Nasiri, T.; Zakeri, A.; Aminataei, A. A numerical solution for a quasi solution of the time-fractional stochastic backward parabolic equation. (English) Zbl 07750618 J. Comput. Appl. Math. 437, Article ID 115441, 20 p. (2024). Reviewer: Abdallah Bradji (Annaba) MSC: 65M32 65M30 65M06 65T60 65K10 65J20 65F22 65M12 65M15 60G22 35A15 41A50 35A01 35A02 35R30 26A33 35R11 35R60 PDF BibTeX XML Cite \textit{T. Nasiri} et al., J. Comput. Appl. Math. 437, Article ID 115441, 20 p. (2024; Zbl 07750618) Full Text: DOI
Blümlein, J.; Saragnese, M.; Schneider, C. Hypergeometric structures in Feynman integrals. (English) Zbl 07759320 Ann. Math. Artif. Intell. 91, No. 5, 591-649 (2023). MSC: 33F10 33C20 33C65 33E30 81Q30 PDF BibTeX XML Cite \textit{J. Blümlein} et al., Ann. Math. Artif. Intell. 91, No. 5, 591--649 (2023; Zbl 07759320) Full Text: DOI arXiv OA License
Ge, Meibao; Xu, Dinghua Biparametric identification for a free boundary of ductal carcinoma in situ. (English) Zbl 07725569 Appl. Anal. 102, No. 10, 2774-2794 (2023). MSC: 35Q92 92C37 92C32 92C50 35R30 35R35 35R60 35A01 35A02 35K05 65K10 90C56 65M32 65M30 65F22 65J20 65M06 PDF BibTeX XML Cite \textit{M. Ge} and \textit{D. Xu}, Appl. Anal. 102, No. 10, 2774--2794 (2023; Zbl 07725569) Full Text: DOI
Moroşanu, Costică; Satco, Bianca Qualitative and quantitative analysis for a nonlocal and nonlinear reaction-diffusion problem with in-homogeneous Neumann boundary conditions. (English) Zbl 1514.35265 Discrete Contin. Dyn. Syst., Ser. S 16, No. 1, 1-15 (2023). MSC: 35K57 35K60 45K05 65M06 PDF BibTeX XML Cite \textit{C. Moroşanu} and \textit{B. Satco}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 1, 1--15 (2023; Zbl 1514.35265) Full Text: DOI
Schumann, Yannis; Neumann, Philipp On linear models for discrete operator inference in time dependent problems. (English) Zbl 1514.65106 J. Comput. Appl. Math. 425, Article ID 115022, 13 p. (2023). MSC: 65M06 65M12 47F99 PDF BibTeX XML Cite \textit{Y. Schumann} and \textit{P. Neumann}, J. Comput. Appl. Math. 425, Article ID 115022, 13 p. (2023; Zbl 1514.65106) Full Text: DOI
Wang, Shaohong; Zhou, Zhan Periodic solutions for a second-order partial difference equation. (English) Zbl 1512.39006 J. Appl. Math. Comput. 69, No. 1, 731-752 (2023). MSC: 39A14 39A23 PDF BibTeX XML Cite \textit{S. Wang} and \textit{Z. Zhou}, J. Appl. Math. Comput. 69, No. 1, 731--752 (2023; Zbl 1512.39006) Full Text: DOI
Lizama, Carlos; Murillo-Arcila, Marina The semidiscrete damped wave equation with a fractional Laplacian. (English) Zbl 1510.35382 Proc. Am. Math. Soc. 151, No. 5, 1987-1999 (2023). MSC: 35R11 39A06 26A33 44A10 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, Proc. Am. Math. Soc. 151, No. 5, 1987--1999 (2023; Zbl 1510.35382) Full Text: DOI
Jiang, Yi; Liu, Jun Fast parallel-in-time quasi-boundary value methods for backward heat conduction problems. (English) Zbl 1510.65229 Appl. Numer. Math. 184, 325-339 (2023). Reviewer: Petr Sváček (Praha) MSC: 65M32 65M06 65N06 65T50 65F50 65F05 60H50 35K05 35Q79 35R30 35R25 35R60 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{J. Liu}, Appl. Numer. Math. 184, 325--339 (2023; Zbl 1510.65229) Full Text: DOI arXiv
Cheng, Xianjin; Liu, Zhenxin; Zhang, Lixin Small perturbations may change the sign of Lyapunov exponents for linear SDEs. (English) Zbl 1514.37069 Stoch. Dyn. 22, No. 8, Article ID 2240038, 25 p. (2022). MSC: 37H15 37H10 37H30 37A50 60H10 60H15 60H20 PDF BibTeX XML Cite \textit{X. Cheng} et al., Stoch. Dyn. 22, No. 8, Article ID 2240038, 25 p. (2022; Zbl 1514.37069) Full Text: DOI arXiv
Lyapin, Alexander P.; Cuchta, Tom Sections of the generating series of a solution to a difference equation in a simplicial cone. (English) Zbl 1511.39002 Izv. Irkutsk. Gos. Univ., Ser. Mat. 42, 75-89 (2022). Reviewer: Wolfgang Förg-Rob (Innsbruck) MSC: 39A06 32A10 39A10 39A14 PDF BibTeX XML Cite \textit{A. P. Lyapin} and \textit{T. Cuchta}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 42, 75--89 (2022; Zbl 1511.39002) Full Text: DOI Link
Sepehrian, B.; Shamohammadi, Z. Solution of the Liouville-Caputo time- and Riesz space-fractional Fokker-Planck equation via radial basis functions. (English) Zbl 1508.65146 Asian-Eur. J. Math. 15, No. 11, Article ID 2250195, 20 p. (2022). MSC: 65M70 65M06 65N35 65D12 35G16 60J65 26A33 35R11 35Q84 PDF BibTeX XML Cite \textit{B. Sepehrian} and \textit{Z. Shamohammadi}, Asian-Eur. J. Math. 15, No. 11, Article ID 2250195, 20 p. (2022; Zbl 1508.65146) Full Text: DOI
Jamshidnezhad, Parisa; Saeidi, Shahram Continuous dependence on data for a second-order nonhomogeneous difference inclusion. (English) Zbl 1506.39004 Mediterr. J. Math. 19, No. 6, Paper No. 284, 16 p. (2022). MSC: 39A12 39A14 39A70 47H05 47B44 PDF BibTeX XML Cite \textit{P. Jamshidnezhad} and \textit{S. Saeidi}, Mediterr. J. Math. 19, No. 6, Paper No. 284, 16 p. (2022; Zbl 1506.39004) Full Text: DOI
