×

The dynamics of neural fields on bounded domains: an interface approach for Dirichlet boundary conditions. (English) Zbl 1395.92036

Summary: Continuum neural field equations model the large-scale spatio-temporal dynamics of interacting neurons on a cortical surface. They have been extensively studied, both analytically and numerically, on bounded as well as unbounded domains. Neural field models do not require the specification of boundary conditions. Relatively little attention has been paid to the imposition of neural activity on the boundary, or to its role in inducing patterned states. Here we redress this imbalance by studying neural field models of Amari type (posed on one- and two-dimensional bounded domains) with Dirichlet boundary conditions. The Amari model has a Heaviside nonlinearity that allows for a description of localised solutions of the neural field with an interface dynamics. We show how to generalise this reduced but exact description by deriving a normal velocity rule for an interface that encapsulates boundary effects. The linear stability analysis of localised states in the interface dynamics is used to understand how spatially extended patterns may develop in the absence and presence of boundary conditions. Theoretical results for pattern formation are shown to be in excellent agreement with simulations of the full neural field model. Furthermore, a numerical scheme for the interface dynamics is introduced and used to probe the way in which a Dirichlet boundary condition can limit the growth of labyrinthine structures.

MSC:

92C20 Neural biology
45K05 Integro-partial differential equations
37N25 Dynamical systems in biology
65R20 Numerical methods for integral equations
45M10 Stability theory for integral equations

Software:

