Bashirizadeh, Maryam; Hajarian, Masoud Two-step two-sweep modulus-based matrix splitting iteration method for linear complementarity problems. (English) Zbl 07568035 Numer. Math., Theory Methods Appl. 15, No. 3, 592-619 (2022). MSC: 65F10 65F15 PDF BibTeX XML Cite \textit{M. Bashirizadeh} and \textit{M. Hajarian}, Numer. Math., Theory Methods Appl. 15, No. 3, 592--619 (2022; Zbl 07568035) Full Text: DOI OpenURL
Wu, Shiliang; Li, Liang New modulus-based matrix splitting methods for implicit complementarity problem. (English) Zbl 07565433 Numer. Algorithms 90, No. 4, 1735-1754 (2022). MSC: 65F10 90C33 65F50 PDF BibTeX XML Cite \textit{S. Wu} and \textit{L. Li}, Numer. Algorithms 90, No. 4, 1735--1754 (2022; Zbl 07565433) Full Text: DOI OpenURL
Mezzadri, Francesco A modulus-based formulation for the vertical linear complementarity problem. (English) Zbl 07565425 Numer. Algorithms 90, No. 4, 1547-1568 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{F. Mezzadri}, Numer. Algorithms 90, No. 4, 1547--1568 (2022; Zbl 07565425) Full Text: DOI OpenURL
Liu, Jianzhou; Zhou, Qi; Xiong, Yebo Upper norm bounds for the inverse of locally doubly strictly diagonally dominant matrices with its applications in linear complementarity problems. (English) Zbl 07565422 Numer. Algorithms 90, No. 4, 1465-1491 (2022). MSC: 65-XX PDF BibTeX XML Cite \textit{J. Liu} et al., Numer. Algorithms 90, No. 4, 1465--1491 (2022; Zbl 07565422) Full Text: DOI OpenURL
Zhang, Fujie; Huang, Na Generalized SOR-like iteration method for solving weakly nonlinear systems. (English) Zbl 07563033 Int. J. Comput. Math. 99, No. 8, 1579-1594 (2022). MSC: 65H10 65F10 PDF BibTeX XML Cite \textit{F. Zhang} and \textit{N. Huang}, Int. J. Comput. Math. 99, No. 8, 1579--1594 (2022; Zbl 07563033) Full Text: DOI OpenURL
Hao, Zijun; Nguyen, Chieu Thanh; Chen, Jein-Shan An approximate lower order penalty approach for solving second-order cone linear complementarity problems. (English) Zbl 07559917 J. Glob. Optim. 83, No. 4, 671-697 (2022). MSC: 90C25 90C30 90C33 PDF BibTeX XML Cite \textit{Z. Hao} et al., J. Glob. Optim. 83, No. 4, 671--697 (2022; Zbl 07559917) Full Text: DOI OpenURL
Shen, Peiping; Wang, Kaimin; Lu, Ting Global optimization algorithm for solving linear multiplicative programming problems. (English) Zbl 07548171 Optimization 71, No. 6, 1421-1441 (2022). MSC: 90C30 90C33 90C15 PDF BibTeX XML Cite \textit{P. Shen} et al., Optimization 71, No. 6, 1421--1441 (2022; Zbl 07548171) Full Text: DOI OpenURL
Wang, Xuezhong; Che, Maolin; Wei, Yimin Randomized Kaczmarz methods for tensor complementarity problems. (English) Zbl 07548104 Comput. Optim. Appl. 82, No. 3, 595-615 (2022). MSC: 90C11 15A18 15A69 65F15 65F10 PDF BibTeX XML Cite \textit{X. Wang} et al., Comput. Optim. Appl. 82, No. 3, 595--615 (2022; Zbl 07548104) Full Text: DOI OpenURL
Liao, Si-Wei; Zhang, Guo-Feng; Liang, Zhao-Zheng A generalized variant of two-sweep modulus-based matrix splitting iteration method for solving horizontal linear complementarity problems. (English) Zbl 07540337 Numer. Algorithms 90, No. 3, 1279-1303 (2022). MSC: 65K15 PDF BibTeX XML Cite \textit{S.-W. Liao} et al., Numer. Algorithms 90, No. 3, 1279--1303 (2022; Zbl 07540337) Full Text: DOI OpenURL
Fang, Ximing Convergence of modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. (English) Zbl 07540323 Numer. Algorithms 90, No. 3, 931-950 (2022). MSC: 65F10 65F50 PDF BibTeX XML Cite \textit{X. Fang}, Numer. Algorithms 90, No. 3, 931--950 (2022; Zbl 07540323) Full Text: DOI OpenURL
Jiang, Fan; Wu, Zhongming; Cai, Xingju; Zhang, Hongchao Unified linear convergence of first-order primal-dual algorithms for saddle point problems. (English) Zbl 07539454 Optim. Lett. 16, No. 6, 1675-1700 (2022). MSC: 90C33 PDF BibTeX XML Cite \textit{F. Jiang} et al., Optim. Lett. 16, No. 6, 1675--1700 (2022; Zbl 07539454) Full Text: DOI OpenURL
Radons, Manuel; Rump, Siegfried M. Convergence results for some piecewise linear solvers. (English) Zbl 07539453 Optim. Lett. 16, No. 6, 1663-1673 (2022). MSC: 90C33 PDF BibTeX XML Cite \textit{M. Radons} and \textit{S. M. Rump}, Optim. Lett. 16, No. 6, 1663--1673 (2022; Zbl 07539453) Full Text: DOI OpenURL
Bozorgmanesh, Hassan; Hajarian, Masoud; Chronopoulos, Anthony Theodore The relation between a tensor and its associated semi-symmetric form. (English) Zbl 07538561 Numer. Math., Theory Methods Appl. 15, No. 2, 530-564 (2022). MSC: 15A69 15A03 15A21 15A72 PDF BibTeX XML Cite \textit{H. Bozorgmanesh} et al., Numer. Math., Theory Methods Appl. 15, No. 2, 530--564 (2022; Zbl 07538561) Full Text: DOI OpenURL
