×

Specified QoS based networked observer and PI controller design with disturbance and noise rejection under random packet dropout. (English) Zbl 07582122

Summary: In this paper, a novel observer based networked PI controller has been designed by considering bounded disturbance and measurement noise under specified probability of random packet dropouts in networked control systems (NCSs). Lyapunov stability condition of the NCS with an observer and PI controller has been derived using an asynchronous dynamical system (ADS) approach as a linear matrix inequality (LMI) with nonconvex constraints to improve its quality-of-service (QoS) and quality-of-control (QoC). In order to improve QoC and QoS for NCS under process and measurement disturbance, we have used \(H_\infty\) norm bound, and random packet drop rate in the NCS design. The algorithm has been tested and validated on four test-bench models of energy conversion systems. Confidence intervals and the mean responses of the state variables, state estimation errors of the observer and control signals have been reported using 100 Monte Carlo simulations. Our proposed NCS with PI controller and observer design method can be employed on a wide range of state space models of energy conversion systems. The specified probability of packet dropouts in the communication network between the sensor, observer, PI controller and actuator has been considered in the design which allows design of the NCS with guaranteed Lyapunov stability. We consider a switched linear dynamical system structure of the NCS with bounded noise and disturbance inputs while jointly searching for PI controller and observer gains. Using the controller and observer designed with 90% packet drop rate, we show the system performance degradation at 97%–99% QoS using phase portraits of the error dynamical system around the equilibrium as well as through univariate and multivariate hypothesis tests for equal dispersion around the equilibrium of the error dynamical system.

MSC:

82-XX Statistical mechanics, structure of matter
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, S.; Meng, X.; Chen, T., Wide-area control of power systems through delayed network communication, IEEE Trans. Control Syst. Technol., 20, 2, 495-503 (2011)
[2] Tomic, J.; Kempton, W., Using fleets of electric-drive vehicles for grid support, J. Power Sources, 168, 2, 459-468 (2007)
[3] Borgers, D.; Geiselhart, R.; Heemels, W., Tradeoffs between quality-of-control and quality-of-service in large-scale nonlinear networked control systems, Nonlinear Anal. Hybrid Syst., 23, 142-165 (2017) · Zbl 1351.93130
[4] Mahmoud, M. S.; Hamdan, M. M., Fundamental issues in networked control systems, IEEE/CAA J. Autom. Sin., 5, 5, 902-922 (2018)
[5] Xu, H.; Jagannathan, S.; Lewis, F. L., Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses, Automatica, 48, 6, 1017-1030 (2012) · Zbl 1244.93177
[6] Schenato, L., Optimal estimation in networked control systems subject to random delay and packet drop, IEEE Trans. Automat. Control, 53, 5, 1311 (2008) · Zbl 1367.93633
[7] Ogata, K., Discrete-Time Control Systems, Vol. 2 (1995), Prentice Hall Englewood Cliffs: Prentice Hall Englewood Cliffs NJ
[8] Herrera, L.; Inoa, E.; Guo, F.; Wang, J.; Tang, H., Small-signal modeling and networked control of a PHEV charging facility, IEEE Trans. Ind. Appl., 50, 2, 1121-1130 (2013)