Neena, A. S.; Mkhope, Dominic P. Clemence; Awasthi, Ashish Some computational methods for the Fokker-Planck equation. (English) Zbl 1507.65143 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 261, 17 p. (2022). Reviewer: Qifeng Zhang (Hangzhou) MSC: 65M06 65N06 60J65 60H40 82C31 35B09 35Q84 35R60 PDF BibTeX XML Cite \textit{A. S. Neena} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 261, 17 p. (2022; Zbl 1507.65143) Full Text: DOI
Zhang, Min; Zhang, Guo-Feng Fast solution method and simulation for the 2D time-space fractional Black-Scholes equation governing European two-asset option pricing. (English) Zbl 1507.91239 Numer. Algorithms 91, No. 4, 1559-1575 (2022). MSC: 91G60 65M06 65N06 65F10 65F08 65F50 65F55 65N20 65N22 65Y05 15B05 26A33 35R11 91G20 35Q91 PDF BibTeX XML Cite \textit{M. Zhang} and \textit{G.-F. Zhang}, Numer. Algorithms 91, No. 4, 1559--1575 (2022; Zbl 1507.91239) Full Text: DOI
Li, Panchi; Ma, Zetao; Du, Rui; Chen, Jingrun A Gauss-Seidel projection method with the minimal number of updates for the stray field in micromagnetics simulations. (English) Zbl 1498.35555 Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6401-6416 (2022). MSC: 35Q99 35Q60 78A25 82D40 35R09 65M06 65F10 PDF BibTeX XML Cite \textit{P. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6401--6416 (2022; Zbl 1498.35555) Full Text: DOI arXiv
Cao, Yue; Xie, Yaning; Krishnamurthy, Mahesh; Li, Shuwang; Ying, Wenjun A kernel-free boundary integral method for elliptic PDEs on a doubly connected domain. (English) Zbl 1497.65246 J. Eng. Math. 136, Paper No. 2, 21 p. (2022). MSC: 65N38 65N06 65F08 65F10 65T50 65D05 35J15 PDF BibTeX XML Cite \textit{Y. Cao} et al., J. Eng. Math. 136, Paper No. 2, 21 p. (2022; Zbl 1497.65246) Full Text: DOI
Zhang, Bingyin; Fu, Hongfei; Liang, Xueting; Liu, Jun; Zhang, Jiansong An efficient second-order finite volume ADI method for nonlinear three-dimensional space-fractional reaction-diffusion equations. (English) Zbl 1513.65329 Adv. Appl. Math. Mech. 14, No. 6, 1400-1432 (2022). MSC: 65M08 65M06 65N08 65M12 65M15 26A33 35R11 65F10 PDF BibTeX XML Cite \textit{B. Zhang} et al., Adv. Appl. Math. Mech. 14, No. 6, 1400--1432 (2022; Zbl 1513.65329) Full Text: DOI
Zhou, Han; Tian, Wenyi Two time-stepping schemes for sub-diffusion equations with singular source terms. (English) Zbl 1492.65249 J. Sci. Comput. 92, No. 2, Paper No. 70, 28 p. (2022). MSC: 65M06 65M60 65M15 35R11 35R05 PDF BibTeX XML Cite \textit{H. Zhou} and \textit{W. Tian}, J. Sci. Comput. 92, No. 2, Paper No. 70, 28 p. (2022; Zbl 1492.65249) Full Text: DOI arXiv
Zhang, Mengchen; Liu, Fawang; Turner, Ian W.; Anh, Vo V. A vertex-centred finite volume method for the 3D multi-term time and space fractional Bloch-Torrey equation with fractional Laplacian. (English) Zbl 1503.65206 Commun. Nonlinear Sci. Numer. Simul. 114, Article ID 106666, 20 p. (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65N08 65M12 65M15 65F10 65F08 65F50 33E12 26A33 35R11 78A50 35Q60 PDF BibTeX XML Cite \textit{M. Zhang} et al., Commun. Nonlinear Sci. Numer. Simul. 114, Article ID 106666, 20 p. (2022; Zbl 1503.65206) Full Text: DOI
Zhai, Fangman; Cao, Liqun A multiscale parallel algorithm for parabolic integro-differential equation in composite media. (English) Zbl 1513.65392 Int. J. Numer. Anal. Model. 19, No. 4, 542-562 (2022). MSC: 65M60 65M06 65N30 65M12 65Y05 35B25 35B40 65F10 35R09 44A10 74F05 74E30 PDF BibTeX XML Cite \textit{F. Zhai} and \textit{L. Cao}, Int. J. Numer. Anal. Model. 19, No. 4, 542--562 (2022; Zbl 1513.65392) Full Text: Link
Zhang, Lu; Zhang, Qifeng; Sun, Hai-Wei A fast compact difference method for two-dimensional nonlinear space-fractional complex Ginzburg-Landau equations. (English) Zbl 1513.65324 J. Comput. Math. 39, No. 5, 708-732 (2021). MSC: 65M06 65N06 35R11 35Q56 65T50 65F08 65F10 65M12 15B05 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Comput. Math. 39, No. 5, 708--732 (2021; Zbl 1513.65324) Full Text: DOI
Kivva, Sergii Flux-corrected transport for scalar hyperbolic conservation laws and convection-diffusion equations by using linear programming. (English) Zbl 07508483 J. Comput. Phys. 425, Article ID 109874, 35 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. Kivva}, J. Comput. Phys. 425, Article ID 109874, 35 p. (2021; Zbl 07508483) Full Text: DOI arXiv
Yokus, Asif; Yavuz, Mehmet Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation. (English) Zbl 07440431 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2591-2606 (2021). MSC: 65Mxx 26A33 35R11 65M06 PDF BibTeX XML Cite \textit{A. Yokus} and \textit{M. Yavuz}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2591--2606 (2021; Zbl 07440431) Full Text: DOI
Lin, Fu-Rong; Qu, Hai-Dong; She, Zi-Hang DNT preconditioner for one-sided space fractional diffusion equations. (English) Zbl 1496.65121 BIT 61, No. 4, 1311-1335 (2021). MSC: 65M06 65F08 65F10 65M22 15B05 26A33 35R11 PDF BibTeX XML Cite \textit{F.-R. Lin} et al., BIT 61, No. 4, 1311--1335 (2021; Zbl 1496.65121) Full Text: DOI
Abdi, N.; Aminikhah, H.; Refahi Sheikhani, A. H. On rotated grid point iterative method for solving 2D fractional reaction-subdiffusion equation with Caputo-Fabrizio operator. (English) Zbl 1481.65116 J. Difference Equ. Appl. 27, No. 8, 1134-1160 (2021). MSC: 65M06 65F08 65F10 65D30 65M12 41A58 26A33 35R11 PDF BibTeX XML Cite \textit{N. Abdi} et al., J. Difference Equ. Appl. 27, No. 8, 1134--1160 (2021; Zbl 1481.65116) Full Text: DOI