Wu, Minhua; Li, Chenliang Modulus-based circulant and skew-circulant splitting iteration method for the linear complementarity problem with a Toeplitz matrix. (English) Zbl 1487.65038 ETNA, Electron. Trans. Numer. Anal. 55, 391-400 (2022). MSC: 65F10 15B05 65K15 65Y05 PDF BibTeX XML Cite \textit{M. Wu} and \textit{C. Li}, ETNA, Electron. Trans. Numer. Anal. 55, 391--400 (2022; Zbl 1487.65038) Full Text: DOI OpenURL
Fang, Ximing The convergence of modulus-based matrix splitting iteration methods for implicit complementarity problems. (English) Zbl 1486.65059 J. Comput. Appl. Math. 411, Article ID 114241, 10 p. (2022). MSC: 65K05 65F10 90C33 PDF BibTeX XML Cite \textit{X. Fang}, J. Comput. Appl. Math. 411, Article ID 114241, 10 p. (2022; Zbl 1486.65059) Full Text: DOI OpenURL
Fang, Ximing The convergence of the modulus-based Jacobi (MJ) iteration method for solving horizontal linear complementarity problems. (English) Zbl 07530556 Comput. Appl. Math. 41, No. 4, Paper No. 134, 16 p. (2022). MSC: 65F10 65F50 PDF BibTeX XML Cite \textit{X. Fang}, Comput. Appl. Math. 41, No. 4, Paper No. 134, 16 p. (2022; Zbl 07530556) Full Text: DOI OpenURL
Mezzadri, Francesco; Galligani, Emanuele Projected splitting methods for vertical linear complementarity problems. (English) Zbl 07528362 J. Optim. Theory Appl. 193, No. 1-3, 598-620 (2022). MSC: 65K05 65H10 90C33 PDF BibTeX XML Cite \textit{F. Mezzadri} and \textit{E. Galligani}, J. Optim. Theory Appl. 193, No. 1--3, 598--620 (2022; Zbl 07528362) Full Text: DOI OpenURL
Izmailov, A. F.; Solodov, M. V. Perturbed augmented Lagrangian method framework with applications to proximal and smoothed variants. (English) Zbl 07528358 J. Optim. Theory Appl. 193, No. 1-3, 491-522 (2022). MSC: 90C30 90C33 90C55 65K05 PDF BibTeX XML Cite \textit{A. F. Izmailov} and \textit{M. V. Solodov}, J. Optim. Theory Appl. 193, No. 1--3, 491--522 (2022; Zbl 07528358) Full Text: DOI OpenURL
Wu, Shiliang; Li, Cuixia A class of new modulus-based matrix splitting methods for linear complementarity problem. (English) Zbl 07526493 Optim. Lett. 16, No. 5, 1427-1443 (2022). MSC: 90C33 65F10 65F50 65G40 PDF BibTeX XML Cite \textit{S. Wu} and \textit{C. Li}, Optim. Lett. 16, No. 5, 1427--1443 (2022; Zbl 07526493) Full Text: DOI OpenURL
Brogliato, Bernard Analysis of the implicit Euler time-discretization of a class of descriptor-variable linear cone complementarity systems. (English) Zbl 07523733 J. Convex Anal. 29, No. 2, 481-517 (2022). MSC: 65K15 94C60 49J53 34A09 34A12 34A60 PDF BibTeX XML Cite \textit{B. Brogliato}, J. Convex Anal. 29, No. 2, 481--517 (2022; Zbl 07523733) Full Text: Link OpenURL
Singh, Gambheer; Neogy, S. K.; Kumar, Promila A new subclass of \(Q_0\)-matrix in linear complementarity theory. (English) Zbl 07523367 Linear Algebra Appl. 647, 64-77 (2022). MSC: 90C33 PDF BibTeX XML Cite \textit{G. Singh} et al., Linear Algebra Appl. 647, 64--77 (2022; Zbl 07523367) Full Text: DOI OpenURL
Li, Cui-Xia; Yong, Long-Quan Modified bas iteration method for absolute value equation. (English) Zbl 1484.65060 AIMS Math. 7, No. 1, 606-616 (2022). MSC: 65F10 90C05 90C30 90C33 PDF BibTeX XML Cite \textit{C.-X. Li} and \textit{L.-Q. Yong}, AIMS Math. 7, No. 1, 606--616 (2022; Zbl 1484.65060) Full Text: DOI OpenURL
Chen, Ziqin; Liang, Shu Distributed aggregative optimization with quantized communication. (English) Zbl 07511614 Kybernetika 58, No. 1, 123-144 (2022). MSC: 90C33 68W15 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{S. Liang}, Kybernetika 58, No. 1, 123--144 (2022; Zbl 07511614) Full Text: DOI OpenURL
Zhou, Peng; Wang, Teng The parameter-Newton iteration for the second-order cone linear complementarity problem. (English) Zbl 07510643 Electron Res. Arch. 30, No. 4, 1454-1462 (2022). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{P. Zhou} and \textit{T. Wang}, Electron Res. Arch. 30, No. 4, 1454--1462 (2022; Zbl 07510643) Full Text: DOI OpenURL
Huang, Bingdi; Shen, Peiping Global optimization algorithm for solving sum of linear ratios problems. (English) Zbl 1483.90158 Pac. J. Optim. 18, No. 1, 177-194 (2022). MSC: 90C30 90C33 90C15 PDF BibTeX XML Cite \textit{B. Huang} and \textit{P. Shen}, Pac. J. Optim. 18, No. 1, 177--194 (2022; Zbl 1483.90158) Full Text: Link OpenURL
Lin, Yiding; Wang, Xiang; Zhang, Lei-Hong Solving symmetric and positive definite second-order cone linear complementarity problem by a rational Krylov subspace method. (English) Zbl 1484.65141 Appl. Numer. Math. 176, 104-117 (2022). MSC: 65K15 65F10 90C33 PDF BibTeX XML Cite \textit{Y. Lin} et al., Appl. Numer. Math. 176, 104--117 (2022; Zbl 1484.65141) Full Text: DOI OpenURL