Matlab; interparc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wilson, HR; Cowan, JD, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys J, 12, 1-24, (1972) · doi:10.1016/S0006-3495(72)86068-5
[2] Wilson, HR; Cowan, JD, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, 13, 55-80, (1973) · Zbl 0281.92003 · doi:10.1007/BF00288786
[3] Amari, S, Homogeneous nets of neuron-like elements, Biol Cybern, 17, 211-220, (1975) · Zbl 0302.92004 · doi:10.1007/BF00339367
[4] Amari, S, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol Cybern, 27, 77-87, (1977) · Zbl 0367.92005 · doi:10.1007/BF00337259
[5] Nunez, PL, The brain wave equation: a model for the EEG, Math Biosci, 21, 279-297, (1974) · Zbl 0292.92001 · doi:10.1016/0025-5564(74)90020-0
[6] Ermentrout, GB, Neural nets as spatio-temporal pattern forming systems, Rep Prog Phys, 61, 353-430, (1998) · doi:10.1088/0034-4885/61/4/002
[7] Coombes, S, Waves, bumps, and patterns in neural field theories, Biol Cybern, 93, 91-108, (2005) · Zbl 1116.92012 · doi:10.1007/s00422-005-0574-y
[8] Coombes, S, Large-scale neural dynamics: simple and complex, NeuroImage, 52, 731-739, (2010) · doi:10.1016/j.neuroimage.2010.01.045
[9] Bressloff, PC, Spatiotemporal dynamics of continuum neural fields, J Phys A, 45, (2012) · Zbl 1263.92008 · doi:10.1088/1751-8113/45/3/033001
[10] Coombes S, beim Graben P, Potthast R, Wright JJ (eds.): Neural fields: theory and applications. Berlin: Springer; 2014. · Zbl 1291.92004
[11] Visser, S; Nicks, R; Faugeras, O; Coombes, S, Standing and travelling waves in a spherical brain model: the nunez model revisited, Physica D, 349, 27-45, (2017) · Zbl 1376.92014 · doi:10.1016/j.physd.2017.02.017
[12] Wilson, MT; Fung, PK; Robinson, PA; Shemmell, J; Reynolds, JNJ, Calcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field model, J Comput Neurosci, 41, 107-125, (2016) · Zbl 1382.92100 · doi:10.1007/s10827-016-0607-7
[13] Sato, Y; Shimaoka, D; Fujimoto, K; Taga, G, Neural field dynamics for growing brains, Nonlinear Theory Appl, IEICE, 7, 226-233, (2016) · doi:10.1587/nolta.7.226
[14] Faugeras, O; Veltz, R; Grimbert, F, Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks, Neural Comput, 21, 147-187, (2009) · Zbl 1161.92007 · doi:10.1162/neco.2009.12-07-660
[15] Lima, PM; Buckwar, E, Numerical solution of the neural field equation in the two-dimensional case, SIAM J Sci Comput, 37, 962-979, (2015) · Zbl 1329.65316 · doi:10.1137/15M1022562
[16] Rankin, J; Avitabile, D; Baladron, J; Faye, G; Lloyd, DJB, Continuation of localized coherent structures in nonlocal neural field equations, SIAM J Sci Comput, 36, 70-93, (2014) · Zbl 1312.92015 · doi:10.1137/130918721
[17] Laing, CR; Troy, WC, PDE methods for nonlocal models, SIAM J Appl Dyn Syst, 2, 487-516, (2003) · Zbl 1088.34011 · doi:10.1137/030600040
[18] Goulet, J; Ermentrout, GB, The mechanisms for compression and reflection of cortical waves, Biol Cybern, 105, 253-268, (2011) · Zbl 1248.92009 · doi:10.1007/s00422-011-0465-3
[19] Bressloff, PC, From invasion to extinction in heterogeneous neural fields, J Math Neurosci, 2, (2012) · Zbl 1291.92024 · doi:10.1186/2190-8567-2-6
[20] Amari, S; Coombes, S (ed.); Graben, P (ed.); Potthast, R (ed.); Wright, JJ (ed.), Heaviside world: excitation and self-organization of neural fields, (2014), Berlin
[21] Coombes, S; Schmidt, H; Bojak, I, Interface dynamics in planar neural field models, J Math Neurosci, 2, (2012) · Zbl 1291.92028 · doi:10.1186/2190-8567-2-9
[22] Gerstner W, Kistler W: Spiking neuron models. single neurons, populations, plasticity. Cambridge: Cambridge University Press; 2002. · Zbl 1100.92501 · doi:10.1017/CBO9780511815706
[23] Izhikevich, EM, Simple model of spiking neurons, IEEE Trans Neural Netw, 14, 1569-1572, (2003) · doi:10.1109/TNN.2003.820440
[24] Mountcastle, VB, The columnar organization of the neocortex, Brain, 120, 701-722, (1997) · doi:10.1093/brain/120.4.701
[25] Zhao, X; Robinson, PA, Generalized seizures in a neural field model with bursting dynamics, J Comput Neurosci, 39, 197-216, (2015) · Zbl 1382.92171 · doi:10.1007/s10827-015-0571-7
