932 (2017; Zbl 1378.05179) Full Text: DOI Link
Bača, Martin; Jendrol’, Stanislav Colourings of graphs by labellings. (English) Zbl 1377.05162 Arumugam, S. (ed.) et al., Proceedings of the 9th international workshop on graph labelings (IWOGL 2016), Cracow, Poland, July 7–9, 2016. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 60, 25-31 (2017). MSC: 05C78 05C15 PDF BibTeX XML Cite \textit{M. Bača} and \textit{S. Jendrol'}, Electron. Notes Discrete Math. 60, 25--31 (2017; Zbl 1377.05162) Full Text: DOI
Anholcer, Marcin; Cichacz-Przenioslo, Sylwia Group irregular labelings of disconnected graphs. (English) Zbl 1376.05133 Contrib. Discrete Math. 12, No. 2, 158-166 (2017). MSC: 05C78 PDF BibTeX XML Cite \textit{M. Anholcer} and \textit{S. Cichacz-Przenioslo}, Contrib. Discrete Math. 12, No. 2, 158--166 (2017; Zbl 1376.05133) Full Text: Link
Naeem, Muhammad; Siddiqui, Muhammad Kamran Total irregularity strength of disjoint union of isomorphic copies of generalized Petersen graph. (English) Zbl 1386.05168 Discrete Math. Algorithms Appl. 9, No. 6, Article ID 1750071, 9 p. (2017). MSC: 05C78 PDF BibTeX XML Cite \textit{M. Naeem} and \textit{M. K. Siddiqui}, Discrete Math. Algorithms Appl. 9, No. 6, Article ID 1750071, 9 p. (2017; Zbl 1386.05168) Full Text: DOI
Bong, Novi H.; Lin, Yuqing; Slamin On distance irregular labelings of cycles and wheels. (English) Zbl 1375.05071 Australas. J. Comb. 69, Part 3, 315-322 (2017). MSC: 05C12 05C78 05C38 PDF BibTeX XML Cite \textit{N. H. Bong} et al., Australas. J. Comb. 69, Part 3, 315--322 (2017; Zbl 1375.05071) Full Text: Link
Muthu Guru Packiam, K.; Manimaran, T.; Thuraiswamy, A. 1-distant irregularity strength of graphs. (English) Zbl 06814587 Arumugam, S. (ed.) et al., Theoretical computer science and discrete mathematics. First international conference, ICTCSDM 2016, Krishnankoil, India, December 19–21, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-64418-9/pbk; 978-3-319-64419-6/ebook). Lecture Notes in Computer Science 10398, 182-190 (2017). MSC: 68Qxx 68Rxx PDF BibTeX XML Cite \textit{K. Muthu Guru Packiam} et al., Lect. Notes Comput. Sci. 10398, 182--190 (2017; Zbl 06814587) Full Text: DOI
Packiam, K. Muthu Guru; Manimaran, T.; Thuraiswamy, A. Irregularity strength of corona of two graphs. (English) Zbl 06814586 Arumugam, S. (ed.) et al., Theoretical computer science and discrete mathematics. First international conference, ICTCSDM 2016, Krishnankoil, India, December 19–21, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-64418-9/pbk; 978-3-319-64419-6/ebook). Lecture Notes in Computer Science 10398, 175-181 (2017). MSC: 68Qxx 68Rxx PDF BibTeX XML Cite \textit{K. M. G. Packiam} et al., Lect. Notes Comput. Sci. 10398, 175--181 (2017; Zbl 06814586) Full Text: DOI
Ahmad, Ali Computation of certain topological properties of para-line graph of honeycomb networks and graphene. (English) Zbl 1386.05041 Discrete Math. Algorithms Appl. 9, No. 5, Article ID 1750064, 16 p. (2017). MSC: 05C12 05C05 PDF BibTeX XML Cite \textit{A. Ahmad}, Discrete Math. Algorithms Appl. 9, No. 5, Article ID 1750064, 16 p. (2017; Zbl 1386.05041) Full Text: DOI
Przybyło, Jakub Distant irregularity strength of graphs with bounded minimum degree. (English) Zbl 1372.05043 Discrete Appl. Math. 233, 159-165 (2017). MSC: 05C07 05C35 05C15 PDF BibTeX XML Cite \textit{J. Przybyło}, Discrete Appl. Math. 233, 159--165 (2017; Zbl 1372.05043) Full Text: DOI
Siddiqui, Muhammad Kamran; Afzal, Deeba; Faisal, Muhammad Ramzan Total edge irregularity strength of accordion graphs. (English) Zbl 1376.05137 J. Comb. Optim. 34, No. 2, 534-544 (2017). MSC: 05C78 PDF BibTeX XML Cite \textit{M. K. Siddiqui} et al., J. Comb. Optim. 34, No. 2, 534--544 (2017; Zbl 1376.05137) Full Text: DOI
Ashraf, Faraha; Bača, Martin; Lascśaková, Marcela; Semaničová-Feňovčíková, Andrea On H-irregularity strength of graphs. (English) Zbl 1372.05185 Discuss. Math., Graph Theory 37, No. 4, 1067-1078 (2017). MSC: 05C78 05C70 PDF BibTeX XML Cite \textit{F. Ashraf} et al., Discuss. Math., Graph Theory 37, No. 4, 1067--1078 (2017; Zbl 1372.05185) Full Text: DOI