Shao, Xin-Hui; Li, Yu-Han; Shen, Hai-Long Quasi-Toeplitz trigonometric transform splitting methods for spatial fractional diffusion equations. (English) Zbl 1500.65047 J. Sci. Comput. 89, No. 1, Paper No. 10, 24 p. (2021). MSC: 65M06 65N06 15B05 15A18 65F08 65F10 60K50 26A33 35R11 PDF BibTeX XML Cite \textit{X.-H. Shao} et al., J. Sci. Comput. 89, No. 1, Paper No. 10, 24 p. (2021; Zbl 1500.65047) Full Text: DOI
Timokhin, Ivan; Matveev, Sergey; Tyrtyshnikov, Eugene; Smirnov, Alexander Model reduction for Smoluchowski equations with particle transfer. (English) Zbl 1476.65193 Russ. J. Numer. Anal. Math. Model. 36, No. 3, 177-181 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 65M99 65M22 65F20 65F25 15A18 82C70 82C22 35Q82 PDF BibTeX XML Cite \textit{I. Timokhin} et al., Russ. J. Numer. Anal. Math. Model. 36, No. 3, 177--181 (2021; Zbl 1476.65193) Full Text: DOI
Zhu, Chen; Zhang, Bingyin; Fu, Hongfei; Liu, Jun Efficient second-order ADI difference schemes for three-dimensional Riesz space-fractional diffusion equations. (English) Zbl 07384080 Comput. Math. Appl. 98, 24-39 (2021). MSC: 65M06 35R11 65M12 65M70 26A33 65F10 PDF BibTeX XML Cite \textit{C. Zhu} et al., Comput. Math. Appl. 98, 24--39 (2021; Zbl 07384080) Full Text: DOI
Hu, Dongdong; Gong, Yuezheng; Wang, Yushun On convergence of a structure preserving difference scheme for two-dimensional space-fractional nonlinear Schrödinger equation and its fast implementation. (English) Zbl 07384079 Comput. Math. Appl. 98, 10-23 (2021). MSC: 65M06 35R11 35Q55 65M15 65M12 26A33 35Q41 65N06 15B05 65T50 65N20 65F08 65F10 PDF BibTeX XML Cite \textit{D. Hu} et al., Comput. Math. Appl. 98, 10--23 (2021; Zbl 07384079) Full Text: DOI
Ding, Zhiyan; Einkemmer, Lukas; Li, Qin Dynamical low-rank integrator for the linear Boltzmann equation: error analysis in the diffusion limit. (English) Zbl 1507.65206 SIAM J. Numer. Anal. 59, No. 4, 2254-2285 (2021). MSC: 65M99 35L02 65F55 65M06 80A21 PDF BibTeX XML Cite \textit{Z. Ding} et al., SIAM J. Numer. Anal. 59, No. 4, 2254--2285 (2021; Zbl 1507.65206) Full Text: DOI arXiv
Zhao, Yong-Liang; Li, Meng; Ostermann, Alexander; Gu, Xian-Ming An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation. (English) Zbl 1481.65168 BIT 61, No. 3, 1061-1092 (2021). MSC: 65M06 65M12 65N06 65F08 65F10 65H10 15B05 26A33 35R11 35Q35 PDF BibTeX XML Cite \textit{Y.-L. Zhao} et al., BIT 61, No. 3, 1061--1092 (2021; Zbl 1481.65168) Full Text: DOI arXiv
Gnegel, Fabian; Fügenschuh, Armin; Hagel, Michael; Leyffer, Sven; Stiemer, Marcus A solution framework for linear PDE-constrained mixed-integer problems. (English) Zbl 1473.90091 Math. Program. 188, No. 2(B), 695-728 (2021). MSC: 90C11 65N30 90-10 PDF BibTeX XML Cite \textit{F. Gnegel} et al., Math. Program. 188, No. 2 (B), 695--728 (2021; Zbl 1473.90091) Full Text: DOI
Rapún, M.-L.; Terragni, F.; Vega, J. M. Adaptive sampling and modal expansions in pattern-forming systems. (English) Zbl 1487.65168 Adv. Comput. Math. 47, No. 4, Paper No. 48, 31 p. (2021). Reviewer: Philipp Öffner (Mainz) MSC: 65M70 65M60 65M06 65M99 65M50 65F05 35Q56 PDF BibTeX XML Cite \textit{M. L. Rapún} et al., Adv. Comput. Math. 47, No. 4, Paper No. 48, 31 p. (2021; Zbl 1487.65168) Full Text: DOI
Chen, Xu; Ding, Deng; Lei, Siu-Long; Wang, Wenfei An implicit-explicit preconditioned direct method for pricing options under regime-switching tempered fractional partial differential models. (English) Zbl 1476.65167 Numer. Algorithms 87, No. 3, 939-965 (2021). MSC: 91G60 65M06 65F05 65F08 65M12 15B05 91G20 35R11 35Q91 PDF BibTeX XML Cite \textit{X. Chen} et al., Numer. Algorithms 87, No. 3, 939--965 (2021; Zbl 1476.65167) Full Text: DOI
She, Zi-Hang; Lao, Cheng-Xue; Yang, Hong; Lin, Fu-Rong Banded preconditioners for Riesz space fractional diffusion equations. (English) Zbl 1475.65079 J. Sci. Comput. 86, No. 3, Paper No. 31, 22 p. (2021). Reviewer: Qifeng Zhang (Hangzhou) MSC: 65M06 65N06 35R11 26A33 65F08 65F10 65F35 15B05 34A08 PDF BibTeX XML Cite \textit{Z.-H. She} et al., J. Sci. Comput. 86, No. 3, Paper No. 31, 22 p. (2021; Zbl 1475.65079) Full Text: DOI
Jian, Huan-Yan; Huang, Ting-Zhu; Gu, Xian-Ming; Zhao, Xi-Le; Zhao, Yong-Liang Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations. (English) Zbl 07351738 Comput. Math. Appl. 94, 136-154 (2021). MSC: 65M06 35R11 65M12 65F10 65F35 26A33 65N06 15B05 65F08 15A18 PDF BibTeX XML Cite \textit{H.-Y. Jian} et al., Comput. Math. Appl. 94, 136--154 (2021; Zbl 07351738) Full Text: DOI arXiv
Hu, Dongdong; Cai, Wenjun; Fu, Yayun; Wang, Yushun Fast dissipation-preserving difference scheme for nonlinear generalized wave equations with the integral fractional Laplacian. (English) Zbl 1471.65102 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105786, 24 p. (2021). MSC: 65M06 65M12 65T50 65F08 65F10 35L05 35R11 PDF BibTeX XML Cite \textit{D. Hu} et al., Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105786, 24 p. (2021; Zbl 1471.65102) Full Text: DOI