[9] Zhang, W.; Branicky, M. S.; Phillips, S. M., Stability of networked control systems, IEEE Control Syst. Mag., 21, 1, 84-99 (2001)
[10] Hespanha, J. P.; Naghshtabrizi, P.; Xu, Y., A survey of recent results in networked control systems, Proc. IEEE, 95, 1, 138-162 (2007)
[11] Dasgupta, S.; Halder, K.; Banerjee, S.; Gupta, A., Stability of networked control system (NCS) with discrete time-driven PID controllers, Control Eng. Pract., 42, 41-49 (2015)
[12] Dasgupta, S.; Routh, A.; Banerjee, S.; Agilageswari, K.; Balasubramanian, R.; Bhandarkar, S. G.; Chattopadhyay, S.; Kumar, M.; Gupta, A., Networked control of a large pressurized heavy water reactor (PHWR) with discrete proportional-integral-derivative (PID) controllers, IEEE Trans. Nucl. Sci., 60, 5, 3879-3888 (2013)
[13] Halder, K.; Bose, D.; Gupta, A., Stability and performance analysis of networked control systems: A lifted sample-time approach with \(L_2\) induced norm, ISA Trans., 86, 62-72 (2019)
[14] Halder, K.; Das, S.; Dasgupta, S.; Banerjee, S.; Gupta, A., Controller design for networked control systems—An approach based on \(L_2\) induced norm, Nonlinear Anal. Hybrid Syst., 19, 134-145 (2016) · Zbl 1329.93018
[15] Li, H.; Chow, M.-Y.; Sun, Z., Optimal stabilizing gain selection for networked control systems with time delays and packet losses, IEEE Trans. Control Syst. Technol., 17, 5, 1154-1162 (2009)
[16] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Vol. 15 (1994), SIAM · Zbl 0816.93004
[17] Cai, X.; Shi, K.; Zhong, S.; Wang, J.; Tang, Y., Dissipative analysis for high speed train systems via looped-functional and relaxed condition methods, Appl. Math. Model., 96, 570-583 (2021) · Zbl 1481.93109
[18] Zhan, X.-S.; Sun, X.-X.; Wu, J.; Han, T., Optimal modified tracking performance for networked control systems with QoS constraint, ISA Trans., 65, 109-115 (2016)
[19] Jiang, X.; Chen, X.; Huang, T.; Yan, H., Output tracking control of single-input-multioutput systems over an erasure channel, IEEE Trans. Cybern., 52, 4, 2609-2617 (2022)
[20] Jiang, X.; Chi, M.; Chen, X.; Yan, H.; Huang, T., Output tracking control performance of discrete networked systems over erasure channel with model uncertainty, IEEE Trans. Cybern. (2021)
[21] Lee, K. C.; Lee, S.; Lee, M. H., QoS-based remote control of networked control systems via profibus token passing protocol, IEEE Trans. Ind. Inf., 1, 3, 183-191 (2005)
[22] A.D. McKernan, G.W. Irwin, Event-based sampling for wireless network control systems with QoS, in: Proceedings of the 2010 American Control Conference, 2010, pp. 1841-1846.
[23] Colandairaj, J.; Irwin, G. W.; Scanlon, W., Wireless networked control systems with QoS-based sampling, IET Control Theory Appl., 1, 1, 430-438 (2007)
[24] Seiler, P.; Sengupta, R., An \(H_\infty\) approach to networked control, IEEE Trans. Automat. Control, 50, 3, 356-364 (2005) · Zbl 1365.93147
[25] Zhang, W.-A.; Yu, L., Output feedback stabilization of networked control systems with packet dropouts, IEEE Trans. Automat. Control, 52, 9, 1705-1710 (2007) · Zbl 1366.93543
[26] A. Hassibi, S.P. Boyd, J.P. How, Control of asynchronous dynamical systems with rate constraints on events, in: Proceedings of the 38th IEEE Conference on Decision and Control, 1999, pp. 1345-1351.
