zbMATH — the first resource for mathematics

Soliton solutions and chaotic motions for the \((2+1)\)-dimensional Zakharov equations in a laser-induced plasma. (English) Zbl 1443.82016
Summary: The \((2+1)\)-dimensional Zakharov equations arising from the propagation of a laser beam in a plasma are studied in this paper. Analytic soliton solutions are obtained by means of the symbolic computation, based on which we find that \(|E|\) is inversely related to \(\omega_{pe}\), but positively related to \(m_i\) and \(c_s\), while \(n\) is inversely related to \(\omega_{pe}\) and \(\omega_L\), but positively related to \(n_0\), with \(E\) as the envelope of the high-frequency electric field, \(n\) as the plasma density, while \(\omega_{pe}\), \(\omega_L\), \(n_0\), \(m_i\) and \(c_s\) as the plasma electronic frequency, frequency of the laser beam, mean density of the plasma, mass of an ion and ion-sound velocity in the plasma, respectively. Head-on interaction is found to be transformed into an overtaking one with \(\omega_{pe}\) increasing or \(n_0\) decreasing. Also, period of the bound-state interaction decreases with \(\omega_L\) decreasing. Considering the driving forces in the laser-induced plasma, we explore the associated chaotic motions as well as the effects of \(\omega_L\), \(\omega_{pe}\), \(k_L\), \(n_0\), \(m_i\), \(c_s\), \(\omega_{F_1}\) and \(\omega_{F_2}\), where \(k_L\) is the wave number of the laser beam, \(\omega_{F_1}\) and \(\omega_{F_1}\) represent the frequencies of driving forces, respectively. It is found that the chaotic motions can be weakened with \(\omega_{pe}\), \(c_s\) and \(\omega_{F_1}\) increasing, or with \(n_0\), \(m_i\) and \(\omega_{F_2}\) decreasing, and the periodic motion can occur when \(\omega_{F_1}\) reaches the critical value \(2\pi\), while the chaotic motions are independent of \(\omega_L\) and \(k_L\).
82D10 Statistical mechanics of plasmas
35C08 Soliton solutions
35L70 Second-order nonlinear hyperbolic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
PDF BibTeX Cite
Full Text: DOI
[1] McKenna, P.; Neely, D.; Bingham, R.; Jaroszynski, D., Laser-Plasma Interactions and Applications (2013), Springer: Springer New York
[2] Kozadaev, K., J. Eng. Thermophys., 87, 704 (2014)
[3] Gorodetsky, A.; Koulouklidis, A. D.; Massaouti, M.; Tzortzakis, S., Phys. Rev. A, 89, Article 033838 pp. (2014)
[4] Nakanii, N.; Hosokai, T.; Iwasa, K.; Masuda, S.; Zhidkov, A.; Pathak, N.; Nakahara, H.; Mizuta, Y.; Takeguchi, N.; Kodama, R., Phys. Rev. Spec. Top., 18, Article 021303 pp. (2015)
[5] Colaïtis, A.; Duchateau, G.; Nicolaï, P.; Tikhonchuk, V., Phys. Rev. E, 89, Article 033101 pp. (2014)
[6] Heissler, P.; Barna, A.; Mikhailova, J. M.; Ma, G. J.; Khrennikov, K.; Karsch, S.; Veisz, L.; Földes, I. B.; Tsakiris, G. D., Appl. Phys. B, 118, 195 (2015)
[7] Esarey, E.; Schroeder, C. B.; Leemans, W. P., Rev. Modern Phys., 81, 1229 (2009)
[8] Zheng, Z. Y.; Gao, H.; Gao, L.; Xing, J.; Fan, Z. J.; Dong, A. G.; Zhang, Z. L., Appl. Phys. A, 115, 1439 (2014)
[9] Yang, N.; Du, H. W., Opt. Express, 22, 25494 (2014)
[10] Texier, B., Arch. Ration. Mech. Anal., 184, 121 (2007)
[11] Métivier, G., Physica D, 237, 1940 (2008)
[12] Jovanovic, D.; Fedele, R.; Tanjia, F.; De Nicola, S.; Gizzi, L., Eur. Phys. J. D, 66, 12 (2012)