Chen, Hao; Sun, Hai-Wei A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen-Cahn equations. (English) Zbl 1466.65099 J. Sci. Comput. 87, No. 1, Paper No. 30, 25 p. (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M22 65N06 65F10 65F15 65L05 65F60 65M15 15B05 35Q53 35R11 PDF BibTeX XML Cite \textit{H. Chen} and \textit{H.-W. Sun}, J. Sci. Comput. 87, No. 1, Paper No. 30, 25 p. (2021; Zbl 1466.65099) Full Text: DOI
Pang, Hong-Kui; Qin, Hai-Hua; Sun, Hai-Wei; Ma, Ting-Ting Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations. (English) Zbl 07327224 Comput. Math. Appl. 85, 18-29 (2021). MSC: 65F08 35R11 65F10 65M06 65M22 PDF BibTeX XML Cite \textit{H.-K. Pang} et al., Comput. Math. Appl. 85, 18--29 (2021; Zbl 07327224) Full Text: DOI
Jia, Jinhong; Wang, Hong; Zheng, Xiangcheng A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions. (English) Zbl 1471.65144 Appl. Numer. Math. 163, 15-29 (2021). MSC: 65M60 65M06 65N30 65F08 65F10 15B05 15A69 35R11 PDF BibTeX XML Cite \textit{J. Jia} et al., Appl. Numer. Math. 163, 15--29 (2021; Zbl 1471.65144) Full Text: DOI
Zhang, Qifeng; Zhang, Lu; Sun, Hai-wei A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. (English) Zbl 1462.65119 J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M06 65N06 65M12 65T50 65F08 65F10 15B05 35R11 35Q56 PDF BibTeX XML Cite \textit{Q. Zhang} et al., J. Comput. Appl. Math. 389, Article ID 113355, 20 p. (2021; Zbl 1462.65119) Full Text: DOI
Ducharne, Benjamin; Tsafack, P.; Tene Deffo, Y. A.; Zhang, B.; Sebald, G. Anomalous fractional magnetic field diffusion through cross-section of a massive toroidal ferromagnetic core. (English) Zbl 1471.78012 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105450, 12 p. (2021). Reviewer: Roland Pulch (Greifswald) MSC: 78M20 78A55 78A25 65M06 65N06 65F10 35Q60 35R11 PDF BibTeX XML Cite \textit{B. Ducharne} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105450, 12 p. (2021; Zbl 1471.78012) Full Text: DOI HAL
Li, Xiao; Qiao, Zhonghua; Wang, Cheng Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. (English) Zbl 1475.65147 Math. Comput. 90, No. 327, 171-188 (2021). Reviewer: Zhiming Chen (Beijing) MSC: 65M70 65N35 65M06 65M12 65M15 35Q99 PDF BibTeX XML Cite \textit{X. Li} et al., Math. Comput. 90, No. 327, 171--188 (2021; Zbl 1475.65147) Full Text: DOI arXiv
Yan, Shaodan; Zhao, Fengqun; Li, Can; Zhao, Le High order WSGL difference operators combined with sinc-Galerkin method for time fractional Schrödinger equation. (English) Zbl 1492.65284 Int. J. Comput. Math. 97, No. 11, 2259-2286 (2020). MSC: 65M70 35R11 47B37 65M12 PDF BibTeX XML Cite \textit{S. Yan} et al., Int. J. Comput. Math. 97, No. 11, 2259--2286 (2020; Zbl 1492.65284) Full Text: DOI
Kim, A. V.; Andryushechkina, N. A. Finite difference scheme for special system of partial differential equations. (English) Zbl 1501.65038 Pinelas, Sandra (ed.) et al., Mathematical analysis with applications. In honor of the 90th birthday of Constantin Corduneanu, Ekaterinburg, Russia, July 26–28, 2018. Cham: Springer. Springer Proc. Math. Stat. 318, 79-83 (2020). MSC: 65M06 35A01 35A02 PDF BibTeX XML Cite \textit{A. V. Kim} and \textit{N. A. Andryushechkina}, Springer Proc. Math. Stat. 318, 79--83 (2020; Zbl 1501.65038) Full Text: DOI
Iumanova, Irina; Solodushkin, Svyatoslav Third order iterative method for nonlinear difference schemes. (English) Zbl 1454.65102 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 373-387 (2020). MSC: 65M12 65M06 65L06 PDF BibTeX XML Cite \textit{I. Iumanova} and \textit{S. Solodushkin}, Springer Proc. Math. Stat. 333, 373--387 (2020; Zbl 1454.65102) Full Text: DOI
Shao, Xin-Hui; Zhang, Zhen-Duo; Shen, Hai-Long A generalization of trigonometric transform splitting methods for spatial fractional diffusion equations. (English) Zbl 1443.65140 Comput. Math. Appl. 79, No. 6, 1845-1856 (2020). MSC: 65M06 35R11 PDF BibTeX XML Cite \textit{X.-H. Shao} et al., Comput. Math. Appl. 79, No. 6, 1845--1856 (2020; Zbl 1443.65140) Full Text: DOI
Li, Meng; Huang, Chengming; Zhao, Yongliang Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation. (English) Zbl 1442.65168 Numer. Algorithms 84, No. 3, 1081-1119 (2020). MSC: 65M06 65N30 65M12 65F10 65F08 65T50 15B05 26A33 35R11 35Q55 PDF BibTeX XML Cite \textit{M. Li} et al., Numer. Algorithms 84, No. 3, 1081--1119 (2020; Zbl 1442.65168) Full Text: DOI
Jian, Huan-Yan; Huang, Ting-Zhu; Gu, Xian-Ming; Zhao, Xi-Le; Zhao, Yong-Liang Fast implicit integration factor method for nonlinear space Riesz fractional reaction-diffusion equations. (English) Zbl 1437.65100 J. Comput. Appl. Math. 378, Article ID 112935, 16 p. (2020). MSC: 65M06 65M20 65Y20 65F10 65F08 65F15 15B05 35K57 26A33 35R11 PDF BibTeX XML Cite \textit{H.-Y. Jian} et al., J. Comput. Appl. Math. 378, Article ID 112935, 16 p. (2020; Zbl 1437.65100) Full Text: DOI