Nguyen Van Loi; Mai Quoc Vu Uniqueness and Hyers-Ulam stability results for differential variational inequalities with nonlocal conditions. (English) Zbl 07491023 Differ. Equ. Dyn. Syst. 30, No. 1, 113-130 (2022). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 34G20 47J20 34B10 34D10 PDF BibTeX XML Cite \textit{Nguyen Van Loi} and \textit{Mai Quoc Vu}, Differ. Equ. Dyn. Syst. 30, No. 1, 113--130 (2022; Zbl 07491023) Full Text: DOI OpenURL
Li, Dong-Kai; Wang, Li; Liu, Yu-Ying A relaxation general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. (English) Zbl 1486.90198 J. Comput. Appl. Math. 409, Article ID 114140, 20 p. (2022). MSC: 90C33 65K05 65F10 PDF BibTeX XML Cite \textit{D.-K. Li} et al., J. Comput. Appl. Math. 409, Article ID 114140, 20 p. (2022; Zbl 1486.90198) Full Text: DOI arXiv OpenURL
Biefel, Christian; Liers, Frauke; Rolfes, Jan; Schmidt, Martin Affinely adjustable robust linear complementarity problems. (English) Zbl 1486.90135 SIAM J. Optim. 32, No. 1, 152-172 (2022). MSC: 90C17 90C33 91B50 91A10 90C34 PDF BibTeX XML Cite \textit{C. Biefel} et al., SIAM J. Optim. 32, No. 1, 152--172 (2022; Zbl 1486.90135) Full Text: DOI arXiv OpenURL
Darvay, Zsolt; Illés, Tibor; Rigó, Petra Renáta Predictor-corrector interior-point algorithm for \(P_*(\kappa)\)-linear complementarity problems based on a new type of algebraic equivalent transformation technique. (English) Zbl 07478879 Eur. J. Oper. Res. 298, No. 1, 25-35 (2022). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., Eur. J. Oper. Res. 298, No. 1, 25--35 (2022; Zbl 07478879) Full Text: DOI OpenURL
Hsieh, Yu-Wei; Shi, Xiaoxia; Shum, Matthew Inference on estimators defined by mathematical programming. (English) Zbl 07471871 J. Econom. 226, No. 2, 248-268 (2022). MSC: 62-XX 91-XX PDF BibTeX XML Cite \textit{Y.-W. Hsieh} et al., J. Econom. 226, No. 2, 248--268 (2022; Zbl 07471871) Full Text: DOI arXiv OpenURL
Masa, Elisa; Ares, Laura; Luis, Alfredo Inequalities for complementarity in observed statistics. (English) Zbl 1485.81013 Phys. Lett., A 427, Article ID 127914, 6 p. (2022). MSC: 81P15 46C07 81Q20 46G10 47A63 PDF BibTeX XML Cite \textit{E. Masa} et al., Phys. Lett., A 427, Article ID 127914, 6 p. (2022; Zbl 1485.81013) Full Text: DOI arXiv OpenURL
Kirches, Christian; Larson, Jeffrey; Leyffer, Sven; Manns, Paul Sequential linearization method for bound-constrained mathematical programs with complementarity constraints. (English) Zbl 1484.90126 SIAM J. Optim. 32, No. 1, 75-99 (2022). MSC: 90C33 90C55 PDF BibTeX XML Cite \textit{C. Kirches} et al., SIAM J. Optim. 32, No. 1, 75--99 (2022; Zbl 1484.90126) Full Text: DOI arXiv OpenURL
Zhang, Jia-Lin; Zhang, Guo-Feng; Liang, Zhao-Zheng A preconditioned general two-step modulus-based accelerated overrelaxation iteration method for nonlinear complementarity problems. (English) Zbl 1480.65078 Japan J. Ind. Appl. Math. 39, No. 1, 227-255 (2022). MSC: 65F10 65F08 65F50 65K05 90C33 PDF BibTeX XML Cite \textit{J.-L. Zhang} et al., Japan J. Ind. Appl. Math. 39, No. 1, 227--255 (2022; Zbl 1480.65078) Full Text: DOI OpenURL
Li, Rui; Li, Zhi-Lin; Yin, Jun-Feng A generalized modulus-based Newton method for solving a class of non-linear complementarity problems with \(P\)-matrices. (English) Zbl 1483.90167 Numer. Algorithms 89, No. 2, 839-853 (2022). MSC: 90C33 65F10 65F50 65G40 PDF BibTeX XML Cite \textit{R. Li} et al., Numer. Algorithms 89, No. 2, 839--853 (2022; Zbl 1483.90167) Full Text: DOI OpenURL
Ebiefung, Aniekan A.; Fernandes, Luís M.; Júdice, Joaquim J.; Kostreva, Michael M. A block principal pivoting algorithm for vertical generalized LCP with a vertical block P-matrix. (English) Zbl 1482.90223 J. Comput. Appl. Math. 404, Article ID 113913, 15 p. (2022). MSC: 90C33 15A30 65F05 PDF BibTeX XML Cite \textit{A. A. Ebiefung} et al., J. Comput. Appl. Math. 404, Article ID 113913, 15 p. (2022; Zbl 1482.90223) Full Text: DOI OpenURL
Wu, Xianping The refined error bounds for linear complementarity problems of \(H_+\)-matrices. (English) Zbl 1482.65073 J. Comput. Appl. Math. 400, Article ID 113751, 8 p. (2022). MSC: 65F99 15A39 90C33 PDF BibTeX XML Cite \textit{X. Wu}, J. Comput. Appl. Math. 400, Article ID 113751, 8 p. (2022; Zbl 1482.65073) Full Text: DOI OpenURL
Nedović, M.; Cvetković, Lj. Norm bounds for the inverse and error bounds for linear complementarity problems for \(\{P_1, P_2\}\)-Nekrasov matrices. (English) Zbl 07550112 Filomat 35, No. 1, 239-250 (2021). MSC: 15A18 15B99 PDF BibTeX XML Cite \textit{M. Nedović} and \textit{Lj. Cvetković}, Filomat 35, No. 1, 239--250 (2021; Zbl 07550112) Full Text: DOI OpenURL
