×

Robust deterministic least-squares filtering for uncertain time-varying nonlinear systems with unknown inputs. (English) Zbl 1408.93131

Summary: The Augmented State Robust Regularized Least-Squares Filter (ASRRLSF) and Two-Stage Robust Regularized Least-Squares Filter (TSRRLSF) are proposed for discrete time-varying nonlinear systems with unknown inputs and norm-bounded uncertainties. Unknown inputs affect both state-space model and measurements equation of the system. Combining system states and unknown inputs as an augmented state, the ASRRLSF is developed by converting a deterministic min-max optimization problem to a robust regularized least-squares problem. If dimension of the augmented state increases, the performance of the proposed ASRRLSF will reduce and the computational cost will increase rapidly. Therefore, in the following, the TSRRLSF is proposed by decoupling the ASRRLSF to lower order filters as system states filter and unknown inputs filter using \(T\) transformation. Finally, two numerical examples are given in order to illustrate the performance of the proposed filtering approaches.

MSC:

93E11 Filtering in stochastic control theory
93E24 Least squares and related methods for stochastic control systems
93B35 Sensitivity (robustness)
93C10 Nonlinear systems in control theory
93C41 Control/observation systems with incomplete information
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kitanidis, P. K., Unbiased minimum-variance linear state estimation, Automatica, 23, 6, 775-778 (1987) · Zbl 0627.93065
[2] Ghahremani, E.; Kamwa, I., Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements, IEEE Trans. Power Syst., 26, 4, 2556-2566 (2011)
[3] Hsieh, C.-S.; Chen, F.-C., Optimal solution of the two-stage Kalman estimator, IEEE Trans. Automat. Control, 44, 1, 194-199 (1999) · Zbl 1056.93629
[4] Chen, J.; Patton, R. J., Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances, IEE Proc.-Control Theory Appl., 143, 1, 31-36 (1996) · Zbl 0850.93748
[5] Hsieh, C.-S., Robust parametrized minimum-variance filtering for uncertain systems with unknown inputs, (American Control Conference, 2007. ACC’07 (2007), IEEE), 5118-5123
[6] Gillijns, S.; De Moor, B., Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, Automatica, 43, 5, 934-937 (2007) · Zbl 1117.93366
[7] Hsieh, C.-S., Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs, Automatica, 45, 9, 2149-2153 (2009) · Zbl 1175.93213
[8] Hsieh, C.-S., Optimal filtering for systems with unknown inputs via the descriptor Kalman filtering method, Automatica, 47, 10, 2313-2318 (2011) · Zbl 1228.93119
[9] Cheng, Y.; Ye, H.; Wang, Y.; Zhou, D., Unbiased minimum-variance state estimation for linear systems with unknown input, Automatica, 45, 2, 485-491 (2009) · Zbl 1158.93415
[10] Friedland, B., Treatment of bias in recursive filtering, IEEE Trans. Automat. Control, 14, 4, 359-367 (1969)
[11] Mendel, J.; Washburn, H., Multistage estimation of bias states in linear systems, Internat. J. Control, 28, 4, 511-524 (1978) · Zbl 0392.93035
[12] Ignagni, M., An alternate derivation and extension of Friendland’s two-stage Kalman estimator, IEEE Trans. Automat. Control, 26, 3, 746-750 (1981) · Zbl 0484.93064
[13] Chen, F.-C.; Hsieh, C.-S., Optimal multistage Kalman estimators, IEEE Trans. Automat. Control, 45, 11, 2182-2188 (2000) · Zbl 0991.93112
[14] Hsieh, C.-S., Robust two-stage Kalman filters for systems with unknown inputs, IEEE Trans. Automat. Control, 45, 12, 2374-2378 (2000) · Zbl 0990.93130
[15] Hsieh, C.-S.; Chen, F.-C., General two-stage Kalman filters, IEEE Trans. Automat. Control, 45, 4, 819-824 (2000) · Zbl 0973.93052
[16] Hsieh, C.-S., General two-stage extended Kalman filters, IEEE Trans. Automat. Control, 48, 2, 289-293 (2003) · Zbl 1364.93805
[17] Kim, K. H.; Lee, J. G.; Park, C. G., Adaptive two-stage Kalman filter in the presence of unknown random bias, Internat. J. Adapt. Control Signal Process., 20, 7, 305-319 (2006) · Zbl 1130.93052
[18] Xu, J.; Jing, Y.; Dimirovski, G. M.; Ban, Y., Two-stage unscented Kalman filter for nonlinear systems in the presence of unknown random bias, (American Control Conference, 2008 (2008), IEEE), 3530-3535
[19] Hmida, F. B.; Khémiri, K.; Ragot, J.; Gossa, M., Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs, J. Franklin Inst. B, 349, 7, 2369-2388 (2012) · Zbl 1287.93090
