Blake Allan, S.; Gesztesy, Fritz; Sakhnovich, Alexander On essential self-adjointness of singular Sturm-Liouville operators. (English) Zbl 1539.34027 Rev. Unión Mat. Argent. 64, No. 2, 247-269 (2023). Reviewer: Hubert Kalf (München) MSC: 34B20 34C10 47E05 34B24 34L40 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Zemanek, Petr Principal solution in Weyl-Titchmarsh theory for second order Sturm-Liouville equation on time scales. (English) Zbl 1413.34308 Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 2, 18 p. (2017). MSC: 34N05 34B20 34B24 34C10 × Cite Format Result Cite Review PDF Full Text: DOI
Zemánek, Petr Limit point criteria for second-order Sturm-Liouville equations on time scales. (English) Zbl 1357.34140 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. ICDDEA, Amadora, Portugal, May 18–22, 2015. Selected contributions. Cham: Springer (ISBN 978-3-319-32855-3/hbk; 978-3-319-32857-7/ebook). Springer Proceedings in Mathematics & Statistics 164, 331-338 (2016). MSC: 34N05 34B20 34B24 × Cite Format Result Cite Review PDF Full Text: DOI
Xing, Lihong; Song, Wei; Zhang, Zhengqiang; Xu, Qiyi Limit circle/limit point criteria for second-order superlinear differential equations with a damping term. (English) Zbl 1244.34047 J. Appl. Math. 2012, Article ID 361961, 11 p. (2012). MSC: 34B20 × Cite Format Result Cite Review PDF Full Text: DOI
Arnold, V.; Kalf, H.; Schneider, A. Separated Dirac operators and asymptotically constant linear systems. (English) Zbl 0902.34073 Math. Proc. Camb. Philos. Soc. 121, No. 1, 141-146 (1997). Reviewer: R.C.Gilbert (Placentia) MSC: 34L40 81Q05 47N50 34C05 47E05 × Cite Format Result Cite Review PDF Full Text: DOI
Frentzen, Hilbert Limit-point criteria for not necessarily symmetric ordinary differential expressions. (English) Zbl 0808.34029 Result. Math. 20, No. 1-2, 454-480 (1991). MSC: 34B20 34L05 47E05 × Cite Format Result Cite Review PDF Full Text: DOI
Kounadis, A. N. Nonlinear inelastic buckling of rigid-jointed frames under finite displacements. (English) Zbl 0611.73062 Acta Mech. 67, 191-207 (1987). MSC: 74G60 74R20 74B99 74C99 74D99 74S30 × Cite Format Result Cite Review PDF Full Text: DOI
Everitt, W. N.; Knowles, I. W.; Read, T. T. Limit-point and limit-circle criteria for Sturm-Liouville equations with intermittently negative principal coefficients. (English) Zbl 0635.34021 Proc. R. Soc. Edinb., Sect. A 103, 215-228 (1986). Reviewer: S.-N.Patnaik MSC: 34L99 37G15 34C05 45C05 × Cite Format Result Cite Review PDF Full Text: DOI
Frentzen, Hilbert Limit-point criteria for symmetric and j-symmetric quasi-differential expressions of even order with a positive definite leading coefficient. (English) Zbl 0614.34011 Fachbereich Mathematik der Universität GHS Essen. 66 p. (1985). Reviewer: J.Kalas MSC: 34A30 34C05 × Cite Format Result Cite Review PDF
Kamat, M. P.; Khot, N. S.; Venkayya, V. B. Optimization of shallow trusses against limit point instability. (English) Zbl 0536.73079 AIAA J. 22, 403-408 (1984). MSC: 74P99 74K10 × Cite Format Result Cite Review PDF Full Text: DOI
Read, Thomas T. On the spectral theory of some nonsymmetric second order differential operators. (English) Zbl 0542.34022 Ordinary differential equations and operators, to F. V. Atkinson, Proc. Symp., Dundee/Scotl. 1982, Lect. Notes Math. 1032, 407-426 (1983). Reviewer: K.Schrader MSC: 34L99 × Cite Format Result Cite Review PDF
Frentzen, Hilbert Limit-point criteria for systems of differential equations. (English) Zbl 0424.34031 Proc. R. Soc. Edinb., Sect. A 85, 233-245 (1980). MSC: 34C05 × Cite Format Result Cite Review PDF Full Text: DOI