Song, Xinnian; Gao, Lei CKV-type \(B\)-matrices and error bounds for linear complementarity problems. (English) Zbl 07536366 AIMS Math. 6, No. 10, 10846-10860 (2021). MSC: 15A24 15A60 90C33 65G50 PDF BibTeX XML Cite \textit{X. Song} and \textit{L. Gao}, AIMS Math. 6, No. 10, 10846--10860 (2021; Zbl 07536366) Full Text: DOI OpenURL
Fang, Xi-Ming General fixed-point method for solving the linear complementarity problem. (English) Zbl 07533407 AIMS Math. 6, No. 11, 11904-11920 (2021). MSC: 65F10 65F50 PDF BibTeX XML Cite \textit{X.-M. Fang}, AIMS Math. 6, No. 11, 11904--11920 (2021; Zbl 07533407) Full Text: DOI OpenURL
Fang, Ximing; Fu, Shouzhong; Gu, Ze On the convergence of two-step modulus-based matrix splitting iteration method. (English) Zbl 1485.65060 Open Math. 19, 1461-1475 (2021). MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{X. Fang} et al., Open Math. 19, 1461--1475 (2021; Zbl 1485.65060) Full Text: DOI OpenURL
Jana, R.; Das, A. K.; Sinha, S. On semimonotone star matrices and linear complementarity problem. (English) Zbl 1484.90125 Oper. Matrices 15, No. 3, 1089-1108 (2021). MSC: 90C33 15B48 PDF BibTeX XML Cite \textit{R. Jana} et al., Oper. Matrices 15, No. 3, 1089--1108 (2021; Zbl 1484.90125) Full Text: DOI OpenURL
Miao, Shu-Xin; Xiong, Xiang-Tuan; Wen, Jin On Picard-SHSS iteration method for absolute value equation. (English) Zbl 1484.65061 AIMS Math. 6, No. 2, 1743-1753 (2021). MSC: 65F10 15A24 90C33 PDF BibTeX XML Cite \textit{S.-X. Miao} et al., AIMS Math. 6, No. 2, 1743--1753 (2021; Zbl 1484.65061) Full Text: DOI OpenURL
Mehdiloo, M.; Tone, K.; Ahmadi, M. B. The strict complementarity in linear fractional optimization. (English) Zbl 1482.90221 Iran. J. Numer. Anal. Optim. 11, No. 2, 305-332 (2021). MSC: 90C32 90C46 49N15 PDF BibTeX XML Cite \textit{M. Mehdiloo} et al., Iran. J. Numer. Anal. Optim. 11, No. 2, 305--332 (2021; Zbl 1482.90221) Full Text: DOI OpenURL
Das, Arup Kumar; Jana, Rwitam; Deepmala On the convergence of an iterative method for solving linear complementarity problem with WGPSBD matrix. (English) Zbl 1482.90245 Thai J. Math. 19, No. 4, 1375-1384 (2021). MSC: 90C51 90C90 PDF BibTeX XML Cite \textit{A. K. Das} et al., Thai J. Math. 19, No. 4, 1375--1384 (2021; Zbl 1482.90245) Full Text: Link OpenURL
Wang, Guangbin; Tan, Fuping Modulus-based multisplitting iteration method for a class of weakly nonlinear complementarity problem. (English) Zbl 07479329 Commun. Appl. Math. Comput. 3, No. 3, 419-427 (2021). MSC: 65F10 15B99 PDF BibTeX XML Cite \textit{G. Wang} and \textit{F. Tan}, Commun. Appl. Math. Comput. 3, No. 3, 419--427 (2021; Zbl 07479329) Full Text: DOI OpenURL
Cen, Zhongdi; Le, Anbo An efficient numerical method for pricing a Russian option with a finite time horizon. (English) Zbl 1480.91312 Int. J. Comput. Math. 98, No. 10, 2025-2039 (2021). MSC: 91G60 65M06 65M12 65M15 91G20 PDF BibTeX XML Cite \textit{Z. Cen} and \textit{A. Le}, Int. J. Comput. Math. 98, No. 10, 2025--2039 (2021; Zbl 1480.91312) Full Text: DOI OpenURL
Fakharzadeh, A.; Shams, N. Naseri An efficient algorithm for solving absolute value equations. (English) Zbl 1478.65018 J. Math. Ext. 15, No. 3, Paper No. 4, 23 p. (2021). MSC: 65F10 90C33 90C05 PDF BibTeX XML Cite \textit{A. Fakharzadeh} and \textit{N. N. Shams}, J. Math. Ext. 15, No. 3, Paper No. 4, 23 p. (2021; Zbl 1478.65018) Full Text: DOI Link OpenURL
Hazzam, Nadia; Kebbiche, Zakia A primal-dual interior point method for \(P_{\ast}\left(\kappa \right)\)-HLCP based on a class of parametric kernel functions. (English) Zbl 1476.90327 Numer. Algebra Control Optim. 11, No. 4, 513-531 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{N. Hazzam} and \textit{Z. Kebbiche}, Numer. Algebra Control Optim. 11, No. 4, 513--531 (2021; Zbl 1476.90327) Full Text: DOI OpenURL
Gan, Mengting; Li, Chaoqian Further study on the optimal error bounds of linear complementarity problems for B-Nekrasov matrices. (Chinese. English summary) Zbl 07448763 Math. Pract. Theory 51, No. 11, 219-224 (2021). MSC: 90C33 PDF BibTeX XML Cite \textit{M. Gan} and \textit{C. Li}, Math. Pract. Theory 51, No. 11, 219--224 (2021; Zbl 07448763) OpenURL
Zhang, Lili On AMSOR smoother in modulus-based multigrid method for linear complementarity problems. (Chinese. English summary) Zbl 07448153 Acta Math. Appl. Sin. 44, No. 1, 93-104 (2021). MSC: 65F10 65F50 PDF BibTeX XML Cite \textit{L. Zhang}, Acta Math. Appl. Sin. 44, No. 1, 93--104 (2021; Zbl 07448153) OpenURL
