×

A coupling strategy based on anisotropic mesh adaptation for solving two-fluid flows. (English) Zbl 1247.76050

Based on Stokes equations, the authors propose a coupling strategy for solving efficiently two-fluid flows. The approach relies on a level set formulation of the interface-capturing problem, and involves a finite element discretization for fluid resolution, the method of characteristics for solving the advection of the interface, and the anisotropic mesh adaptation of the computational domain in a vicinity of the interface for better accuracy.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D07 Stokes and related (Oseen, etc.) flows

Software:

PROST
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Harlow, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids 8 pp 2182– (1965) · Zbl 1180.76043 · doi:10.1063/1.1761178
[2] Anderson, Diffuse-interface methods in fluid mechanics, Annual Review of Fluid Mechanics 30 pp 139– (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[3] Cuvelier, Some Numerical Methods for the Computation of Capillary Free Boundaries Governed by the Navier-Stokes Equations (1986) · Zbl 0706.76027
[4] Shyy, Computational Fluid Dynamics with Moving Boundaries (1996)
[5] Smolianski A Numerical modeling of two fluid interfacial flows 2001
[6] Donea, Finite Element Methods for Flow Problem (2003) · doi:10.1002/0470013826
[7] Torres, The point-set method: front-tracking without connectivity, Journal of Computational Physics 165 pp 620– (2000) · Zbl 0998.76070 · doi:10.1006/jcph.2000.6635
[8] Shin, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, Journal of Computational Physics 180 pp 427– (2002) · Zbl 1143.76595 · doi:10.1006/jcph.2002.7086
[9] Dervieux, Lecture Notes in Mathematics, in: Approximation Methods for Navier-Stokes problems pp 145– (1980) · doi:10.1007/BFb0086904
[10] Sussman, A level set approach for computing solutions to incompressible two-phase flows, Journal of Computational Physics 114 pp 146– (1994) · Zbl 0808.76077 · doi:10.1006/jcph.1994.1155
[11] Enright, A hybrid particle-level set method for improved interface capturing, Journal of Computational Physics 183 pp 83– (2002) · Zbl 1021.76044 · doi:10.1006/jcph.2002.7166
[12] Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Material Science (1999) · Zbl 0973.76003
[13] Batchelor, An Introduction to Fluid Dynamics (1967) · Zbl 0152.44402
[14] Shankar, Slow Viscous Flows (2007) · Zbl 1171.76001 · doi:10.1142/p499
[15] Osher, Fronts propagating with curvature dependant speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics 79 pp 12– (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[16] Girault, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[17] Brackbill, A continuum method for modeling surface tension, Journal of Computational Physics 100 pp 335– (1992) · Zbl 0775.76110 · doi:10.1016/0021-9991(92)90240-Y
[18] Girault, One time-step finite element discretization of the equation of motion of two-fluid flows, Numerical Methods for Differential Equations 22 (3) pp 680– (2006) · Zbl 1089.76032 · doi:10.1002/num.20117
[19] Tryggvason, A front-tracking method for the computations of multiphase flow, Journal of Computational Physics 169 pp 708– (2001) · Zbl 1047.76574 · doi:10.1006/jcph.2001.6726
[20] Renardy, PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, Journal of Computational Physics 183 pp 400– (2002) · Zbl 1057.76569 · doi:10.1006/jcph.2002.7190
[21] Goldman, Curvature formulas for implicit curves and surfaces, Computer Aided Geometric Design 22 pp 632– (2005) · Zbl 1084.53004 · doi:10.1016/j.cagd.2005.06.005
[22] Frey, Mesh Generation. Application to Finite Elements (2008)
[23] Frey P About surface remeshing 123 136
[24] Taubin, A signal processing approach to fair surface design, Proceedings of the ACM Siggraph 11 pp 351– (1995)
[25] Elman, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM Journal on Numerical Analysis 31 (6) pp 1645– (1994) · Zbl 0815.65041 · doi:10.1137/0731085
[26] Loghin, Analysis of preconditioners for saddle-point problems, SIAM Journal on Scientific Computing 25 (6) pp 2029– (2004) · Zbl 1067.65048 · doi:10.1137/S1064827502418203
[27] Cahouet, Some fast 3D finite element solvers for the generalized Stokes problem, International Journal for Numerical Methods in Fluids 8 pp 869– (1988) · Zbl 0665.76038 · doi:10.1002/fld.1650080802