Brandt, Felix; Harrenstein, Paul; Seedig, Hans Georg Minimal extending sets in tournaments. (English) Zbl 1397.91185 Math. Soc. Sci. 87, 55-63 (2017). MSC: 91B14 05C20 PDF BibTeX XML Cite \textit{F. Brandt} et al., Math. Soc. Sci. 87, 55--63 (2017; Zbl 1397.91185) Full Text: DOI
Casnati, Gianfranco Special Ulrich bundles on non-special surfaces with \(p_g=q=0\). (English) Zbl 1435.14042 Int. J. Math. 28, No. 8, Article ID 1750061, 18 p. (2017); erratum ibid. 29, No. 5, Article ID 1892001, 3 p. (2018). Reviewer: N. Mohan Kumar (St. Louis) MSC: 14J60 14J26 14J27 14J28 14J29 PDF BibTeX XML Cite \textit{G. Casnati}, Int. J. Math. 28, No. 8, Article ID 1750061, 18 p. (2017; Zbl 1435.14042) Full Text: DOI arXiv
Siddiqui, M. K.; Miller, M.; Ryan, J. Total edge irregularity strength of octagonal grid graph. (English) Zbl 1379.05097 Util. Math. 103, 277-287 (2017). Reviewer: William G. Brown (Montréal) MSC: 05C78 PDF BibTeX XML Cite \textit{M. K. Siddiqui} et al., Util. Math. 103, 277--287 (2017; Zbl 1379.05097)
Tait, Michael; Tobin, Josh Three conjectures in extremal spectral graph theory. (English) Zbl 1368.05098 J. Comb. Theory, Ser. B 126, 137-161 (2017). MSC: 05C50 05C35 05C10 PDF BibTeX XML Cite \textit{M. Tait} and \textit{J. Tobin}, J. Comb. Theory, Ser. B 126, 137--161 (2017; Zbl 1368.05098) Full Text: DOI arXiv
Chen, Xiang’en; Wei, Yuqiong; Qi, Lijuan Total vertex irregularity strength of equitable complete 7-partite graphs. (Chinese. English summary) Zbl 1374.05189 J. Northwest Norm. Univ., Nat. Sci. 53, No. 1, 22-31 (2017). MSC: 05C78 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Northwest Norm. Univ., Nat. Sci. 53, No. 1, 22--31 (2017; Zbl 1374.05189) Full Text: DOI
Kathiresan, KM.; Ramalakshmi, R. Total edge irregularity strength for three classes of graphs. (English) Zbl 1368.05128 Util. Math. 102, 321-329 (2017). MSC: 05C78 PDF BibTeX XML Cite \textit{KM. Kathiresan} and \textit{R. Ramalakshmi}, Util. Math. 102, 321--329 (2017; Zbl 1368.05128)
Bergdall, John; Pollack, Robert A remark on non-integral \(p\)-adic slopes for modular forms. (Une remarque sur les pentes \(p\)-adiques non entières des formes modulaires.) (English. French summary) Zbl 1417.11052 C. R., Math., Acad. Sci. Paris 355, No. 3, 260-262 (2017). MSC: 11F33 11F85 PDF BibTeX XML Cite \textit{J. Bergdall} and \textit{R. Pollack}, C. R., Math., Acad. Sci. Paris 355, No. 3, 260--262 (2017; Zbl 1417.11052) Full Text: DOI arXiv
Lu, Xin; Zuo, Kang On the slope of hyperelliptic fibrations with positive relative irregularity. (English) Zbl 1354.14020 Trans. Am. Math. Soc. 369, No. 2, 909-934 (2017). Reviewer: Davide Frapporti (Bayreuth) MSC: 14D06 14H10 14D99 14J29 PDF BibTeX XML Cite \textit{X. Lu} and \textit{K. Zuo}, Trans. Am. Math. Soc. 369, No. 2, 909--934 (2017; Zbl 1354.14020) Full Text: DOI arXiv
Kok, Johan; Sudev, Naduvath A study on total irregularities of certain graphs and digraphs. (English) Zbl 1438.05139 Cogent Math. 3, Article ID 1179708, 10 p. (2016). MSC: 05C35 05C07 05C20 05C38 05C75 PDF BibTeX XML Cite \textit{J. Kok} and \textit{N. Sudev}, Cogent Math. 3, Article ID 1179708, 10 p. (2016; Zbl 1438.05139) Full Text: DOI
Jeyanthi, P.; Sudha, A. Total edge irregularity strength of disjoint union of double wheel graphs. (English) Zbl 1380.05177 Proyecciones 35, No. 3, 251-262 (2016). MSC: 05C78 PDF BibTeX XML Cite \textit{P. Jeyanthi} and \textit{A. Sudha}, Proyecciones 35, No. 3, 251--262 (2016; Zbl 1380.05177) Full Text: DOI
Ahmad, Ali; Ibrahim, Muhammad; Siddiqui, Muhammad Kamran On the total iregularity strength of generalized Petersen graph. (English) Zbl 1389.05147 Math. Rep., Buchar. 18(68), No. 2, 197-204 (2016). MSC: 05C78 PDF BibTeX XML Cite \textit{A. Ahmad} et al., Math. Rep., Buchar. 18(68), No. 2, 197--204 (2016; Zbl 1389.05147)