[20] Zhang, L.; Lv, M.; Niu, Z.; Rao, W., Two-stage cubature Kalman filter for nonlinear system with random bias, (Multisensor Fusion and Information Integration for Intelligent Systems, MFI, 2014 International Conference on (2014), IEEE), 1-4
[21] Hsieh, C.-S., On the optimality of two-stage Kalman filtering for systems with unknown inputs, Asian J. Control, 12, 4, 510-523 (2010)
[22] Lacerda, M. J.; Tarbouriech, S.; Garcia, G.; Peres, P. L., \(H_\infty\) filter design for nonlinear polynomial systems, Systems Control Lett., 70, 77-84 (2014) · Zbl 1290.93188
[23] Dong, J.; Yang, G.-H., \(H_\infty\) filtering for continuous-time TS fuzzy systems with partly immeasurable premise variables, IEEE Trans. Syst. Man Cybern. Syst., 47, 8, 1931-1940 (2017)
[24] Li, X.; Lam, J.; Gao, H.; Xiong, J., \(H_\infty\) and \(H_2\) filtering for linear systems with uncertain Markov transitions, Automatica, 67, 252-266 (2016) · Zbl 1335.93126
[25] Shi, D.; Chen, T.; Shi, L., On set-valued Kalman filtering and its application to event-based state estimation, IEEE Trans. Automat. Control, 60, 5, 1275-1290 (2015) · Zbl 1360.93711
[26] Bishop, A. N.; Savkin, A. V., Set-valued state estimation and attack detection for uncertain descriptor systems, IEEE Signal Process. Lett., 20, 11, 1102-1105 (2013)
[27] Stojanovic, V.; Nedic, N., Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian noise, Internat. J. Robust Nonlinear Control, 26, 3, 445-460 (2016) · Zbl 1332.93353
[28] Foo, Y. K.; Soh, Y. C., Robust Kalman filtering for uncertain discrete-time systems with probabilistic parameters bounded within a polytope, Systems Control Lett., 57, 6, 482-488 (2008) · Zbl 1153.93033
[29] Petersen, I. R., Robust guaranteed cost state estimation for nonlinear stochastic uncertain systems via an IQC approach, Systems Control Lett., 58, 12, 865-870 (2009) · Zbl 1191.93131
[30] Zong, G.; Hou, L.; Wu, Y., Robust \(L_2-L_\infty\) guaranteed cost filtering for uncertain discrete-time switched system with mode-dependent time-varying delays, Circuits Systems Signal Process., 30, 1, 17-33 (2011) · Zbl 1205.93152
[31] Sayed, A. H., A framework for state-space estimation with uncertain models, IEEE Trans. Automat. Control, 46, 7, 998-1013 (2001) · Zbl 1009.93075
[32] Ishihara, J. Y.; Terra, M. H.; Cerri, J. P., Optimal robust filtering for systems subject to uncertainties, Automatica, 52, 111-117 (2015) · Zbl 1309.93168
[33] Subramanian, A.; Sayed, A. H., Regularized robust filters for time-varying uncertain discrete-time systems, IEEE Trans. Automat. Control, 49, 6, 970-975 (2004) · Zbl 1365.93514
[34] Terra, M. H.; Ishihara, J. Y.; Padoan, A. C., Information filtering and array algorithms for descriptor systems subject to parameter uncertainties, IEEE Trans. Signal Process., 55, 1, 1-9 (2007) · Zbl 1391.94412
[35] Terra, M. H.; Ishihara, J.; Jesus, G.; Cerri, J. P., Robust estimation for discrete-time Markovian jump linear systems, IEEE Trans. Automat. Control, 58, 8, 2065-2071 (2013) · Zbl 1369.93655
[36] de Jesus, G. Q.; Inoue, R. S.; Terra, M. H., Information filtering and array algorithms for discrete-time Markovian jump linear systems subject to parametric uncertainties, Inform. Sci., 369, 287-303 (2016) · Zbl 1434.94023
[37] Abolhasani, M.; Rahmani, M., Robust Kalman filtering for discrete-time systems with stochastic uncertain time-varying parameters, Electron. Lett., 53, 3, 146-148 (2017)
[38] Abolhasani, M.; Rahmani, M., Robust Kalman filtering for discrete-time time-varying systems with stochastic and norm-bounded uncertainties, J. Dyn. Syst. Meas. Control, 140, 3, 0309011-0309018 (2018)
[39] Freeman, R.; Kokotovic, P. V., Robust Nonlinear Control Design: State-Space and Lyapunov Techniques (2008), Springer Science & Business Media · Zbl 1130.93005
[40] Edwards, C.; Spurgeon, S., Sliding Mode Control: Theory and Applications (1998), CRC Press
[41] Besançon, G., Nonlinear Observers and Applications, vol. 363 (2007), Springer
[42] Xiong, J., An Introduction to Stochastic Filtering Theory, vol. 18 (2008)
[43] Sayed, A. H.; Nascimento, V. H., Design criteria for uncertain models with structured and unstructured uncertainties, (Robustness in Identification and Control (1999), Springer), 159-173 · Zbl 0932.93031
[44] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), SIAM: SIAM New York · Zbl 0816.93004
[45] Raghavan, S.; Hedrick, J., Observer design for a class of nonlinear systems, Internat. J. Control, 59, 2, 515-528 (1994) · Zbl 0802.93007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.