×

An adaptive discontinuous Petrov-Galerkin method for the Grad-Shafranov equation. (English) Zbl 1451.65202

Summary: In this work, we propose and develop an arbitrary-order adaptive discontinuous Petrov-Galerkin (DPG) method for the nonlinear Grad-Shafranov equation. An ultraweak formulation of the DPG scheme for the equation is given based on a minimal residual method. The DPG scheme has the advantage of providing more accurate gradients compared to conventional finite element methods, which is desired for numerical solutions to the Grad-Shafranov equation. The numerical scheme is augmented with an adaptive mesh refinement approach, and a criterion based on the residual norm in the minimal residual method is developed to achieve dynamic refinement. Nonlinear solvers for the resulting system are explored and a Picard iteration with Anderson acceleration is found to be efficient to solve the system. Finally, the proposed algorithm is implemented in parallel on MFEM using a domain-decomposition approach, and our implementation is general, supporting arbitrary order of accuracy and general meshes. Numerical results are presented to demonstrate the efficiency and accuracy of the proposed algorithm.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM, 12 (1965), pp. 547-560. · Zbl 0149.11503
[2] R. Anderson et al., MFEM: Modular Finite Element Methods Library, Comput. Math. Appl., to appear.
[3] R. Aymar, P. Barabaschi, and Y. Shimomura, The ITER design, Plasma Phys. Control. Fusion, 44 (2002), pp. 519-566.
[4] S. Balay et al., PETSc Users Manual, Technical Report, ANL-95/11 Rev. 313, Argonne National Laboratory, Argonne, IL, 2019.
[5] P. R. Brune, M. G. Knepley, B. F. Smith, and X. Tu, Composing scalable nonlinear algebraic solvers, SIAM Rev., 57 (2015), pp. 535-565. · Zbl 1336.65030
[6] T. Bui-Thanh and O. Ghattas, A PDE-constrained optimization approach to the discontinuous Petrov-Galerkin method with a trust region inexact Newton-CG solver, Comput. Methods Appl. Mech. Engrg., 278 (2014), pp. 20-40. · Zbl 1425.65151
[7] C. Carstensen, P. Bringmann, F. Hellwig, and P. Wriggers, Nonlinear discontinuous Petrov-Galerkin methods, Numer. Math., 139 (2018), pp. 529-561. · Zbl 1398.65292
[8] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan, A posteriori error control for DPG methods, SIAM J. Numer. Anal., 52 (2014), pp. 1335-1353. · Zbl 1320.65171
[9] A. J. Cerfon and J. P. Freidberg, “One size fits all” analytic solutions to the Grad-Shafranov equation, Phys. Plasmas, 17 (2010), 032502.
[10] J. Červenỳ, V. Dobrev, and T. Kolev, Nonconforming mesh refinement for high-order finite elements, SIAM J. Sci. Comput., 41 (2019), pp. C367-C392. · Zbl 1471.65210
[11] J. Chan, L. Demkowicz, and R. Moser, A DPG method for steady viscous compressible flow, Comput. & Fluids, 98 (2014), pp. 69-90. · Zbl 1391.76311
[12] J. Chan, L. Demkowicz, R. Moser, and N. Roberts, A Class of Discontinuous Petrov-Galerkin Methods. Part V: Solution of \(1\) D Burgers and Navier-Stokes Equations, ICES Report 10-25, University of Texas at Austin, Austin, TX, 2010.
[13] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1558-1572. · Zbl 1231.76142
[14] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions, Numer. Methods Partial Differential Equations, 27 (2011), pp. 70-105. · Zbl 1208.65164
[15] L. Demkowicz and J. Gopalakrishnan, Analysis of the DPG method for the Poisson equation, SIAM J. Numer. Anal., 49 (2011), pp. 1788-1809. · Zbl 1237.65122
[16] L. Demkowicz and J. Gopalakrishnan, Discontinuous Petrov-Galerkin (DPG) method, in Encyclopedia of Computational Mechanics, 2nd ed., (2017).
[17] L. Demkowicz, J. Gopalakrishnan, and A. H. Niemi, A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity, Appl. Numer. Math., 62 (2012), pp. 396-427. · Zbl 1316.76047
[18] L. F. Demkowicz and J. Gopalakrishnan, An overview of the discontinuous Petrov Galerkin method, in Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, Springer, Cham, Switzerland, 2014, pp. 149-180. · Zbl 1282.65152
[19] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Classics Appl. Math. 16, SIAM, Philadelphia, 1996. · Zbl 0847.65038
[20] R. D. Falgout and U. M. Yang, HYPRE: A library of high performance preconditioners, in International Conference on Computational Science, Springer, Berlin, 2002, pp. 632-641. · Zbl 1056.65046
[21] J. Gopalakrishnan and W. Qiu, An analysis of the practical DPG method, Math. Comp., 83 (2014), pp. 537-552. · Zbl 1282.65154
[22] H. Grad and H. Rubin, Hydromagnetic equilibria and force-free fields, J. Nuclear Energy, 7 (1958), pp. 284-285.
[23] Z. Guo, X.-Z. Tang, and C. J. McDevitt, Models of primary runaway electron distribution in the runaway vortex regime, Phys. Plasmas, 24 (2017), 112508.