Chen, Hao; Xu, Dongping Efficient preconditioners for Radau-IIA time discretization of space fractional diffusion equations. (English) Zbl 1436.65165 Numer. Algorithms 83, No. 4, 1349-1372 (2020). MSC: 65N22 65N06 65L06 65F08 65F10 15A18 26A33 35R11 PDF BibTeX XML Cite \textit{H. Chen} and \textit{D. Xu}, Numer. Algorithms 83, No. 4, 1349--1372 (2020; Zbl 1436.65165) Full Text: DOI
Zhao, Yong-Liang; Zhu, Pei-Yong; Gu, Xian-Ming; Zhao, Xi-Le; Jian, Huan-Yan A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation. (English) Zbl 1435.65135 J. Sci. Comput. 83, No. 1, Paper No. 10, 27 p. (2020). MSC: 65M06 65H10 65F08 65F10 15B05 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{Y.-L. Zhao} et al., J. Sci. Comput. 83, No. 1, Paper No. 10, 27 p. (2020; Zbl 1435.65135) Full Text: DOI arXiv
Bai, Zhong-Zhi; Lu, Kang-Ya On regularized Hermitian splitting iteration methods for solving discretized almost-isotropic spatial fractional diffusion equations. (English) Zbl 1463.65039 Numer. Linear Algebra Appl. 27, No. 1, e2274, 21 p. (2020). Reviewer: Constantin Popa (Constanţa) MSC: 65F10 65F08 65N06 35R11 PDF BibTeX XML Cite \textit{Z.-Z. Bai} and \textit{K.-Y. Lu}, Numer. Linear Algebra Appl. 27, No. 1, e2274, 21 p. (2020; Zbl 1463.65039) Full Text: DOI
Lin, Xue-Lei; Lyu, Pin; Ng, Michael K.; Sun, Hai-Wei; Vong, Seakweng An efficient second-order convergent scheme for one-side space fractional diffusion equations with variable coefficients. (English) Zbl 1463.65233 Commun. Appl. Math. Comput. 2, No. 2, 215-239 (2020). MSC: 65M06 35R11 65M12 65F08 15B05 65F10 65F35 PDF BibTeX XML Cite \textit{X.-L. Lin} et al., Commun. Appl. Math. Comput. 2, No. 2, 215--239 (2020; Zbl 1463.65233) Full Text: DOI arXiv
Zhao, Yong-Liang; Zhu, Pei-Yong; Gu, Xian-Ming; Zhao, Xi-Le A second-order accurate implicit difference scheme for time fractional reaction-diffusion equation with variable coefficients and time drift term. (English) Zbl 1462.65120 East Asian J. Appl. Math. 9, No. 4, 723-754 (2019). MSC: 65M06 65M12 65N06 65F08 65F10 35K57 35R11 PDF BibTeX XML Cite \textit{Y.-L. Zhao} et al., East Asian J. Appl. Math. 9, No. 4, 723--754 (2019; Zbl 1462.65120) Full Text: DOI arXiv
Fu, Hongfei; Liu, Huan; Zheng, Xiangcheng A preconditioned fast finite volume method for distributed-order diffusion equation and applications. (English) Zbl 1469.65140 East Asian J. Appl. Math. 9, No. 1, 28-44 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M06 65F08 65F10 15B05 65K10 65T50 35R11 PDF BibTeX XML Cite \textit{H. Fu} et al., East Asian J. Appl. Math. 9, No. 1, 28--44 (2019; Zbl 1469.65140) Full Text: DOI
Jian, Huanyan; Huang, Tingzhu; Zhao, Xile; Zhao, Yongliang Fast second-order accurate difference schemes for time distributed-order and Riesz space fractional diffusion equations. (English) Zbl 1468.65175 J. Appl. Anal. Comput. 9, No. 4, 1359-1392 (2019). MSC: 65N06 65N12 65F08 65F10 15B05 35R11 PDF BibTeX XML Cite \textit{H. Jian} et al., J. Appl. Anal. Comput. 9, No. 4, 1359--1392 (2019; Zbl 1468.65175) Full Text: DOI arXiv
Qi, Ruisheng; Wang, Xiaojie Error estimates of finite element method for semilinear stochastic strongly damped wave equation. (English) Zbl 1466.65143 IMA J. Numer. Anal. 39, No. 3, 1594-1626 (2019). MSC: 65M60 65M06 65M15 65M12 60H40 60H50 35B65 35R60 PDF BibTeX XML Cite \textit{R. Qi} and \textit{X. Wang}, IMA J. Numer. Anal. 39, No. 3, 1594--1626 (2019; Zbl 1466.65143) Full Text: DOI arXiv
Zamolo, Riccardo; Nobile, Enrico; Šarler, Božidar Novel multilevel techniques for convergence acceleration in the solution of systems of equations arising from RBF-FD meshless discretizations. (English) Zbl 1452.65378 J. Comput. Phys. 392, 311-334 (2019). MSC: 65N35 65N06 35J05 PDF BibTeX XML Cite \textit{R. Zamolo} et al., J. Comput. Phys. 392, 311--334 (2019; Zbl 1452.65378) Full Text: DOI Link
Hecht, Frederic; Kaber, Sidimahmoud Partial fraction decomposition of matrices and parallel computing. (English) Zbl 1449.65099 J. Math. Study 52, No. 3, 244-257 (2019). MSC: 65F99 65Y05 PDF BibTeX XML Cite \textit{F. Hecht} and \textit{S. Kaber}, J. Math. Study 52, No. 3, 244--257 (2019; Zbl 1449.65099) Full Text: DOI
Aristova, E. N.; Karavaeva, N. I. The boundary conditions in the bicompact schemes for HOLO algorithms for solving the transport equation. (Russian. English summary) Zbl 1465.65065 Mat. Model. 31, No. 9, 3-20 (2019). MSC: 65M06 65L06 65M12 35F16 35Q49 35R11 PDF BibTeX XML Cite \textit{E. N. Aristova} and \textit{N. I. Karavaeva}, Mat. Model. 31, No. 9, 3--20 (2019; Zbl 1465.65065) Full Text: DOI MNR
Wang, Hong; Zheng, Xiangcheng A modified time-fractional diffusion equation and its finite difference method: regularity and error analysis. (English) Zbl 1443.35177 Fract. Calc. Appl. Anal. 22, No. 4, 1014-1038 (2019). MSC: 35R11 65F10 65M06 65M22 65T50 35K57 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Zheng}, Fract. Calc. Appl. Anal. 22, No. 4, 1014--1038 (2019; Zbl 1443.35177) Full Text: DOI
Miyatake, Yuto; Nakagawa, Tai; Sogabe, Tomohiro; Zhang, Shao-Liang A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. (English) Zbl 1434.65207 J. Comput. Dyn. 6, No. 2, 361-383 (2019). MSC: 65M70 65F08 65N22 65M06 65F10 35R11 35Q91 81S40 PDF BibTeX XML Cite \textit{Y. Miyatake} et al., J. Comput. Dyn. 6, No. 2, 361--383 (2019; Zbl 1434.65207) Full Text: DOI arXiv