Wang, Guoxin; Lin, Gui-Hua Regularized parallel matrix-splitting method for symmetric linear second-order cone complementarity problems. (English) Zbl 1476.90332 Pac. J. Optim. 17, No. 4, 565-575 (2021). MSC: 90C33 65F10 PDF BibTeX XML Cite \textit{G. Wang} and \textit{G.-H. Lin}, Pac. J. Optim. 17, No. 4, 565--575 (2021; Zbl 1476.90332) Full Text: Link OpenURL
Jana, R.; Das, A. K.; Mishra, Vishnu Narayan Iterative descent method for generalized Leontief model. (English) Zbl 07439438 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 2, 237-244 (2021). MSC: 90C33 65K05 90C05 90C51 PDF BibTeX XML Cite \textit{R. Jana} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 2, 237--244 (2021; Zbl 07439438) Full Text: DOI OpenURL
Xiong, Yebo; Liu, Jianzhou Norm estimates for the inverses of strictly diagonally dominant \(M\)-matrices and linear complementarity problems. (English) Zbl 1478.15030 East Asian J. Appl. Math. 11, No. 3, 487-514 (2021). MSC: 15A45 15A09 15A60 PDF BibTeX XML Cite \textit{Y. Xiong} and \textit{J. Liu}, East Asian J. Appl. Math. 11, No. 3, 487--514 (2021; Zbl 1478.15030) Full Text: DOI OpenURL
Hladík, Milan Stability of the linear complementarity problem properties under interval uncertainty. (English) Zbl 07432783 CEJOR, Cent. Eur. J. Oper. Res. 29, No. 3, 875-889 (2021). MSC: 90Bxx 90C31 90C33 65G40 PDF BibTeX XML Cite \textit{M. Hladík}, CEJOR, Cent. Eur. J. Oper. Res. 29, No. 3, 875--889 (2021; Zbl 07432783) Full Text: DOI arXiv OpenURL
Povh, Janez; Žerovnik, Janez On sufficient properties of sufficient matrices. (English) Zbl 07432779 CEJOR, Cent. Eur. J. Oper. Res. 29, No. 3, 809-822 (2021). MSC: 90Bxx PDF BibTeX XML Cite \textit{J. Povh} and \textit{J. Žerovnik}, CEJOR, Cent. Eur. J. Oper. Res. 29, No. 3, 809--822 (2021; Zbl 07432779) Full Text: DOI OpenURL
Jia, Lu; Wang, Xiang; Xiao, Xiao-Yong The nonlinear lopsided HSS-like modulus-based matrix splitting iteration method for linear complementarity problems with positive-definite matrices. (English) Zbl 1476.65042 Commun. Appl. Math. Comput. 3, No. 1, 109-122 (2021). MSC: 65F10 65K15 90C33 PDF BibTeX XML Cite \textit{L. Jia} et al., Commun. Appl. Math. Comput. 3, No. 1, 109--122 (2021; Zbl 1476.65042) Full Text: DOI OpenURL
Manvelyan, Diana; Simeon, Bernd; Wever, Utz An efficient model order reduction scheme for dynamic contact in linear elasticity. (English) Zbl 1479.74093 Comput. Mech. 68, No. 6, 1283-1295 (2021). MSC: 74M15 74B05 74S99 90C33 PDF BibTeX XML Cite \textit{D. Manvelyan} et al., Comput. Mech. 68, No. 6, 1283--1295 (2021; Zbl 1479.74093) Full Text: DOI arXiv OpenURL
Chen, Fang; Zhu, Yu; Muratova, Galina V. Two-step modulus-based matrix splitting iteration methods for retinex problem. (English) Zbl 07431189 Numer. Algorithms 88, No. 4, 1989-2005 (2021). MSC: 65-XX 78-XX PDF BibTeX XML Cite \textit{F. Chen} et al., Numer. Algorithms 88, No. 4, 1989--2005 (2021; Zbl 07431189) Full Text: DOI OpenURL
Marengo, Alessandro; Patton, Alessia; Negri, Matteo; Perego, Umberto; Reali, Alessandro A rigorous and efficient explicit algorithm for irreversibility enforcement in phase-field finite element modeling of brittle crack propagation. (English) Zbl 07427382 Comput. Methods Appl. Mech. Eng. 387, Article ID 114137, 26 p. (2021). MSC: 74-XX 90-XX PDF BibTeX XML Cite \textit{A. Marengo} et al., Comput. Methods Appl. Mech. Eng. 387, Article ID 114137, 26 p. (2021; Zbl 07427382) Full Text: DOI OpenURL
Huong, N. T. T.; Yao, J.-C.; Yen, N. D. New results on proper efficiency for a class of vector optimization problems. (English) Zbl 1480.90235 Appl. Anal. 100, No. 15, 3199-3211 (2021). MSC: 90C31 90C29 90C33 90C32 90C47 PDF BibTeX XML Cite \textit{N. T. T. Huong} et al., Appl. Anal. 100, No. 15, 3199--3211 (2021; Zbl 1480.90235) Full Text: DOI OpenURL
Cui, Xingbang; Zhang, Liping Stochastic \(R_0\) matrix linear complementarity problems: the Fischer-Burmeister function-based expected residual minimization. (English) Zbl 1476.90306 Comput. Appl. Math. 40, No. 6, Paper No. 183, 16 p. (2021). MSC: 90C30 90C33 90C15 PDF BibTeX XML Cite \textit{X. Cui} and \textit{L. Zhang}, Comput. Appl. Math. 40, No. 6, Paper No. 183, 16 p. (2021; Zbl 1476.90306) Full Text: DOI OpenURL
Dong, Qiao-Li; He, Songnian; Liu, Lulu A general inertial projected gradient method for variational inequality problems. (English) Zbl 1476.65115 Comput. Appl. Math. 40, No. 5, Paper No. 168, 24 p. (2021). MSC: 65K15 47J25 49J40 90C33 90C48 PDF BibTeX XML Cite \textit{Q.-L. Dong} et al., Comput. Appl. Math. 40, No. 5, Paper No. 168, 24 p. (2021; Zbl 1476.65115) Full Text: DOI OpenURL