[28] Bui, Méthode du second membre modifié pour la gestion de rapports de viscosité importants dans le problème de Stokes bifluide, Comptes Rendus Mécanique 336 pp 524– (2008) · Zbl 1388.76049 · doi:10.1016/j.crme.2008.04.001
[29] Aksoylu, Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems, Computing and Visualization in Science 11 pp 319– (2008) · doi:10.1007/s00791-008-0105-1
[30] Ciarlet, Studies in Mathematics and its Applications, in: The Finite Element Method for Elliptic Problems (1978)
[31] Apel, Series of Advances in Numerical Mathematics, in: Anisotropic Finite Elements: Local Estimates and Applications (1999) · Zbl 0917.65090
[32] Babuška, On the angle condition in the finite element method, SIAM Journal on Numerical Analysis 13 pp 214– (1976) · Zbl 0324.65046 · doi:10.1137/0713021
[33] Formaggia, New anisotropic a priori error estimates, Numerische Mathematik 89 pp 641– (2001) · Zbl 0990.65125 · doi:10.1007/s002110100273
[34] Dompierre, Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part III: unstructured meshes, International Journal for Numerical Methods in Fluids 39 pp 675– (2002) · Zbl 1101.76356 · doi:10.1002/fld.357
[35] Huang, Metric tensors for anisotropic mesh generation, Journal of Computational Physics 204 pp 633– (2005) · Zbl 1067.65140 · doi:10.1016/j.jcp.2004.10.024
[36] Borouchaki, Delaunay mesh generation governed by metric specification: part I. Algorithms, Finite Elements in Analysis and Design 25 pp 61– (1997) · Zbl 0897.65076 · doi:10.1016/S0168-874X(96)00057-1
[37] Peraire, Adaptive remeshing for compressible flow computations, Journal of Computational Physics 72 pp 449– (1997) · Zbl 0631.76085 · doi:10.1016/0021-9991(87)90093-3
[38] Remacle, Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods, International Journal for Numerical Methods in Engineering 62 (7) pp 899– (2003) · Zbl 1078.76042 · doi:10.1002/nme.1196
[39] Garimella RV Shephard MS Boundary layer meshing for viscous flows in complex domain 107 118
[40] Löhner, Generation of non-isotropic unstructured grids via directional enrichment, International Journal for Numerical Methods in Engineering 49 (1) pp 219– (2000) · Zbl 0970.76058 · doi:10.1002/1097-0207(20000910/20)49:1/2<219::AID-NME930>3.0.CO;2-3
[41] Bossen FJ Heckbert PS A pliant method for anisotropic mesh generation 63 74
[42] Yamakawa S Shimada K High quality anisotropic tetrahedral mesh generation via ellipsoidal bubble packing 263 273 · Zbl 1035.65022
[43] Dobrzynski C Frey P Anisotropic Delaunay mesh adaptation for unsteady simulations 177 194 · Zbl 1292.76041
[44] D’Azevedo, On optimal triangular meshes for minimizing the gradient error, Numerische Mathematik 59 pp 321– (1991) · Zbl 0724.65006 · doi:10.1007/BF01385784
[45] Alauzet F Frey P Estimateur d’erreur géométrique et métriques anisotropes pour l’adaptation de maillage 2003
[46] Hecht F Bidimensional anisotropic mesh generator 1997
[47] Ducrot V Frey P Anisotropic level set adaptation for accurate interface capturing 159 176
[48] Pironneau, Finite Element Methods for Fluids (1989) · Zbl 0665.73059
[49] Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics 31 pp 335– (1979) · Zbl 0416.76002 · doi:10.1016/0021-9991(79)90051-2
[50] Yang, An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, Journal of Computational Physics 217 pp 364– (2006) · Zbl 1160.76377 · doi:10.1016/j.jcp.2006.01.007
[51] Galusinski, On stability condition for bifluid flows with surface tension: application to microfluidics, Journal of Computational Physics 227 pp 6140– (2008) · Zbl 1388.76051 · doi:10.1016/j.jcp.2008.02.023
[52] Shepel, On surface tension modelling using the level set method, International Journal for Numerical Methods in Fluids 59 pp 147– (2009) · Zbl 1394.76071 · doi:10.1002/fld.1804
[53] Aarts, Droplet coalescence: drainage, film rupture and neck growth in ultralow interfacial tension systems, Journal of Fluid Mechanics 606 pp 275– (2008) · Zbl 1178.76003 · doi:10.1017/S0022112008001705
[54] Schoolenberg, Coalescence and interfacial tension measurements for polymer melts: experiments on a PS-PE model system, Polymer 39 (4) pp 765– (1998) · doi:10.1016/S0032-3861(97)00377-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.