Weng, Zhifeng; Zhai, Shuying; Feng, Xinlong Analysis of the operator splitting scheme for the Cahn-Hilliard equation with a viscosity term. (English) Zbl 1430.35201 Numer. Methods Partial Differ. Equations 35, No. 6, 1949-1970 (2019). MSC: 35Q35 35S05 65M20 65M70 65M06 65L06 34A30 34A34 PDF BibTeX XML Cite \textit{Z. Weng} et al., Numer. Methods Partial Differ. Equations 35, No. 6, 1949--1970 (2019; Zbl 1430.35201) Full Text: DOI
Harizanov, Stanislav; Lazarov, Raytcho; Margenov, Svetozar; Marinov, Pencho; Pasciak, Joseph Comparison analysis of two numerical methods for fractional diffusion problems based on the best rational approximations of \(t^\gamma\) on \([0, 1]\). (English) Zbl 1429.65064 Apel, Thomas (ed.) et al., Advanced finite element methods with applications. Selected papers from the 30th Chemnitz finite element symposium, St. Wolfgang/Strobl, Austria, September 25–27, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 128, 165-185 (2019). MSC: 65F10 65F15 65D32 35R11 65N30 65N06 65K10 41A20 15A18 35J05 PDF BibTeX XML Cite \textit{S. Harizanov} et al., Lect. Notes Comput. Sci. Eng. 128, 165--185 (2019; Zbl 1429.65064) Full Text: DOI arXiv
Yang, Yubo; Zeng, Fanhai Numerical analysis of linear and nonlinear time-fractional subdiffusion equations. (English) Zbl 1463.65398 Commun. Appl. Math. Comput. 1, No. 4, 621-637 (2019). MSC: 65N35 65M06 65M12 65M15 35R11 65D30 65N30 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{F. Zeng}, Commun. Appl. Math. Comput. 1, No. 4, 621--637 (2019; Zbl 1463.65398) Full Text: DOI arXiv
Acharya, Keshav Raj Titchmarsh-Weyl theory for vector-valued discrete Schrödinger operators. (English) Zbl 1430.35168 Anal. Math. Phys. 9, No. 4, 1831-1847 (2019). Reviewer: Jesús Hernández (Madrid) MSC: 35P05 47B36 47A10 47B37 39A14 35J10 PDF BibTeX XML Cite \textit{K. R. Acharya}, Anal. Math. Phys. 9, No. 4, 1831--1847 (2019; Zbl 1430.35168) Full Text: DOI arXiv
Lizama, Carlos; Murillo-Arcila, Marina Maximal \(\ell_p\)-regularity for discrete time Volterra equations with delay. (English) Zbl 1439.45002 J. Difference Equ. Appl. 25, No. 9-10, 1344-1362 (2019). MSC: 45D05 35R09 39A06 39A12 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, J. Difference Equ. Appl. 25, No. 9--10, 1344--1362 (2019; Zbl 1439.45002) Full Text: DOI
Osman, S. A.; Langlands, T. A. M. An implicit Keller box numerical scheme for the solution of fractional subdiffusion equations. (English) Zbl 1429.65195 Appl. Math. Comput. 348, 609-626 (2019). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{S. A. Osman} and \textit{T. A. M. Langlands}, Appl. Math. Comput. 348, 609--626 (2019; Zbl 1429.65195) Full Text: DOI Link
Chou, Lot-Kei; Lei, Siu-Long Tensor-train format solution with preconditioned iterative method for high dimensional time-dependent space-fractional diffusion equations with error analysis. (English) Zbl 1428.65069 J. Sci. Comput. 80, No. 3, 1731-1763 (2019). MSC: 65N22 65F10 26A33 41A63 35R11 65M06 65F08 15B05 PDF BibTeX XML Cite \textit{L.-K. Chou} and \textit{S.-L. Lei}, J. Sci. Comput. 80, No. 3, 1731--1763 (2019; Zbl 1428.65069) Full Text: DOI
Aktosun, Tuncay; Choque-Rivero, Abdon E.; Papanicolaou, Vassilis G. Darboux transformation for the discrete Schrödinger equation. (English) Zbl 1442.39007 Electron. J. Differ. Equ. 2019, Paper No. 112, 34 p. (2019). Reviewer: Ti-Jun Xiao (Fudan) MSC: 39A14 39A36 39A12 37K35 39A70 47B39 PDF BibTeX XML Cite \textit{T. Aktosun} et al., Electron. J. Differ. Equ. 2019, Paper No. 112, 34 p. (2019; Zbl 1442.39007) Full Text: arXiv Link
Sweilam, N. H.; Abou Hasan, M. M. An improved method for nonlinear variable-order equation. (English) Zbl 1480.65294 Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3021-3046 (2019). MSC: 65M70 33C45 35R11 PDF BibTeX XML Cite \textit{N. H. Sweilam} and \textit{M. M. Abou Hasan}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3021--3046 (2019; Zbl 1480.65294) Full Text: DOI
Fang, Zhi-Wei; Ng, Michael K.; Sun, Hai-Wei Circulant preconditioners for a kind of spatial fractional diffusion equations. (English) Zbl 1437.65013 Numer. Algorithms 82, No. 2, 729-747 (2019). MSC: 65F08 35R11 65F10 65M06 PDF BibTeX XML Cite \textit{Z.-W. Fang} et al., Numer. Algorithms 82, No. 2, 729--747 (2019; Zbl 1437.65013) Full Text: DOI
Wang, Wansheng; Chen, Yingzi; Fang, Hua On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. (English) Zbl 1422.65189 SIAM J. Numer. Anal. 57, No. 3, 1289-1317 (2019). MSC: 65M06 65M55 65L60 91B25 91G60 65J10 65M12 35R09 45K05 65M50 PDF BibTeX XML Cite \textit{W. Wang} et al., SIAM J. Numer. Anal. 57, No. 3, 1289--1317 (2019; Zbl 1422.65189) Full Text: DOI
Massei, Stefano; Mazza, Mariarosa; Robol, Leonardo Fast solvers for two-dimensional fractional diffusion equations using rank structured matrices. (English) Zbl 1420.65096 SIAM J. Sci. Comput. 41, No. 4, A2627-A2656 (2019). MSC: 65M22 35R11 15A24 65M06 65M60 65F10 PDF BibTeX XML Cite \textit{S. Massei} et al., SIAM J. Sci. Comput. 41, No. 4, A2627--A2656 (2019; Zbl 1420.65096) Full Text: DOI arXiv