Wang, Hehui; Zhang, Haibin; Li, Chaoqian Global error bounds for the extended vertical LCP of \(B\)-type matrices. (English) Zbl 1476.65119 Comput. Appl. Math. 40, No. 4, Paper No. 148, 15 p. (2021). MSC: 65K15 90C33 PDF BibTeX XML Cite \textit{H. Wang} et al., Comput. Appl. Math. 40, No. 4, Paper No. 148, 15 p. (2021; Zbl 1476.65119) Full Text: DOI OpenURL
Zhu, Haoran; Zhang, Liping An alternating direction method of multipliers for tensor complementarity problems. (English) Zbl 1476.90317 Comput. Appl. Math. 40, No. 4, Paper No. 106, 14 p. (2021). MSC: 90C30 90C33 65K10 PDF BibTeX XML Cite \textit{H. Zhu} and \textit{L. Zhang}, Comput. Appl. Math. 40, No. 4, Paper No. 106, 14 p. (2021; Zbl 1476.90317) Full Text: DOI OpenURL
Orera, Héctor; Peña, Juan Manuel Error bounds for linear complementarity problems of \(B_{\pi}^R\)-matrices. (English) Zbl 1476.90329 Comput. Appl. Math. 40, No. 3, Paper No. 94, 13 p. (2021). MSC: 90C33 90C31 65G50 15B48 PDF BibTeX XML Cite \textit{H. Orera} and \textit{J. M. Peña}, Comput. Appl. Math. 40, No. 3, Paper No. 94, 13 p. (2021; Zbl 1476.90329) Full Text: DOI OpenURL
Zheng, Hua; Vong, Seakweng On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity problems arising from hydrodynamic lubrication. (English) Zbl 07423599 Appl. Math. Comput. 402, Article ID 126165, 7 p. (2021). MSC: 65F10 90C33 PDF BibTeX XML Cite \textit{H. Zheng} and \textit{S. Vong}, Appl. Math. Comput. 402, Article ID 126165, 7 p. (2021; Zbl 07423599) Full Text: DOI OpenURL
Zheng, Hua; Zhang, Xuping; Lu, Xiaoping On the MAOR method for a class of hydrodynamic lubrication problems. (English) Zbl 07411707 Appl. Math. Lett. 121, Article ID 107521, 8 p. (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{H. Zheng} et al., Appl. Math. Lett. 121, Article ID 107521, 8 p. (2021; Zbl 07411707) Full Text: DOI OpenURL
Zheng, Hua; Luo, Liang; Li, Shao-Yong A two-step iteration method for the horizontal nonlinear complementarity problem. (English) Zbl 1483.65058 Japan J. Ind. Appl. Math. 38, No. 3, 1023-1036 (2021). MSC: 65F10 90C33 PDF BibTeX XML Cite \textit{H. Zheng} et al., Japan J. Ind. Appl. Math. 38, No. 3, 1023--1036 (2021; Zbl 1483.65058) Full Text: DOI OpenURL
Gong, Xiaoyu; Ding, Xuefeng; Wang, Xianjia A new method for \({P_*}(\kappa)\) horizontal linear complementarity problem based on full Newton step. (Chinese. English summary) Zbl 07404430 Math. Pract. Theory 51, No. 7, 206-212 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{X. Gong} et al., Math. Pract. Theory 51, No. 7, 206--212 (2021; Zbl 07404430) OpenURL
Chi, Xiaoni; Liu, Wenli; Liu, Sanyang; Zhao, Min Inexact nonmonotone smoothing Newton method for linear weighted second-order cone complementarity problem. (Chinese. English summary) Zbl 07403995 J. Jilin Univ., Sci. 59, No. 2, 263-270 (2021). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{X. Chi} et al., J. Jilin Univ., Sci. 59, No. 2, 263--270 (2021; Zbl 07403995) Full Text: DOI OpenURL
Zhao, Huali Complexity analysis of a wide neighborhood interior point method for nonmonotone LCP. (Chinese. English summary) Zbl 07403813 J. Beihua Univ., Nat. Sci. 22, No. 2, 141-148 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Zhao}, J. Beihua Univ., Nat. Sci. 22, No. 2, 141--148 (2021; Zbl 07403813) OpenURL
Li, Zhizhi; Zhang, Huai; Ou-Yang, Le The selection of the optimal parameter in the modulus-based matrix splitting algorithm for linear complementarity problems. (English) Zbl 07402750 Comput. Optim. Appl. 80, No. 2, 617-638 (2021). MSC: 65H10 90C33 90Cxx PDF BibTeX XML Cite \textit{Z. Li} et al., Comput. Optim. Appl. 80, No. 2, 617--638 (2021; Zbl 07402750) Full Text: DOI OpenURL
Sang, Caili; Chen, Zhen A new error bound for linear complementarity problems of weakly chained diagonally dominant \(B\)-matrices. (English) Zbl 07394473 Linear Multilinear Algebra 69, No. 10, 1909-1921 (2021). MSC: 65Fxx 65G50 90C31 90C33 PDF BibTeX XML Cite \textit{C. Sang} and \textit{Z. Chen}, Linear Multilinear Algebra 69, No. 10, 1909--1921 (2021; Zbl 07394473) Full Text: DOI OpenURL
Jia, Zehui; Gao, Xue; Cai, Xingju; Han, Deren The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. (English) Zbl 1476.90259 J. Ind. Manag. Optim. 17, No. 4, 1943-1971 (2021). MSC: 90C26 49M27 90C33 PDF BibTeX XML Cite \textit{Z. Jia} et al., J. Ind. Manag. Optim. 17, No. 4, 1943--1971 (2021; Zbl 1476.90259) Full Text: DOI OpenURL