[27] Rabello, A.; Bhaya, A., Stability of asynchronous dynamical systems with rate constraints and applications, IEEE Proc. D, 150, 5, 546 (2003)
[28] Yang, F.; Wang, Z.; Hung, Y. S.; Gani, M., \(H{}_\infty\) control for networked systems with random communication delays, IEEE Trans. Automat. Control, 51, 3, 511-518 (2006) · Zbl 1366.93167
[29] Hu, S.; Yue, D., Event-based \(H_\infty\) filtering for networked system with communication delay, Signal Process., 92, 9, 2029-2039 (2012)
[30] Xiong, J.; Lam, J., Stabilization of linear systems over networks with bounded packet loss, Automatica, 43, 1, 80-87 (2007) · Zbl 1140.93383
[31] Zhu, Q.; Lu, K.; Zhu, Y., Observer-based feedback control of networked control systems with delays and packet dropouts, J. Dyn. Syst. Meas. Control, 138, 2, Article 021011 pp. (2016)
[32] Wang, S.; Feng, J.; Zhao, Q.; Jiang, Y., Observer-based networked control with probabilistic interval input delays, Int. J. Control Autom. Syst., 12, 4, 904-914 (2014)
[33] Elahi, A.; Alfi, A., Finite-time \(H_\infty\) stability analysis of uncertain network-based control systems under random packet dropout and varying network delay, Nonlinear Dynam., 91, 1, 713-731 (2018) · Zbl 1390.93280
[34] Elahi, A.; Alfi, A., Stochastic \(H_\infty\) finite-time control of networked cascade control systems under limited channels,network delays and packet dropouts, ISA Trans., 97, 352-364 (2020)
[35] Åström, K. J.; Hägglund, T.; Hang, C. C.; Ho, W. K., Automatic tuning and adaptation for PID controllers-a survey, Control Eng. Pract., 1, 4, 699-714 (1993)
[36] Berner, J.; Soltesz, K.; Hägglund, T.; Åström, K. J., An experimental comparison of PID autotuners, Control Eng. Pract., 73, 124-133 (2018)
[37] Åström, K. J.; Hägglund, T., The future of PID control, Control Eng. Pract., 9, 11, 1163-1175 (2001)
[38] Zhang, H.; Shi, Y.; Mehr, A. S., Robust static output feedback control and remote PID design for networked motor systems, IEEE Trans. Ind. Electron., 58, 12, 5396-5405 (2011)
[39] Zhang, H.; Shi, Y.; Mehr, A. S., Robust \(\mathcal{H}_\infty\) PID control for multivariable networked control systems with disturbance/noise attenuation, Internat. J. Robust Nonlinear Control, 22, 2, 183-204 (2012) · Zbl 1244.93047
[40] Sala, A.; Cuenca, Á.; Salt, J., A retunable PID multi-rate controller for a networked control system, Inform. Sci., 179, 14, 2390-2402 (2009) · Zbl 1165.93314
[41] Pan, I.; Das, S.; Gupta, A., Handling packet dropouts and random delays for unstable delayed processes in NCS by optimal tuning of PI \({}^\lambda\) D \({}^\mu\) controllers with evolutionary algorithms, ISA Trans., 50, 4, 557-572 (2011)
[42] Pan, I.; Das, S.; Gupta, A., Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay, ISA Trans., 50, 1, 28-36 (2011)
[43] Jiang, T.; Zhang, Y.; Zeng, Y.; Zhong, S.; Shi, K.; Cai, X., Finite-time analysis for networked predictive control systems with induced time delays and data packet dropouts, Physica A, 581, Article 126209 pp. (2021) · Zbl 07482378
[44] Cuenca, Á.; Salt, J.; Sala, A.; Pizá, R., A delay-dependent dual-rate PID controller over an ethernet network, IEEE Trans. Ind. Inf., 7, 1, 18-29 (2011)
[45] Das, S.; Das, S.; Pan, I., Multi-objective optimization framework for networked predictive controller design, ISA Trans., 52, 1, 56-77 (2013)
[46] Pan, I.; Das, S., Design of hybrid regrouping PSO-GA based sub-optimal networked control system with random packet losses, Memet. Comput., 5, 2, 141-153 (2013)
[47] Tran, H.-D.; Guan, Z.-H.; Dang, X.-K.; Cheng, X.-M.; Yuan, F.-S., A normalized PID controller in networked control systems with varying time delays, ISA Trans., 52, 5, 592-599 (2013)
[48] Li, H.; Chow, M.-Y.; Sun, Z., EDA-based speed control of a networked DC motor system with time delays and packet losses, IEEE Trans. Ind. Electron., 56, 5, 1727-1735 (2009)
[49] Panda, D. K.; Das, S., Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy, J. Cleaner Prod., 301, Article 126877 pp. (2021)
[50] Postoyan, R.; Nesic, D., On emulated nonlinear reduced-order observers for networked control systems, Automatica, 48, 4, 645-652 (2012) · Zbl 1238.93021
[51] Iwasaki, T.; Skelton, R., The XY-centring algorithm for the dual LMI problem: a new approach to fixed-order control design, Internat. J. Control, 62, 6, 1257-1272 (1995) · Zbl 0839.93033
[52] A. Routh, S. Das, I. Pan, S. Das, Stabilization based networked predictive controller design for switched plants, in: 2012 Third International Conference on Computing, Communication and Networking Technologies, ICCCNT’12, 2012, pp. 1-6.