Xu, Weiyan; Sun, Hong A fast second-order difference scheme for the space-time fractional equation. (English) Zbl 1418.65109 Numer. Methods Partial Differ. Equations 35, No. 4, 1326-1342 (2019). MSC: 65M06 65M12 35R11 65D07 65F10 65F08 PDF BibTeX XML Cite \textit{W. Xu} and \textit{H. Sun}, Numer. Methods Partial Differ. Equations 35, No. 4, 1326--1342 (2019; Zbl 1418.65109) Full Text: DOI
Nolan, Matthew Geometry of integrable lattice equations and their reductions. (Abstract of thesis). (English) Zbl 1416.39004 Bull. Aust. Math. Soc. 100, No. 1, 168-169 (2019). MSC: 39A13 14B05 14J17 39A06 39A14 PDF BibTeX XML Cite \textit{M. Nolan}, Bull. Aust. Math. Soc. 100, No. 1, 168--169 (2019; Zbl 1416.39004) Full Text: DOI
Fu, Hongfei; Wang, Hong A preconditioned fast parareal finite difference method for space-time fractional partial differential equation. (English) Zbl 1415.65190 J. Sci. Comput. 78, No. 3, 1724-1743 (2019). MSC: 65M06 35R11 65F08 65F10 65M12 65T50 65Y05 PDF BibTeX XML Cite \textit{H. Fu} and \textit{H. Wang}, J. Sci. Comput. 78, No. 3, 1724--1743 (2019; Zbl 1415.65190) Full Text: DOI
Lastra, Alberto; Malek, Stephane Parametric Borel summability for linear singularly perturbed Cauchy problems with linear fractional transforms. (English) Zbl 1412.35358 Electron. J. Differ. Equ. 2019, Paper No. 55, 75 p. (2019). MSC: 35R10 35C10 35C15 35C20 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, Electron. J. Differ. Equ. 2019, Paper No. 55, 75 p. (2019; Zbl 1412.35358) Full Text: Link
Xavier, G. Britto Antony; Borg, S. John; Govindan, B.; Meganathan, M. Heat equation model for rod and thin plate by partial \(q\)-difference operator. (English) Zbl 1410.39038 J. Anal. 27, No. 1, 161-172 (2019). MSC: 39A70 39A10 39A13 39A60 47B39 80A20 PDF BibTeX XML Cite \textit{G. B. A. Xavier} et al., J. Anal. 27, No. 1, 161--172 (2019; Zbl 1410.39038) Full Text: DOI
Ma, Tingfu; Ge, Yongbin A higher-order blended compact difference (BCD) method for solving the general 2D linear second-order partial differential equation. (English) Zbl 1458.65135 Adv. Difference Equ. 2019, Paper No. 98, 21 p. (2019). MSC: 65N06 65N15 65N22 PDF BibTeX XML Cite \textit{T. Ma} and \textit{Y. Ge}, Adv. Difference Equ. 2019, Paper No. 98, 21 p. (2019; Zbl 1458.65135) Full Text: DOI
Medina, Arcesio Castañeda; Schmid, Rochus Solution of high order compact discretized 3D elliptic partial differential equations by an accelerated multigrid method. (English) Zbl 1407.65319 J. Comput. Appl. Math. 350, 343-352 (2019). MSC: 65N55 65N06 65F08 65N12 76R50 68W30 65F10 PDF BibTeX XML Cite \textit{A. C. Medina} and \textit{R. Schmid}, J. Comput. Appl. Math. 350, 343--352 (2019; Zbl 1407.65319) Full Text: DOI
Papukashvili, Archil; Papukashvili, Giorgi; Sharikadze, Meri Numerical calculations of the J. Ball nonlinear dynamic beam. (English) Zbl 1513.65379 Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 32, 47-50 (2018). MSC: 65M60 65M06 65N30 65Q10 65M15 65F10 35R09 74K10 35Q74 PDF BibTeX XML Cite \textit{A. Papukashvili} et al., Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 32, 47--50 (2018; Zbl 1513.65379) Full Text: Link
Wang, Lisha; Qin, Wendi; Ding, Xiaohua Dissipativity of \(\theta \)-methods for a class of advection-reaction-diffusion equations with both fixed and distributed delays. (English) Zbl 1499.65440 Int. J. Comput. Math. 95, No. 8, 1672-1687 (2018). MSC: 65M06 35K57 35R09 35R10 45D05 45J05 65L03 65M12 PDF BibTeX XML Cite \textit{L. Wang} et al., Int. J. Comput. Math. 95, No. 8, 1672--1687 (2018; Zbl 1499.65440) Full Text: DOI
Manapova, Aigul On the differentiation of the functional in distributed optimization problems with imperfect contact. (English) Zbl 1499.49018 Filomat 32, No. 3, 775-783 (2018). MSC: 49J20 35J65 49M25 65N06 PDF BibTeX XML Cite \textit{A. Manapova}, Filomat 32, No. 3, 775--783 (2018; Zbl 1499.49018) Full Text: DOI
Er, Neslihan; Çağlar, Hikmet; Çağlar, Nazan Compact finite differences method and Caputo fractional derivative definition for linear fractional Schrödinger equations. (English) Zbl 1427.65159 Int. J. Numer. Methods Appl. 17, No. 1, 19-45 (2018). MSC: 65M06 35R11 35Q41 65M12 PDF BibTeX XML Cite \textit{N. Er} et al., Int. J. Numer. Methods Appl. 17, No. 1, 19--45 (2018; Zbl 1427.65159) Full Text: DOI
Slavík, Antonín Discrete Bessel functions and partial difference equations. (English) Zbl 1427.39006 J. Difference Equ. Appl. 24, No. 3, 425-437 (2018). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A14 39A12 33C10 33C05 39A06 39A10 34A33 PDF BibTeX XML Cite \textit{A. Slavík}, J. Difference Equ. Appl. 24, No. 3, 425--437 (2018; Zbl 1427.39006) Full Text: DOI
Zhang, Haixiang; Yang, Xuehua; Xu, Da Alternating direction implicit OSC scheme for the two-dimensional fractional evolution equation with a weakly singular kernel. (English) Zbl 1438.65261 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1689-1711 (2018). MSC: 65M70 65M12 35R11 26A33 65M06 65D07 65M15 74D05 PDF BibTeX XML Cite \textit{H. Zhang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 6, 1689--1711 (2018; Zbl 1438.65261) Full Text: DOI