Gao, Lei; Liu, Qilong; Li, Chaoqian; Li, Yaotang On \(\{P_1,P_2\}\)-Nekrasov matrices. (English) Zbl 1471.15014 Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 2971-2999 (2021). MSC: 15A45 15A60 15B99 90C33 PDF BibTeX XML Cite \textit{L. Gao} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 2971--2999 (2021; Zbl 1471.15014) Full Text: DOI OpenURL
Zhang, Jian-Jun; Ye, Wan-Zhou A modulus-based iterative method for sparse signal recovery. (English) Zbl 1476.90316 Numer. Algorithms 88, No. 1, 165-190 (2021). MSC: 90C30 90C33 65F10 65F22 65G40 PDF BibTeX XML Cite \textit{J.-J. Zhang} and \textit{W.-Z. Ye}, Numer. Algorithms 88, No. 1, 165--190 (2021; Zbl 1476.90316) Full Text: DOI OpenURL
O’Donoghue, Brendan Operator splitting for a homogeneous embedding of the linear complementarity problem. (English) Zbl 1479.90202 SIAM J. Optim. 31, No. 3, 1999-2023 (2021). Reviewer: Bing Tan (Chengdu) MSC: 90C33 90C20 65K05 65K10 90C05 90C06 90C22 90C25 90C30 90C46 PDF BibTeX XML Cite \textit{B. O'Donoghue}, SIAM J. Optim. 31, No. 3, 1999--2023 (2021; Zbl 1479.90202) Full Text: DOI arXiv OpenURL
Seeger, Alberto Cone-constrained eigenvalue problems: structure of cone spectra. (English) Zbl 1471.15029 Set-Valued Var. Anal. 29, No. 3, 605-619 (2021). MSC: 15B48 15A18 47A75 90C33 PDF BibTeX XML Cite \textit{A. Seeger}, Set-Valued Var. Anal. 29, No. 3, 605--619 (2021; Zbl 1471.15029) Full Text: DOI OpenURL
Zamani, Moslem; Hladík, Milan A new concave minimization algorithm for the absolute value equation solution. (English) Zbl 1475.90075 Optim. Lett. 15, No. 6, 2241-2254 (2021). MSC: 90C26 90C33 PDF BibTeX XML Cite \textit{M. Zamani} and \textit{M. Hladík}, Optim. Lett. 15, No. 6, 2241--2254 (2021; Zbl 1475.90075) Full Text: DOI OpenURL
Luo, Jianfeng; Zhao, Yi Simulation-based study of biological systems with threshold policy by a differential linear complementarity system. (English) Zbl 1472.34094 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 9, Article ID 2130025, 21 p. (2021). MSC: 34C60 34A36 34C23 34C05 92D25 PDF BibTeX XML Cite \textit{J. Luo} and \textit{Y. Zhao}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 9, Article ID 2130025, 21 p. (2021; Zbl 1472.34094) Full Text: DOI OpenURL
Chi, Xiaoni; Wang, Guoqiang A full-Newton step infeasible interior-point method for the special weighted linear complementarity problem. (English) Zbl 1475.90128 J. Optim. Theory Appl. 190, No. 1, 108-129 (2021). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{X. Chi} and \textit{G. Wang}, J. Optim. Theory Appl. 190, No. 1, 108--129 (2021; Zbl 1475.90128) Full Text: DOI OpenURL
Huang, Zheng-Ge; Cui, Jing-Jing Accelerated relaxation modulus-based matrix splitting iteration method for linear complementarity problems. (English) Zbl 1472.65038 Bull. Malays. Math. Sci. Soc. (2) 44, No. 4, 2175-2213 (2021). MSC: 65F10 65K15 PDF BibTeX XML Cite \textit{Z.-G. Huang} and \textit{J.-J. Cui}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 4, 2175--2213 (2021; Zbl 1472.65038) Full Text: DOI OpenURL
Drivaliaris, Dimosthenis; Yannakakis, Nikos The angle along a curve and range-kernel complementarity. (English) Zbl 07380182 Integral Equations Oper. Theory 93, No. 4, Paper No. 44, 12 p. (2021). Reviewer: Cătălin Badea (Villeneuve d’Ascq) MSC: 47A10 47A12 46L05 PDF BibTeX XML Cite \textit{D. Drivaliaris} and \textit{N. Yannakakis}, Integral Equations Oper. Theory 93, No. 4, Paper No. 44, 12 p. (2021; Zbl 07380182) Full Text: DOI arXiv OpenURL
Bennani, Ahlem; Benterki, Djamel; Grar, Hassina Adaptive projection methods for linear fractional programming. (English) Zbl 1472.90136 RAIRO, Oper. Res. 55, Suppl., S2383-S2392 (2021). MSC: 90C32 90C05 90C33 35R35 90C51 PDF BibTeX XML Cite \textit{A. Bennani} et al., RAIRO, Oper. Res. 55, S2383--S2392 (2021; Zbl 1472.90136) Full Text: DOI OpenURL
Bravo, Diego; Cubría, Florencia; Fiori, Marcelo; Trevisan, Vilmar Complementarity spectrum of digraphs. (English) Zbl 1468.05145 Linear Algebra Appl. 627, 24-40 (2021). MSC: 05C50 05C20 PDF BibTeX XML Cite \textit{D. Bravo} et al., Linear Algebra Appl. 627, 24--40 (2021; Zbl 1468.05145) Full Text: DOI arXiv OpenURL
Mezzadri, F.; Galligani, E. A modulus-based nonsmooth Newton’s method for solving horizontal linear complementarity problems. (English) Zbl 1471.90150 Optim. Lett. 15, No. 5, 1785-1798 (2021). MSC: 90C33 90C53 PDF BibTeX XML Cite \textit{F. Mezzadri} and \textit{E. Galligani}, Optim. Lett. 15, No. 5, 1785--1798 (2021; Zbl 1471.90150) Full Text: DOI OpenURL
Chi, Xiaoni; Zhang, Ruijie; Liu, Sanyang A new full-Newton step feasible interior-point algorithm for linear weighted complementarity problem. (Chinese. English summary) Zbl 1474.90474 Math. Appl. 34, No. 2, 304-311 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{X. Chi} et al., Math. Appl. 34, No. 2, 304--311 (2021; Zbl 1474.90474) OpenURL