[13] Aslan, I., Appl. Math. Comput., 217, 1421 (2010)
[14] Aslan, I., Math. Methods Appl. Sci., 35, 716 (2012)
[15] Aslan, I., Comput. & Fluids, 86, 86 (2013)
[16] Aslan, I., Appl. Math. Comput., 219, 2825 (2012)
[17] Aslan, I., Appl. Math. Comput., 217, 8134 (2011)
[18] Williams, G. P., Chaos Theory Tamed (1997), Joseph Henry: Joseph Henry Washington D. C · Zbl 1087.37500
[19] Hirsch, M. W.; Smale, S.; Devaney, R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos (2004), Elsevier: Elsevier New York · Zbl 1135.37002
[20] Golbabai, A.; Sayevand, K., Appl. Math. Lett., 25, 757 (2014)
[21] Ghorui, M. K.; Mondal, G.; Chatterjee, P., Astrophys. Space Sci., 191, 346 (2013)
[22] Mónica, A. G.; Jorge, A. G., Phys. Rev. E, 86, Article 066602 pp. (2012)
[23] Wang, D. H.; Jung, J.; Biondini, G., J. Eng. Math., 87, 167 (2014)
[24] Yair, Z., Physica D, 237, 2987 (2008)
[25] Trogdon, T.; Deconinck, B., Phys. Lett. A, 378, 617 (2014)
[26] Rempel, E. L.; Chian, A.; Macau, E.; Rosa, R. R., Physica D, 199, 407 (2004)
[27] Sanchez-Arriaga, G.; Sanmartin, J. R., Phys. Plasmas, 14, Article 082108 pp. (2007)
[28] Michel, C.; Haelterman, M.; Suret, P.; Randoux, S.; Kaiser, R.; Picozzi, A., Phys. Rev. A, 84, 3 (2011)
[29] Infeld, E.; Rolands, G., Nonlinear Waves, Soliton and Chaos (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[30] Beiglböck, W.; Eckmann, J. P.; Grosse, H.; Loss, M.; Smirnov, S.; Takhtajan, L.; Yngvason, J., Concepts and Results in Chaotic Dynamics (2000), Springer: Springer Berlin
[31] Tennekes, H.; Lumley, J. L., A First Cource in Turbulence (1972), MIT Press: MIT Press Cambridge
[32] Mathieu, J.; Scott, J., An Introduction to Turbulence Flow (2000), Cambrige Univ. Press: Cambrige Univ. Press Cambridge
[33] Avila, K.; Moxey, D.; de Lozar, A.; Avila, M.; Barkley, D.; Hof, B., Science, 333, 192 (2011)
[34] Sahu, B.; Poria, S.; Roychoudhury, R., Astrophys. Space Sci., 341, 567 (2012)
[35] Corsi, L.; Gentile, G., Comm. Math. Phys., 316, 489 (2012)
[36] Williams, G.; Kourakis, I., Phys. Plasmas, 20, 1263 (2013)
[37] Khalique, C. M.; Adem, K. R., Math. Comput. Modelling, 54, 184 (2011)
[38] Naher, H.; Abdullah, F. A.; Akbar, M. A., PLoS One, 8, 64618 (2013)
[39] Yua, Y.; Tang, H.; Han, X.; Bi, Q., Commun. Nonlinear Sci., 19, 1175 (2014)
[40] Gao, J.; Du, Z., Nonlinear Dynam., 79, 1061 (2015)
[41] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[42] Hirota, R., Phys. Rev. Lett., 27, 1192 (1971)
[43] Tian, B.; Gao, Y. T., Phys. Plasmas, 12, Article 070703 pp. (2005)
[44] Tian, B.; Wei, G. M.; Zhang, C. Y.; Shan, W. R.; Gao, Y. T., Phys. Lett. A, 356, 8 (2006)
[45] Gao, Y. T.; Tian, B., Phys. Plasmas, 13, Article 112901 pp. (2006)
[46] Stoica, P.; Moses, R. L., Introduction to Spectral Analysis (1997), Prentice Hall: Prentice Hall Upper Saddle River · Zbl 1051.62522
[47] Ryskin, N. M.; Titov, V. N., Tech. Phys., 48, 1170 (2011)
[48] Lalescu, C. C.; Meneveau, C.; Eyink, G. L., Phys. Rev. Lett., 110, Article 084102 pp. (2013)
[49] Mulansky, M.; Ahnert, K.; Pikovsky, A.; Shepelyansky, D. L., J. Stat. Phys., 145, 1256 (2011)
[50] Laptyeva, T. V.; Bodyfelt, J. D.; Krimer, D. O.; Flach, S., Europhys. Lett., 91, 30001 (2010)
[51] Basko, D. M., Ann. Phys., 326, 1577 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.