×

The coarse classification of countable Abelian groups. (English) Zbl 1252.20039

Summary: We prove that two countable locally finite-by-Abelian groups \(G,H\) endowed with proper left-invariant metrics are coarsely equivalent if and only if their asymptotic dimensions coincide and the groups are either both finitely generated or both are infinitely generated. On the other hand, we show that each countable group \(G\) that coarsely embeds into a countable Abelian group is locally nilpotent-by-finite. Moreover, the group \(G\) is locally Abelian-by-finite if and only if \(G\) is undistorted in the sense that \(G\) can be written as the union \(G=\bigcup _{n\in\omega }G_n\) of countably many finitely generated subgroups such that each \(G_n\) is undistorted in \(G_{n+1}\) (which means that the identity inclusion \(G_n\to G_{n+1}\) is a quasi-isometric embedding with respect to word metrics on \(G_n\) and \(G_{n+1}\)).

MSC:

20F65 Geometric group theory
20F69 Asymptotic properties of groups
57M07 Topological methods in group theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Patrice Assouad, Plongements lipschitziens dans \?\(^{n}\), Bull. Soc. Math. France 111 (1983), no. 4, 429 – 448 (French, with English summary). · Zbl 0597.54015
[2] Reinhold Baer, Finiteness properties of groups, Duke Math. J. 15 (1948), 1021 – 1032. · Zbl 0031.19705
[3] T. Banakh, I. Zarichnyi, The coarse classification of homogeneous ultra-metric spaces. preprint (arXiv:0801.2132). · Zbl 1252.20039
[4] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3) 25 (1972), 603 – 614. · Zbl 0259.20045 · doi:10.1112/plms/s3-25.4.603
[5] N. Brodskiy, J. Dydak, J. Higes, and A. Mitra, Dimension zero at all scales, Topology Appl. 154 (2007), no. 14, 2729 – 2740. · Zbl 1177.54015 · doi:10.1016/j.topol.2007.05.006
[6] N. Brodskiy, J. Dydak, and A. Mitra, Švarc-Milnor lemma: a proof by definition, Topology Proc. 31 (2007), no. 1, 31 – 36. · Zbl 1141.22301
[7] A. Dranishnikov and J. Smith, Asymptotic dimension of discrete groups, Fund. Math. 189 (2006), no. 1, 27 – 34. · Zbl 1100.20034 · doi:10.4064/fm189-1-2
[8] Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. · Zbl 0965.20025
[9] Peter Hilton, On a theorem of Schur, Int. J. Math. Math. Sci. 28 (2001), no. 8, 455 – 460. · Zbl 1050.20021 · doi:10.1155/S0161171201006457
[10] Benson Farb and Lee Mosher, Problems on the geometry of finitely generated solvable groups, Crystallographic groups and their generalizations (Kortrijk, 1999) Contemp. Math., vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 121 – 134. · Zbl 0983.20038 · doi:10.1090/conm/262/04170
[11] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53 – 73. · Zbl 0474.20018
[12] Mikhael Gromov, Infinite groups as geometric objects, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 385 – 392. · Zbl 0599.20041
[13] M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1 – 295. · Zbl 0841.20039
[14] J. Higes, A coarse classification of countable Abelian groups, prepint (arXiv:0803.0379v1). · Zbl 1252.20039
[15] J. Higes, Assouad-Nagata dimension of locally finite groups and asymptotic cones, preprint (arXiv:0711.1512). · Zbl 1244.54072
[16] M. I. Kargapolov and Ju. I. Merzljakov, Fundamentals of the theory of groups, Graduate Texts in Mathematics, vol. 62, Springer-Verlag, New York-Berlin, 1979. Translated from the second Russian edition by Robert G. Burns. · Zbl 0549.20001
[17] A. I. Mal\(^{\prime}\)cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9 – 32 (Russian).
[18] Mahan Mitra, Coarse extrinsic geometry: a survey, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 341 – 364. · Zbl 0914.20034 · doi:10.2140/gtm.1998.1.341
[19] B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc. 29 (1954), 236 – 248. · Zbl 0055.01604 · doi:10.1112/jlms/s1-29.2.236
[20] Scott D. Pauls, The large scale geometry of nilpotent Lie groups, Comm. Anal. Geom. 9 (2001), no. 5, 951 – 982. · Zbl 1005.53033 · doi:10.4310/CAG.2001.v9.n5.a2
[21] Дискретные подгруппы групп Ли., Издат. ”Мир”, Мосцощ, 1977 (Руссиан). Транслатед фром тхе Енглиш бы О. В. Šварцман; Едитед бы Ѐ. Б. Винберг; Щитх а супплемент ”Аритхметициты оф ирредуцибле латтицес ин семисимпле гроупс оф ранк греатер тхан 1” бы Г. А. Маргулис.
[22] John Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003. · Zbl 1042.53027
[23] J. M. Sanjurjo, Problems from the Madrid department of Geometry and Topology in: Open Problems in Topology, II Elsevier, 2007. pp. 737-741.
[24] R. Sauer, Homological invariants and quasi-isometry, Geom. Funct. Anal. 16 (2006), no. 2, 476 – 515. · Zbl 1173.20032 · doi:10.1007/s00039-006-0562-y
[25] Yehuda Shalom, Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math. 192 (2004), no. 2, 119 – 185. · Zbl 1064.43004 · doi:10.1007/BF02392739
[26] J. Smith, On asymptotic dimension of countable abelian groups, Topology Appl. 153 (2006), no. 12, 2047 – 2054. · Zbl 1144.20024 · doi:10.1016/j.topol.2005.07.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.