Liu, Yi; Jing, Xia; Gao, Lei Ostrowski-Brauer sparse \(B\) (OBS-\(B\)) matrices and error bounds for linear complementarity problems. (Chinese. English summary) Zbl 1474.15084 J. Yunnan Univ., Nat. Sci. 43, No. 2, 205-213 (2021). MSC: 15B48 65F50 90C33 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Yunnan Univ., Nat. Sci. 43, No. 2, 205--213 (2021; Zbl 1474.15084) Full Text: DOI OpenURL
Wang, Zhifeng; Li, Chaoqian Linear complementarity problems of Dashnic-Zusmanovich matrices with parametered error bounds. (Chinese. English summary) Zbl 1474.90486 J. Sichuan Norm. Univ., Nat. Sci. 44, No. 1, 23-27 (2021). MSC: 90C33 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{C. Li}, J. Sichuan Norm. Univ., Nat. Sci. 44, No. 1, 23--27 (2021; Zbl 1474.90486) Full Text: DOI OpenURL
Li, Dong-Hui; Chen, Cui-Dan; Guan, Hong-Bo A lower dimensional linear equation approach to the m-tensor complementarity problem. (English) Zbl 1470.90144 Calcolo 58, No. 1, Paper No. 5, 22 p. (2021). MSC: 90C33 65K10 PDF BibTeX XML Cite \textit{D.-H. Li} et al., Calcolo 58, No. 1, Paper No. 5, 22 p. (2021; Zbl 1470.90144) Full Text: DOI arXiv OpenURL
Jiang, Yirong; Song, Qiqing; Zhang, Qiongfen Uniqueness and Hyers-Ulam stability of random differential variational inequalities with nonlocal boundary conditions. (English) Zbl 07359217 J. Optim. Theory Appl. 189, No. 2, 646-665 (2021). MSC: 47J20 60H25 PDF BibTeX XML Cite \textit{Y. Jiang} et al., J. Optim. Theory Appl. 189, No. 2, 646--665 (2021; Zbl 07359217) Full Text: DOI OpenURL
Baillon, Jean-Bernard; Seeger, Alberto On the maximal number of Pareto eigenvalues in a matrix of given order. (English) Zbl 1475.15006 Linear Multilinear Algebra 69, No. 7, 1185-1207 (2021). Reviewer: Giovanni Barbarino (Helsinki) MSC: 15A18 15A39 05C50 65H17 PDF BibTeX XML Cite \textit{J.-B. Baillon} and \textit{A. Seeger}, Linear Multilinear Algebra 69, No. 7, 1185--1207 (2021; Zbl 1475.15006) Full Text: DOI OpenURL
Zhang, Xiang; Li, Lingfei; Zhang, Gongqiu Pricing American drawdown options under Markov models. (English) Zbl 1487.91143 Eur. J. Oper. Res. 293, No. 3, 1188-1205 (2021). MSC: 91G20 60G40 60G51 60J27 90C33 91G60 PDF BibTeX XML Cite \textit{X. Zhang} et al., Eur. J. Oper. Res. 293, No. 3, 1188--1205 (2021; Zbl 1487.91143) Full Text: DOI OpenURL
He, Hongjin; Bai, Xueli; Ling, Chen; Zhou, Guanglu An index detecting algorithm for a class of TCP \((\mathcal{A},q)\) equipped with nonsingular \(\mathcal{M}\)-tensors. (English) Zbl 07354669 J. Comput. Appl. Math. 394, Article ID 113548, 15 p. (2021). MSC: 65Fxx PDF BibTeX XML Cite \textit{H. He} et al., J. Comput. Appl. Math. 394, Article ID 113548, 15 p. (2021; Zbl 07354669) Full Text: DOI OpenURL
Sivakumar, K. C.; Parameswaran, Sushmitha; Wendler, Megan Karamardian matrices: an analogue of \(Q\)-matrices. (English) Zbl 1465.15023 Electron. J. Linear Algebra 37, 127-155 (2021). MSC: 15A39 15A06 15A09 15B99 PDF BibTeX XML Cite \textit{K. C. Sivakumar} et al., Electron. J. Linear Algebra 37, 127--155 (2021; Zbl 1465.15023) Full Text: arXiv Link OpenURL
Darvay, Zsolt; Illés, Tibor; Majoros, Csilla Interior-point algorithm for sufficient LCPs based on the technique of algebraically equivalent transformation. (English) Zbl 1466.90108 Optim. Lett. 15, No. 2, 357-376 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., Optim. Lett. 15, No. 2, 357--376 (2021; Zbl 1466.90108) Full Text: DOI OpenURL
Orlitzky, Michael Gaddum’s test for symmetric cones. (English) Zbl 1465.90064 J. Glob. Optim. 79, No. 4, 927-940 (2021). MSC: 90C25 91A05 15B48 90C33 PDF BibTeX XML Cite \textit{M. Orlitzky}, J. Glob. Optim. 79, No. 4, 927--940 (2021; Zbl 1465.90064) Full Text: DOI OpenURL
Mezzadri, Francesco; Galligani, Emanuele A generalization of irreducibility and diagonal dominance with applications to horizontal and vertical linear complementarity problems. (English) Zbl 1470.65121 Linear Algebra Appl. 621, 214-234 (2021). MSC: 65K15 90C33 65F99 PDF BibTeX XML Cite \textit{F. Mezzadri} and \textit{E. Galligani}, Linear Algebra Appl. 621, 214--234 (2021; Zbl 1470.65121) Full Text: DOI OpenURL
Miri, S. M.; Effati, S. New characterizations of the matrix classes \(\mathbf{P}\), \(\mathbf{W}\) and \(\mathbf{R}_0\). (English) Zbl 1465.90110 Linear Algebra Appl. 621, 181-192 (2021). MSC: 90C33 15B99 PDF BibTeX XML Cite \textit{S. M. Miri} and \textit{S. Effati}, Linear Algebra Appl. 621, 181--192 (2021; Zbl 1465.90110) Full Text: DOI OpenURL