[53] Li, Z.-M.; Chang, X.-H., Robust \(H_\infty\) control for networked control systems with randomly occurring uncertainties: Observer-based case, ISA Trans., 83, 13-24 (2018)
[54] He, Y.; Liu, G.; Rees, D.; Wu, M., Improved stabilisation method for networked control systems, IET Control Theory Appl., 1, 6, 1580-1585 (2007)
[55] Imer, O. C.; Yüksel, S.; Basar, T., Optimal control of LTI systems over unreliable communication links, Automatica, 42, 9, 1429-1439 (2006) · Zbl 1128.93368
[56] Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M. I.; Sastry, S. S., Kalman filtering with intermittent observations, IEEE Trans. Automat. Control, 49, 9, 1453-1464 (2004) · Zbl 1365.93512
[57] Schenato, L.; Sinopoli, B.; Franceschetti, M.; Poolla, K.; Sastry, S. S., Foundations of control and estimation over lossy networks, Proc. IEEE, 95, 1, 163-187 (2007)
[58] Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Sastry, S., Optimal linear LQG control over lossy networks without packet acknowledgment, Asian J. Control, 10, 1, 3-13 (2008)
[59] Halder, K.; Das, S.; Panda, D. K.; Das, S.; Gupta, A., Qos aware joint observer and networked PI/PID controller design using LMIs under specified rate of packet dropouts, Appl. Math. Comput., 401, Article 126125 pp. (2021) · Zbl 1508.93301
[60] Franklin, G. F.; Powell, J. D.; Workman, M. L., Digital Control of Dynamic Systems, Vol. 3 (1998), Addison-wesley Menlo Park
[61] Halder, K.; Montanaro, U.; Dixit, S.; Dianati, M.; Mouzakitis, A.; Fallah, S., Distributed \(H_\infty\) controller design and robustness analysis for vehicle platooning under random packet drop, IEEE Trans. Intell. Transp. Syst., 23, 5, 4373-4386 (2022)
[62] Fu, M.; Luo, Z.-Q., Computational complexity of a problem arising in fixed order output feedback design, Systems Control Lett., 30, 5, 209-215 (1997) · Zbl 0901.93023
[63] J. Geromel, C. De Souza, R. Skelton, LMI numerical solution for output feedback stabilization, in: Proceedings of 1994 American Control Conference-ACC’94, Vol. 1, 1994, pp. 40-44.
[64] Grigoriadis, K. M., Optimal \(H_\infty\) model reduction via linear matrix inequalities: continuous-and discrete-time cases, Systems Control Lett., 26, 5, 321-333 (1995) · Zbl 0877.93017
[65] El Ghaoui, L.; Oustry, F.; AitRami, M., A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Trans. Automat. Control, 42, 8, 1171-1176 (1997) · Zbl 0887.93017
[66] M. De Oliveira, J. Geromel, Numerical comparison of output feedback design methods, in: Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041), Vol. 1, 1997, pp. 72-76.
[67] Zhang, L.; Huang, B.; Lam, J., \(H{}_\infty\) model reduction of Markovian jump linear systems, Systems Control Lett., 50, 2, 103-118 (2003) · Zbl 1157.93519
[68] Gao, H.; Wang, Z.; Wang, C., Improved \(H_\infty\) control of discrete-time fuzzy systems: a cone complementarity linearization approach, Inform. Sci., 175, 1-2, 57-77 (2005) · Zbl 1113.93308
[69] H. Li, Z. Sun, M.-Y. Chow, H. Liu, B. Chen, Stabilization of networked control systems with time delay and packet dropout-Part I, in: 2007 IEEE International Conference on Automation and Logistics, 2007, pp. 3006-3011.
[70] H. Li, Z. Sun, M.-Y. Chow, H. Liu, B. Chen, Stabilization of networked control systems with time delay and packet dropout-part II, in: 2007 IEEE International Conference on Automation and Logistics, 2007, pp. 3012-3017.
[71] Gao, H.; Chen, T.; Lam, J., A new delay system approach to network-based control, Automatica, 44, 1, 39-52 (2008) · Zbl 1138.93375
[72] Sturm, J. F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11, 1-4, 625-653 (1999) · Zbl 0973.90526
[73] J.L. fberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in: Proceedings of the CACSD Conference, 2004, p. 3.