Zhu, Yuanran; Venturi, Daniele Faber approximation of the Mori-Zwanzig equation. (English) Zbl 1415.37074 J. Comput. Phys. 372, 694-718 (2018). MSC: 37H10 47A58 35R60 37C05 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{D. Venturi}, J. Comput. Phys. 372, 694--718 (2018; Zbl 1415.37074) Full Text: DOI arXiv
Ling, Dan; Cheng, Juan; Shu, Chi-Wang Conservative high order positivity-preserving discontinuous Galerkin methods for linear hyperbolic and radiative transfer equations. (English) Zbl 1407.65196 J. Sci. Comput. 77, No. 3, 1801-1831 (2018). MSC: 65M60 65M06 65N30 65M12 35B09 35R09 80A20 35Q79 85A25 PDF BibTeX XML Cite \textit{D. Ling} et al., J. Sci. Comput. 77, No. 3, 1801--1831 (2018; Zbl 1407.65196) Full Text: DOI
Qu, Wei; Shen, Hai-Wei; Liang, Yong PCG method with Strang’s circulant preconditioner for Hermitian positive definite linear system in Riesz space fractional advection-dispersion equations. (English) Zbl 1432.65038 Comput. Appl. Math. 37, No. 4, 4554-4569 (2018). MSC: 65F10 65F08 35R11 65M06 PDF BibTeX XML Cite \textit{W. Qu} et al., Comput. Appl. Math. 37, No. 4, 4554--4569 (2018; Zbl 1432.65038) Full Text: DOI
Chen, Hao; Lv, Wen; Zhang, Tongtong A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations. (English) Zbl 1395.65007 J. Comput. Phys. 360, 1-14 (2018). MSC: 65F08 65M06 65F10 35R11 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Comput. Phys. 360, 1--14 (2018; Zbl 1395.65007) Full Text: DOI
Lizama, Carlos; Rebolledo, Rolando A semigroup approach to fractional Poisson processes. (English) Zbl 1390.39028 Complex Anal. Oper. Theory 12, No. 3, 777-785 (2018). MSC: 39A13 39A14 39A06 39A60 47D06 47D99 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{R. Rebolledo}, Complex Anal. Oper. Theory 12, No. 3, 777--785 (2018; Zbl 1390.39028) Full Text: DOI
Zhao, Meng; Wang, Hong; Cheng, Aijie A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations with fractional derivative boundary conditions. (English) Zbl 1395.65036 J. Sci. Comput. 74, No. 2, 1009-1033 (2018). MSC: 65M06 35R11 65M12 65F10 15B05 PDF BibTeX XML Cite \textit{M. Zhao} et al., J. Sci. Comput. 74, No. 2, 1009--1033 (2018; Zbl 1395.65036) Full Text: DOI
Bensoussan, Alain; Li, Yiqun; Yam, Sheung Chi Phillip Backward stochastic dynamics with a subdifferential operator and non-local parabolic variational inequalities. (English) Zbl 1381.37063 Stochastic Processes Appl. 128, No. 2, 644-688 (2018). MSC: 37H10 35K87 35K85 35D30 60H15 PDF BibTeX XML Cite \textit{A. Bensoussan} et al., Stochastic Processes Appl. 128, No. 2, 644--688 (2018; Zbl 1381.37063) Full Text: DOI
Ashyralyev, Allaberen; Belakroum, Kheireddine; Guezane-Lakoud, Assia Numerical algorithm for the third-order partial differential equation with nonlocal boundary conditions. (English) Zbl 1493.65171 Kal’menov, Tynysbek (ed.) et al., International conference ‘Functional analysis in interdisciplinary applications’, FAIA2017, Astana, Kazakhstan, October 2–5, 2017. Proceedings. Melville, NY: American Institute of Physics (AIP). AIP Conf. Proc. 1880, 040012, 7 p. (2017). MSC: 65N06 35G15 PDF BibTeX XML Cite \textit{A. Ashyralyev} et al., AIP Conf. Proc. 1880, 040012, 7 p. (2017; Zbl 1493.65171) Full Text: DOI
Yokuş, Asıf; Kaya, Doğan Numerical and exact solutions for time fractional Burgers’ equation. (English) Zbl 1412.65098 J. Nonlinear Sci. Appl. 10, No. 7, 3419-3428 (2017). MSC: 65M06 35R11 PDF BibTeX XML Cite \textit{A. Yokuş} and \textit{D. Kaya}, J. Nonlinear Sci. Appl. 10, No. 7, 3419--3428 (2017; Zbl 1412.65098) Full Text: DOI
Chen, Wen; Wang, Song A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing. (English) Zbl 1411.91617 Appl. Math. Comput. 305, 174-187 (2017). MSC: 91G60 91G20 35R11 35Q91 PDF BibTeX XML Cite \textit{W. Chen} and \textit{S. Wang}, Appl. Math. Comput. 305, 174--187 (2017; Zbl 1411.91617) Full Text: DOI
Fu, Hongfei; Ng, Michael K.; Wang, Hong A divide-and-conquer fast finite difference method for space-time fractional partial differential equation. (English) Zbl 1412.65073 Comput. Math. Appl. 73, No. 6, 1233-1242 (2017). MSC: 65M06 35R11 65F10 PDF BibTeX XML Cite \textit{H. Fu} et al., Comput. Math. Appl. 73, No. 6, 1233--1242 (2017; Zbl 1412.65073) Full Text: DOI
Feng, L. B.; Zhuang, P.; Liu, F.; Turner, I.; Anh, V.; Li, J. A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients. (English) Zbl 1412.65072 Comput. Math. Appl. 73, No. 6, 1155-1171 (2017). MSC: 65M06 65M12 35R11 65F10 PDF BibTeX XML Cite \textit{L. B. Feng} et al., Comput. Math. Appl. 73, No. 6, 1155--1171 (2017; Zbl 1412.65072) Full Text: DOI
Garrappa, Roberto; Moret, Igor; Popolizio, Marina On the time-fractional Schrödinger equation: theoretical analysis and numerical solution by matrix Mittag-Leffler functions. (English) Zbl 1448.65099 Comput. Math. Appl. 74, No. 5, 977-992 (2017). MSC: 65M06 65M22 65M12 65F10 35R11 26A33 33E12 35Q41 PDF BibTeX XML Cite \textit{R. Garrappa} et al., Comput. Math. Appl. 74, No. 5, 977--992 (2017; Zbl 1448.65099) Full Text: DOI