[26] Ermentrout, GB; Cowan, JD, A mathematical theory of visual hallucination patterns, Biol Cybern, 34, 137-150, (1979) · Zbl 0409.92008 · doi:10.1007/BF00336965
[27] Bressloff, PC; Cowan, JD; Golubitsky, M; Thomas, PJ; Wiener, MC, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Philos Trans R Soc Lond B, Biol Sci, 356, 299-330, (2001) · doi:10.1098/rstb.2000.0769
[28] Laing, CR, Spiral waves in nonlocal equations, SIAM J Appl Dyn Syst, 4, 588-606, (2005) · Zbl 1090.37056 · doi:10.1137/040612890
[29] Huang, X; Xu, W; Liang, J; Takagaki, K; Gao, X; Wu, J-Y, Spiral wave dynamics in neocortex, Neuron, 68, 978-990, (2010) · doi:10.1016/j.neuron.2010.11.007
[30] Goldman-Rakic, P, Cellular basis of working memory, Neuron, 14, 477-485, (1995) · doi:10.1016/0896-6273(95)90304-6
[31] Wang, X-J, Synaptic reverberation underlying mnemonic persistent activity, Trends Neurosci, 24, 455-463, (2001) · doi:10.1016/S0166-2236(00)01868-3
[32] Amari, S, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol Cybern, 27, 77-87, (1977) · Zbl 0367.92005 · doi:10.1007/BF00337259
[33] Daunizeau, J; Kiebel, SJ; Friston, KJ, Dynamic causal modelling of distributed electromagnetic responses, NeuroImage, 47, 590-601, (2009) · Zbl 1229.62027 · doi:10.1016/j.neuroimage.2009.04.062
[34] Coombes, S; Owen, MR, Evans functions for integral neural field equations with heaviside firing rate function, SIAM J Appl Dyn Syst, 34, 574-600, (2004) · Zbl 1067.92019 · doi:10.1137/040605953
[35] Owen, MR; Laing, CR; Coombes, S, Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities, New J Phys, 9, (2007) · doi:10.1088/1367-2630/9/10/378
[36] Taylor, JG, Neural ‘bubble’ dynamics in two dimensions: foundations, Biol Cybern, 80, 393-409, (1999) · Zbl 0984.92009 · doi:10.1007/s004220050534
[37] Folias, SE; Bressloff, PC, Breathers in two-dimensional neural media, Phys Rev Lett, 95, (2005) · doi:10.1103/PhysRevLett.95.208107
[38] Bressloff, PC; Coombes, S, Neural ‘bubble’ dynamics revisited, Cogn Comput, 5, 281-294, (2013) · doi:10.1007/s12559-013-9214-3
[39] Coombes, S; Schmidt, H; Avitabile, D; Coombes, S (ed.); Graben, P (ed.); Potthast, R (ed.); Wright, JJ (ed.), Spots: breathing, drifting and scattering in a neural field model, (2014), Berlin
[40] Herrmann, JM; Schrobsdorff, H; Geisel, T, Localized activations in a simple neural field model, Neurocomputing, 65-66, 679-684, (2005) · doi:10.1016/j.neucom.2004.10.097
[41] Pinto, DJ; Ermentrout, GB, Spatially structured activity in synaptically coupled neuronal networks: I. travelling fronts and pulses, SIAM J Appl Math, 62, 206-225, (2001) · Zbl 1001.92021 · doi:10.1137/S0036139900346453
[42] Ermentrout, GB; Folias, SE; Kilpatrick, ZP; Coombes, S (ed.); Graben, P (ed.); Potthast, R (ed.); Wright, JJ (ed.), Spatiotemporal pattern formation in neural fields with linear adaptation, (2014), Berlin
[43] Coombes, S; Owen, MR, Exotic dynamics in a firing rate model of neural tissue with threshold accommodation, Contemp Math, 440, 123-144, (2007) · Zbl 1297.92016 · doi:10.1090/conm/440/08480
[44] Laing, CR; Coombes, S (ed.); Graben, P (ed.); Potthast, R (ed.); Wright, JJ (ed.), PDE methods for two-dimensional neural fields, (2014), Berlin
[45] Carroll, S; Bressloff, PC, Phase equation for patterns of orientation selectivity in a neural field model of visual cortex, SIAM J Appl Dyn Syst, 15, 60-83, (2016) · Zbl 1343.92079 · doi:10.1137/15M1016758
[46] Bojak, I; Oostendorp, TF; Reid, AT; Kötter, R, Connecting Mean field models of neural activity to EEG and fMRI data, Brain Topogr, 23, 139-149, (2010) · doi:10.1007/s10548-010-0140-3
[47] Atkinson, KE, A survey of numerical methods for solving nonlinear integral equations, J Integral Equ Appl, 4, 15-46, (1992) · Zbl 0760.65118 · doi:10.1216/jiea/1181075664
[48] Goldstein, RE; Muraki, DJ; Petrich, DM, Interface proliferation and the growth of labyrinths in a reaction-diffusion system, Phys Rev E, 53, (1996) · doi:10.1103/PhysRevE.53.3933
[49] D’Errico J: Interparc, MATLAB Central File Exchange. [Retrieved from Feb 01, 2012]. http://www.mathworks.com/matlabcentral/fileexchange/34874
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.