[24] H. Heumann and F. Rapetti, A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries, J. Comput. Phys., 334 (2017), pp. 522-540. · Zbl 1375.78031
[25] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H (curl) and H (div) spaces, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509. · Zbl 1153.78006
[26] E. Howell and C. R. Sovinec, Solving the Grad-Shafranov equation with spectral elements, Comput. Phys. Commun., 185 (2014), pp. 1415-1421. · Zbl 1344.76063
[27] G. Huysmans and O. Czarny, MHD stability in X-point geometry: Simulation of ELMs, Nuclear Fusion, 47 (2007), pp. 659-666.
[28] G. Huysmans, J. Goedbloed, and W. Kerner, Isoparametric bicubic Hermite elements for solution of the Grad-Shafranov equation, Int. J. Modern Phys. C, 2 (1991), pp. 371-376.
[29] S. Jardin, Computational Methods in Plasma Physics, CRC Press, Boca Raton, FL, 2010. · Zbl 1198.76002
[30] B. Keith, S. Petrides, F. Fuentes, and L. Demkowicz, Discrete least-squares finite element methods, Comput. Methods Appl. Mech. Engrg., 327 (2017), pp. 226-255. · Zbl 1439.65179
[31] T. V. Kolev and P. S. Vassilevski, Parallel auxiliary space AMG for H (curl) problems, J. Comput. Math., 27 (2009), pp. 604-623. · Zbl 1212.65128
[32] J. Lee and A. Cerfon, ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria, Comput. Phys. Commun., 190 (2015), pp. 72-88. · Zbl 1344.76090
[33] H. Lütjens, A. Bondeson, and O. Sauter, The chease code for toroidal MHD equilibria, Comput. Phys. Commun., 97 (1996), pp. 219-260. · Zbl 0922.76240
[34] D. Moro, N. Nguyen, and J. Peraire, A hybridized discontinuous Petrov-Galerkin scheme for scalar conservation laws, Internat. J. Numer. Methods Engrg., 91 (2012), pp. 950-970.
[35] S. Nagaraj, J. Grosek, S. Petrides, L. F. Demkowicz, and J. Mora, A \(3\) D DPG Maxwell approach to nonlinear Raman gain in fiber laser amplifiers, J. Comput. Phys. X, 2 (2019), 100002.
[36] S. Nagaraj, S. Petrides, and L. F. Demkowicz, Construction of DPG Fortin operators for second order problems, Comput. Math. Appl., 74 (2017), pp. 1964-1980. · Zbl 1397.65284
[37] J.-C. Nédélec, Mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 35 (1980), pp. 315-341. · Zbl 0419.65069
[38] A. Palha, B. Koren, and F. Felici, A mimetic spectral element solver for the Grad-Shafranov equation, J. Comput. Phys., 316 (2016), pp. 63-93. · Zbl 1349.76516
[39] A. Pataki, A. J. Cerfon, J. P. Freidberg, L. Greengard, and M. O’Neil, A fast, high-order solver for the Grad-Shafranov equation, J. Comput. Phys., 243 (2013), pp. 28-45. · Zbl 1349.76925
[40] S. Petrides, Adaptive Multilevel Solvers for the Discontinuous Petrov-Galerkin Method with an Emphasis on High-frequency Wave Propagation Problems, Ph.D. thesis, University of Texas at Austin, Austin, TX, 2019.
[41] S. Petrides and L. F. Demkowicz, An adaptive DPG method for high frequency time-harmonic wave propagation problems, Comput. Math. Appl., 74 (2017), pp. 1999-2017. · Zbl 1397.65288
[42] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for \(2\) nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, Springer, Berlin, 1977, pp. 292-315. · Zbl 0362.65089
[43] N. V. Roberts, T. Bui-Thanh, and L. Demkowicz, The DPG method for the Stokes problem, Comput. Math. Appl., 67 (2014), pp. 966-995. · Zbl 1381.76200
[44] N. V. Roberts, L. Demkowicz, and R. Moser, A discontinuous Petrov-Galerkin methodology for adaptive solutions to the incompressible Navier-Stokes equations, J. Comput. Phys., 301 (2015), pp. 456-483. · Zbl 1349.76259
[45] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, Frontiers Appl. Math. 3, SIAM, Philkadelphia, 1987, pp. 73-130.
[46] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461-469. · Zbl 0780.65022
[47] S. Sabbagh, et al., Equilibrium properties of spherical torus plasmas in NSTX, Nuclear Fusion, 41 (2001), pp. 1601-1612.
[48] T. Sánchez-Vizuet and M. E. Solano, A Hybridizable Discontinuous Galerkin solver for the Grad-Shafranov equation, Comput. Phys. Commun., 235 (2019), pp. 120-132. · Zbl 07682893
[49] T. Sánchez-Vizuet, M. E. Solano, and A. J. Cerfon, Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad-Shafranov Equation by Extension from Polygonal Subdomains, Comput. Phys. Commun., 255 (2020), 107239. · Zbl 1523.65096
[50] V. Shafranov, On magnetohydrodynamical equilibrium configurations, Sov. Phys. JETP, 6 (1958), pp. 545-554. · Zbl 0081.21801
[51] H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49 (2011), pp. 1715-1735. · Zbl 1254.65067
[52] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, and V. M. Calo, A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D, J. Comput. Phys., 230 (2011), pp. 2406-2432. · Zbl 1316.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.