[74] Halder, K.; Das, S.; Gupta, A., Transformation of LQR weights for discretization invariant performance of PI/PID dominant pole placement controllers, Robotica, 38, 2, 271-298 (2020)
[75] Halder, K.; Das, S.; Gupta, A., Time delay handling in dominant pole placement with PID controllers to obtain stability regions using random sampling, Internat. J. Control, 94, 12, 3384-3405 (2021) · Zbl 1478.93234
[76] Das, S.; Halder, K.; Gupta, A., Delay handling method in Dominant pole placement based PID controller design, IEEE Trans. Ind. Inf., 16, 2, 980-991 (2020)
[77] Panda, D. K.; Das, S.; Townley, S., Toward a more renewable energy-based LFC under random packet transmissions and delays with stochastic generation and demand, IEEE Trans. Autom. Sci. Eng., 19, 2, 1217-1232 (2022)
[78] A. Mukherjee, A. Pakhira, S. Das, I. Pan, A. Gupta, Embedded Network Test-Bed for Validating Real-Time Control Algorithms to Ensure Optimal Time Domain Performance, in: 2011 International Conference on Process Automation, Control and Computing, 2011, pp. 1-6.
[79] Pahasa, J.; Ngamroo, I., Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid, IEEE Syst. J., 10, 1, 97-105 (2014)
[80] Pahasa, J.; Ngamroo, I., PHEVs bidirectional charging/discharging and SoC control for microgrid frequency stabilization using multiple MPC, IEEE Trans. Smart Grid, 6, 2, 526-533 (2014)
[81] Gallardo-Lozano, J.; Milanés-Montero, M. I.; Guerrero-Martinez, M. A.; Romero-Cadaval, E., Electric vehicle battery charger for smart grids, Electr. Power Syst. Res., 90, 18-29 (2012)
[82] Y. Ota, H. Taniguchi, T. Nakajima, K.M. Liyanage, J. Baba, A. Yokoyama, Autonomous distributed V2G (vehicle-to-grid) considering charging request and battery condition, in: 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT Europe, 2010, pp. 1-6.
[83] Olalla, C.; Leyva, R.; El Aroudi, A.; Queinnec, I., Robust LQR control for PWM converters: An LMI approach, IEEE Trans. Ind. Electron., 56, 7, 2548-2558 (2009)
[84] Sun, X.; Wu, M.; Yang, Z.; Lei, G.; Guo, Y., High-performance control for a permanent-magnet linear synchronous generator using state feedback control scheme plus grey wolf optimisation, IET Electr. Power Appl., 14, 5, 771-780 (2019)
[85] Hredzak, B.; Agelidis, V. G.; Jang, M., A model predictive control system for a hybrid battery-ultracapacitor power source, IEEE Trans. Power Electron., 29, 3, 1469-1479 (2014)
[86] Vasebi, A.; Bathaee, S. M.T.; Partovibakhsh, M., Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter, Energy Convers. Manage., 49, 1, 75-82 (2008)
[87] Zak, S. H., Systems and Control, Vol. 198 (2003), Oxford University Press: Oxford University Press New York
[88] Das, S.; Pan, I.; Das, S., Effect of random parameter switching on commensurate fractional order chaotic systems, Chaos Solitons Fractals, 91, 157-173 (2016) · Zbl 1372.34113
[89] Pan, I.; Das, S.; Routh, A., Towards a global controller design for guaranteed synchronization of switched chaotic systems, Appl. Math. Model., 39, 8, 2311-2331 (2015) · Zbl 1443.93105
[90] Anderson, M. J., Distance-based tests for homogeneity of multivariate dispersions, Biometrics, 62, 1, 245-253 (2006) · Zbl 1091.62049
[91] Jones, D. L., Fathom Toolbox for Matlab: Software for Multivariate Ecological and Oceanographic Data Analysis (2017), College of Marine Science, University of South Florida, St. Petersburg: College of Marine Science, University of South Florida, St. Petersburg FL, USA, [Online]. Available,https://www.usf.edu/marine-science/research/matlab-resources/index.aspx/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.